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Confined electron states in GaAs-Gal „Al„As quantum wires
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We present a quantitative theory of the electronic levels in GaAs-Ga~ „Al„As (001) quantum
0

wires (x (0.35). For the ground state of thick wires (cross-section area ) 100X 100 A ) our results

support the infinite-well approximation in which the two quantization coordinates are decoupled.
0

However, the excited states, and all confined states in thin wires ((70&&70 A ), are affected by addi-
tional reflections which can be identified from tables of the momentum wave-function coefficients
presented in this study.

Recently, it has become possible to fabricate quantum-
wire structures (QWS's) of submicron dimensions. ' Apart
from the obvious academic interest in such a new struc-
ture, there are a number of practical applications. They
stem from the one-dimensional character of the confining
potential which may, for example, give rise to higher elec-
tron mobilities and deeper exciton binding energies. '

The electronic properties of QWS's have been modeled in
the framework of approximate schemes ' in which the
coordinates perpendicular to the wire axis are assumed to
be independent. The confined bound states are then found
by solving the effective-mass Schrodinger equation for a
particle-in-a-box problem with infinite barriers. The ener-

gy levels can be characterized by quantum numbers
( n„,ny ) derived from the uncoupled one-dimensional
square-well problem. However, in a realistic model of the
QWS, the potential representing the individual layers is fi-
nite and motion in the two directions is not separable.
This imposes severe difficulties in defining basis functions
for the effective-mass equation, and we have not found a
satisfactory solution in the literature. In this study, we re-
port the first full-scale calculation of the effect of confine-
ment in GaAs-Ga& „Al„As (001) QWS's. We present
energy levels and wave functions for several systems and
show that at least in some of the confined levels the cou-
pling between the two quantization directions is signifi-
cant and leads to different energy levels.

In our calculations a GaAs-Ga& „Al„As QWS is real-
ized by embedding ultrathin wires of GaAs in a confining
barrier material such as Ga& „Al„As. The two-
dimensional potential well at the interfaces between the
two materials confines electrons to move along the axis of
the wire, which forms a quasi-one-dimensional electron
gas in the (001) direction. Our method of calculation is
a natural extension of the approach used to model conven-
tional superlattices. ' It has been demonstrated that our
technique can yield energy levels and transition energies in
conventional GaAs multiple-quantum-well structures with
a meV accuracy and correctly accounts for oscillator
strengths of allowed as well as "forbidden" transitions.
We expand the wave function lit of a GaAs-Ga& „Al„As
QWS in terms of the complete set of Bloch functions p„k
satisfying the Schrodinger equation (Hp —E)p„k——0
where n is the band index, k is the bulk reduced wave vec-

V= g [Vi(Ga& „Al„As)—VJ(GaAs)],
J

(2)

where j runs through all sites of Gat „Al„As in the unit
cell. The sampling of Bloch functions is taken over one
plane in the bulk face-centered-cubic Brillouin zone. For
instance, at the center of the Brillouin zone (I ) of the
QWS a two-dimensional grid of sampling points separated
by a distance of 2'/30a (where a is the lattice constant) is
taken in the octagonal (001) plane. After determining the
periodic potential V and set of basis functions p„k, we can
multiply Eq. (1) from the left by p„* k and integrate over
the volume to recover an eigenvalue equation

~n', k'(E ' k' E)+ g '4n, k(kn', k'
l

V
I '(in, k)

n, k

(3)

This equation is familiar from our earlier work on impuri-
ties and dislocations ' and is solved by direct diagonaliza-
tion.

It should be noted that in the above formulation we

tor, and Hp is an infinite-crystal Hamiltonian for GaAs.
The QWS Hamiltonian is H =Hp+ V, where V is the
difference between pseudopotentials in the two materials.
The Schrodinger equation to be solved is then

(Hp+ V E) g A—„kg„k——0 .
n, k

A rectangular block of GaAs-Ga~ „Al„As has been
chosen to be the unit cell. Its dimensions are 30 lattice
constants (we have used the same lattice constant, 5.653
A, for both materials) along both the (100) and (010)
directions and one lattice constant along the (001) direc-
tion which is the quantum-wire axis. Different sizes of
quantum wire can be studied using the same unit cell but
with different proportions of GaAs and Ga& Al As in-
side it. Considering a cross section of the unit cell in the
(001) plane, GaAs occupies a square in the middle of the
unit cell. This structure will be repeated in both the
(100) and (010) directions with a periodicity of 30 lat-
tice constants and in the (001) direction with same
periodicity as the bulk material. Hence in the system
described above, V in Eq. (1) will be a periodic potential
and the Bloch functions p„k that contribute to g will be
unambiguously determined. Therefore,
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TABLE I. A table showing the energy levels calculated for
CxaAs-Ciao 7Alo 3As QWS's at the center of the Brillouin zone
(i.e., at I ). The energies are measured in meV from the
conduction-band edge of bulk GaAs, i.e., I (GaAs). The
quantum-wire thickness is 102&102 A . The barrier thickness
is 68 A. The bulk conduction-band minima I (Gao7Alo3As),
X(Gao qA103As), and X(GaAs) are 285 meV, 394 meV, and 489
meV above I (GaAs), respectively.

State

Cl
C2
C3
C4
C5
C6
C7
C8
C~
Xl

Energy (meV)

56
134
134
204
234
239
294
294
328
396

have employed the virtual-crystal approximation to model
the alloy. We have also adjusted both GaAs and
Ga& „Al„As band structures and their relative alignment
in a manner which we have published in detail else-
where. ' The relative positions of principal symmetry
points in both band structures and the band offset are in
good agreement with experiment. To indicate the height
of the confining barrier in the two-dimensional square
well, the positions of the bulk band minima are included
in Table I. Since the aim of this report is to understand
the confinement process in a one-dimensional system, we
have limited our attention to the conduction states only.
We begin with a calculation of the electronic structure of
GaAs-Gao 7Alo 3As QWS's where the size of the GaAs

0

quantum well is 102/ 102 A . The energy spectrum near
the conduction-band edge, obtained in our calculation at
the center of the QWS Brillouin zone (i.e., at I ) is shown
in Table I. All CI to C8 are confined states for which the
electron charge densities are found mainly in the GaAs
well. State Cz is a resonance lying above the barrier as
seen in conventional superlattices. State X& is the X-
related confined state. Since X,(GaAs) is above
X,(Gao 7AlII 3As), state XI is localized in the Gao 7A1II 3As
barrier. The effective mass of the X valley is large and, as
expected, there is a series of closely spaced confined states
above state X&. These states are not listed in Table I. The
electron charge densities associated with the first six states
( CI —C6) and states Cg and XI are plotted in Fig. 1. The
average charge densities for the low-lying confined states
are the same as those expected from the simple model (i.e.,
the product of two cosine functions). It is worth mention-
ing that states C2 and C3 are degenerate and the expected
form of their charge densities can be recovered by taking
a linear combination of their wave functions. Even the
energy of the ground state agrees with the assumption
that there is no coupling between the two transverse direc-
tions perpendicular to the quantum-wire axis (i.e., an in-
finite well). In a calculation for a conventional GaAs-
Gao 7Alo 3As superlattice system with a 102-A GaAs well
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and with the same periodicity as in the QWS calculation,
we find that the ground state is 28 meV above the bottom
of the GaAs conduction-band edge. Since we have taken
a two-dimensional GaAs well, the quantizations in the in-
terface plane are the same in both directions and the sum
of their contribution is 56 meV. In the QWS calculation
the ground-state energy obtained is also 56 meV. Howev-
er, this is not the case in small QWS's. Consider three
different QWS systems. Case A corresponds to the above
calculation with a 102X 102-A GaAs well (barrier thick-
ness 68 A), while cases 8 and C correspond to 68X68-A
and 34 & 34-A wells, respectively. The ground-state ener-
gies of these QWS's are 56 meV, 101 meV, and 215 meV,
respectively. For cases 8 and C the discrepancies between
our calculation and the value expected from the simple
model are 3 meV and 25 meV, respectively. In fact, our
calculations predict several excited states which are lower
than the sum of the two quantization energies. There are
two reasons for these discrepancies. Firstly, the energy of
a confined state in a QWS obeys the sum rule only in an
infinite quantum well. This can be realized from the fact
that there always exists at least one bound state in a two-
dimensional square well. For a finite two-dimensional
well, it is possible to find a bound state in which the sum

h100i

FIG. 1. Electron charge densities of some of the confined
states reported in Table I. Since states C& —C6 are all confined
in GaAs, only the quantum-wire portions (i.e., GaAs wells) in
the unit cell are shown for these states. State C& lies above the
barrier and is localized in the barrier material. State X& is the
lowest state derived from the secondary X minima. Both C&

and X~ have analogous properties to those obtained for such
states in conventional superlattices (see Refs. 4 and 5).
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TABLE II. A table showing the moduli squared of the leading coefficients A„i, in Eq. (1) for the
ground state in three cases 3, B, and C for both k&&oo& and k&p~o&) 0. The thickness of the quantum

0 0 o 2
wire in cases A, B, and C are 102)&102 A, 68&&68 A, and 34&34 A, respectively. Wave vector k is
in units of 2m/30a, where a is the lattice constant. Only coefficients for the conduction band are
shown. The normalization is chosen such that g„z i

A„ 1,
~

=1.

At I

Along (100)

Along (010)

Off axial

k& &oo&

0.0

1.0
2.0

0.0
0.0

1.0
1.0
2.0
2.0

k& ohio&

0.0

0.0
0.0

1.0
2.0

1.0
2.0
1.0
2.0

k&oo»

0.0

0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0

0.443

0.109
0.000

0.109
0.000

0.029
0.000
0.000
0.000

0.291

0.112
0.008

0.112
0.008

0.048
0.004
0.004
0.000

0.316

0.093
0.012

0.093
0.012

0.041
0.008
0.008
0.003

of its one-dimensional quantization energies is larger than
the strength of the potential. In case A it is valid to say
that the quantum well is infinite as far as the ground state
is concerned. It is not true for cases B and C. Secondly,
interactions between the two quantization directions exist
and contribute to the confinement of electrons in the
two-dimensional quantum well.

To trace the evidence concerning the coupling between
the two quantization directions, we look at the coeffi-
cients A„&, in the expansion of the wave function g. In
Table II, we show the moduli squared of the leading A„~
coefficients for the ground states in the above three calcu-
lations. Only the lowest conduction-band contribution is
tabulated as this is the dominant term in the expansion.
Also, since potential V in Eq. (2) is invariant under reflec-
tions along the (100) and (010) directions, we list only
coefficients which correspond to k&icc&, k&c,o&) 0. From
Table I, we can see the quantum-wire ground state in case
A is derived mainly from contributions along the two
quantization directions (100) and (010). There are rare-
ly any terms in the expansion from the off-axial Bloch
functions (i.e., Bloch functions corresponding to both
k& too& and k&oio& not equal to zero). When the off-axial
terms become important in cases B and C, we find a cou-

pling between the two quantization directions affecting
the energy levels. Physically, these off-axial terms could
correspond to standing waves formed by multiple reflec-
tions other than those between opposite (001) interfaces in
the two-dimensional quantum well.

More evidence to show the existence of coupling be-
tween the two quantization directions can be seen from
the confined excited states. Let us study Cz, C3, and C4
in Table I again. We have already mentioned above that
the ground-state energy is 28 meV in a superlattice with a
102 A GaAs well. Furthermore, we know that the first
excited state is of energy 110 meV. Therefore, we would
expect the energies of C2 and C3 to be 138 meV and C~
to be 220 meV. We recover in our calculation the energies
of C2 and C3 to be 134 meV and C4 to be 204 meV,
respectively. As far as higher states are concerned, they
no longer see an infinite well. A similar evidence about
the A„&, coefficients as described above exists to explain
these differences. In Table III we can see the significance
of off-axial terms in the expansion of the wave function of
state C2 to C4. The importance of the additional reflec-
tions is also supported by the properties of states C4, Cs,
and C6. In the expansion of state C4, there is hardly any
contributions at all from k points along the (100) and

TABLE III. A table showing the moduli squared of the leading coefficients A„z in Eq. (1) for three
excited states in Table I for both k&~oo& and k&o]o&)0. k is in units of 2m/30a, where a is the lattice
constant. Also, only coefficients for the conduction band are shown and the same normalization as in
Table II is chosen.

At I

Along (100)

Along (010)

Off axial

k& ioo&

0.0

1.0
2.0

0.0
0.0

1.0
1.0
2.0
2.0

k&o&o&

0.0

0.0
0.0

1.0
2.0

1.0
2.0
1.0
2.0

k&oo»

0.0

0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0

State C2

0.000

0.134
0.018

0.159
0.021

0.142
0.006
0.005
0.000

State C3

0.000

0.159
0.021

0.134
0.018

0.142
0.006
0.007
0.000

State C4

0.000

0.000
0.000

0.000
0.000

0.193
0.025
0.025
0.006
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(010) directions. The formation of state C4 can only be
explained in terms of interactions different from those in
the intuitive picture. States C5 and C6 behave differently
from the effective-mass theory, and they are split by 5

meV. For completeness, we might add that the variation
of the energies of states C& to C3 of case 3 with different
aluminium concentration in the alloy material of the
QWS follow the trend expected on intuitive grounds and
offer no surprising results.

In summary, we have reported the first quantitative

study of the electronic structure of GaAs-Ga& „Al„As
quantum-wire structures. We have demonstrated the lim-
its of applicability of the simple infinite-well model and
conclude that in thick quantum wires 1) 100&&100 A )

this model is valid for the lowest-lying state. For thinner
quantum wires, the coupling effects are more pronounced
and affect all levels. The additional reflections respon-
sible for the change in energy levels can be identified from
the momentum wave-function coefficients presented in
this paper.
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