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Canonical description of electron states in random alloys
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The canonical method of Andersen and Jepsen for determining the band structure of metals,
which is based on the linear muffin-tin orbital method and which leads to an extremely simple
tight-binding method, is generalized to the case of random alloys. The factorization of the
structural- and potential-dependent parts allows one to perform the configurational averaging
within the single-site approximation. The theory is illustrated for the Ag„Pdloo —„alloy series.
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It has been shown by Andersen that fairly accurate (—10

The linear methods of band theory, ' introduced a de-
cade ago by Andersen, led to the development of very effi-
cient computational schemes for the self-consistent deter-
mination of the band structure of solids. Among the linear
methods, the linear muffin-tin orbital (LMTO) method is
the simplest and physically the most transparent one.
Within the so-called atomic-sphere approximation (ASA)
the LMTO method can be put into a form3 combining the
advantages of the tight-binding method and the Korringa-
Kohn-Rostoker (KKR) method. We solve the standard ei-
genvalue problem with the tight-binding-like Hamiltonian,
whose transfer matrix factorizes into the structure con-
stant characterizing the geometry of the lattice and the po-
tential parameters characterizing the potentials placed on
the lattice sites. The theory provides us with reliable wave
functions and offers a systematic description of variations
in properties from metal to metal. It has been demonstrat-
ed recently that the LMTO-ASA method can be success-
fully applied also to the study of isolated impurities in a
perfect crystal. It is the purpose of this Rapid Communi-
cation to proceed further and to generalize the theory to
the case of concentrated alloys within the single-site ap-
proximation (SSA).

The starting point of our analysis is the tight-binding
Hamiltonian in the orthogonal site representation, derived
systematically from the LMTO-ASA theory and general-
ized to random alloys
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Here, R denotes the lattice site and L (l,m) is the orbital
index (for transition metals I ~ 2). The quantities
XRLRL XRtbRRbLL, X-C, Q, and b, are the conven-
tional potential parameters tabulated for all metals. The
screened or tight-binding structure constant S contains all
the information on the lattice geometry, and it is expressed
in terms of the conventional structure constant S and
the screening parameter Q as

mRy) band structures of metals are obtained with this
Hamiltonian. The Hamiltonian (1) serves also as a bridge
between the tight-binding and KKR methods: The
transfer integrals are optimally parametrized through the
potential parameters related to the phase shifts of poten-
tials in atomic spheres.

The potential parameters XRI take randomly the values
Xf (Xt') with the probability x (y 1 —x) in binary al-
loys. The alloy electronic structure is fully described by
the configurationally averaged resolvent (G(z)), where
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The screened structure constant S is a characteristic of a
lattice, and as such it is a nonrandom operator. Conse-
quently, the auxiliary resolvent g(z) exhibits only the
site-diagonal disorder and the configurational average can
be performed within the SSA exactly. For the configura-

Here and below we often drop the indices R and L for sim-
plicity. Because the Hamiltonian (1) exhibits both the di-
agonal and off-diagonal disorders, the configurational
average of G(z) cannot be performed within the SSA
directly. To overcome this difficulty, we shall perform the
transformation from the true resolvent G (z ) to the auxili-
ary one, g(z) [P(z) —S] '. Here, the operator P(z) is
diagonal in the site representation and it takes randomly
the values

PP(z) =(z —CP)/[dP+(QP —Qt)(z —CP)l, Q =A,B .

(4)

The functions Pi(z) are easily recognized as so-called po-
tential functions, which are essentially the cotangents of
the phase shifts parametrized into algebraic form (4). The
true and the auxiliary resolvents have the same algebraic
structure and are related by a simple scaling transforma-
tion
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tionally averaged auxiliary resolvent (g(z) & we obtain

(g(z)) - [P(z) —sl
e, (z) -xPP(z)+ yP/'(z)

xy [Pt (z) —Pt'(z)l
xPP(z)+yPf'(z) —Att(z)

ntt(z) -Pt(z) —I/C(t(z),

(6)

tends, however, beyond the impurity site [see Eq. (1)].
The true impurity resolvent G' (z) is obtained from
g' (z) using (5). This result can be considered as the
simplest variant of the LMTO-ASA Green's-function
method of Gunnarsson, Jepsen, and Andersen for a single
impurity in a crystal. (iii) A simpler, but meaningful
variant of the theory is obtained by linearizing the poten-
tial function P(z) to the form (z —C)/8 appropriate, e.g. ,
for narrow d bands. The relation (5) then simplifies to

ett(z) -—g [P(z) —S(k)ltt ' .
k

The site-diagona1 coherent potential function operator
P(z) has for I ~ 2 and for cubic lattices four independent
components Pt(z) (I s, p, t2z, and ez) determined from
the system of Eqs. (6) coupled via the diagonal elements of
the configurationally averaged auxiliary resolvent @tt(z)
in the site representation. The central problem is how to
express the true averaged resolvent (G(z)) in terms of the
averaged auxiliary one (g(z)). The problem reduces to the
averaging of expression (5) within the SSA. The first
term in (5) is the site diagonal and it is averaged trivially.
The second term represents the complicated average of
three random quantities to which we shall apply the tech-
nique proposed by us earlier. The result is

(G(z)& A(z)+I (z)(g(z))r(z),

A( )-(~( ))+[~y( )l' (7)
[~P(z)]'

r(z)- y"(z) [P'(z) —r(z)] —y'(z) [P"(z) —r(z)]
aP (z)

Here, the quantities A(z ) and I (z ) are site diagonal,
(X) xX +yX (X X,P) and ~ X —X (X=y,P).
Similarly to (5), the true averaged resolvent is obtained
from the averaged auxiliary one by a scaling transfor-
mation.

Various physical quantities can be determined from the
averaged one-particle Green's-function operator (G (z )).
The simplest ones are the local density of states

p(E) -tr 'Imp(G(E+iO+))Rt Rt,
I

and the Bloch spectral density

with H=C+(6)'t S(A)'t . The multiplicative form of
this alloy Hamiltonian was anticipated, for example, by
Harrison and employed by us recently.

We shall illustrate our theory on the evaluation of the
densities of states and the spectral densities for the case of
Ag„Pd~oo „alloys. We use tabulated potential parame-
ters for pure components. This choice is reasonable for
closely packed metals with small charge transfer. The
results, given in Figs. 1 and 2, agree excellently with the
self-consistent calculations using the KKR method. The
agreement between both types of calculations, though the
present ones are non-self-consistent, indicates the impor-
tance of the proper positioning of constituent bands on the
energy axis, which is natural in the ASA. On the other
hand, the non-self-consistent implementation of the KKR
method may suffer from the mismatch of the energy
scales. We note also very good quantitive agreement for
some other alloy systems for which the self-consistent
KKR data are available (Cu-Pd alloys, spin-polarized Fe-
Ni alloys, or hypothetical Fe-Ti alloy).

We shall briefly summarize the main features of our
new method for calculation of the electronic properties of
random alloys: (i) The present theory, based on the pa-
rametrization derived systematically from the LMTO
theory, is a further development in the effort to establish

A(k, E) —tr 'Imp(G(k, E+i0+)) .tt

Several remarks are merited: (i) An equivalent form of
the theory is obtained for g O. The appropriate choice of
Q, however, guarantees an efficient screening of S leading
to an important simplification of calculations. (ii) For a
crystal, our theory reduces naturally to the first-principles
tight-binding method of Andersen and Jepsen. In the
low-concentration limit the problem is reduced to the
solution of the Dyson equation
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describing a single impurity. The perturbation AP(z)
P' (mz) —Pt ~(z) [the superscripts imp and (0) are re-

lated to the impurity and the host crystal, respectively) is
limited to the impurity site due to the SSA character of
our theory. The true perturbation V=H' —H ex-
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FIG. 1. Concentration dependences of the total densities of

states of Ag„pd&00 —„alloys. Values of concentrations x are as-

signed to corresponding curves.
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FIG. 2. Spectral density functions A(k,E) for an equidistant
set of k vectors along the I -X line (I -top curves, X-bottom
curves) for the AgspPdgp, Ag5pPdgp, and AgzpPdsp alloys.

the quantitative tight-binding approach for alloys, whose
main previous steps were the matrix generalization of the
diagonal-randomness model ' and the multiplicative-
randomness model based on the universal parametrization
scheme of Harrison. (ii) The theory combines the simpli-
city of the tight-binding approach with the accuracy of the
KKR method. We work with the tight-binding Hamiltoni-
an whose parameters are derived systematically from the
properties of potentials in atomic spheres. (iii) The gen-
eralization of the Andersen and Jepsen method to the SSA
treatment of random alloys involves several nontrivial
steps. We feel it necessary to mention them briefly though
a detailed discussion cannot be given here and it is post-
poned to a further publication. One group of problems
concerns the use of crystal potential parameters for alloys:
The transferrability depends on the choice of the size of
atomic spheres and on the charge transfer between constit-
uent atoms. These difficulties, present even in the case of
ordered alloys, will be removed in the fully self-consistent
version of the theory. Closely related is the problem of
possible lattice relaxations and their influence on the alloy
electronic structure. " Another problem that should be
handled with care arises in connection with analytical
properties of the resolvent operator in the complex energy
plane. Seemingly, Eqs. (5) and (7) exhibit some unphysi-
cal poles that, of course, disappear in a proper treatment.
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