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Vibrational fluctuations of the hydrogen bonds around a nucleation defect of strand-separation
melting of a DNA polymer, poly(dG)-poly(dC) (dG denotes repeating guanine bases on one strand
and dC the repeating cytosine bases on the other strand), are analyzed at 293 and 340 K using a
modified self-consistent phonon theory with a complex Green’s function. At 293 K the helix is very
stable and the important frequency band for fluctuation is the band between 60 and 120 cm~!. This
is the same important band as that for the fluctuation of the hydrogen bonds which are far from the
defect. At 340 K, near the temperature at which the hydrogen-bond instability in the neighboring
cells to the defect occurs, there are two important frequency bands. One is the band between 60 and
120 cm~! which is essential for the fluctuation of the bond near the major groove. A second band is
the band under 20 cm ™! which is critical for the fluctuation of the bond near the minor groove. We
also explain the directional effects around the defect when the instability of the bonds begins to

occur based on the roles of the particular phonons.

I. INTRODUCTION

The DNA helix is a double helix in the sense that it is
composed of two strands, each one made of covalently
bonded atoms, which are held together by weaker hydro-
gen bonds (H bonds). On raising temperature the double
strand separates into two single strands due to the insta-
bility of the weaker H bonds and this is generally referred
to as a melting of the DNA. The thermal behavior is
much like a melting. Recently we have developed a modi-
fied self-consistent phonon theory'~3 based on phonon
Green’s functions*® to study the strand-separation melt-
ing of a DNA polymer poly(dG)-poly(dC). Here dG and
dC represent separate strands of repeating guanine and
cytosine bases respectively. In the self- consistent phonon
theory we calculate the vibrational fluctuation of the hy-
drogen bonds of the helix, the effective force constants of
the hydrogen bond stretches and the resulting eigenfre-
quencies and the eigenfunctions of the DNA polymer.
The melting is inferred from the development of an insta-
bility in the H bonds. Theoretically this instability comes
from the anharmonic effects of the large thermal fluctua-
tion.

The two strands of the DNA helix are held together by
specific hydrogen bonds as well as a large number of non-
bonded interactions® which give rise to a stacking energy.
In our model for the melting of the DNA helix the vibra-
tional modes of the double helix*® have been calculated
using the force constants for the hydrogen bond interac-
tions as well as force constants for nonbonded interac-
tions. Our eigenvectors of the vibrational modes represent
the calculated displacements of the DNA atoms in the
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presence of all the atom-atom interactions in our model.
In the following work we will focus on the stretch of H-
bond coordinates as this is a convenient parameter which
directly measures the local separation of the two DNA
strands. We will treat the H-bond force constants self-
consistently, but we will not correct the nonbonded in-
teractions for temperature-dependent effects. The non-
bonded interactions have a much weaker dependence on
atom separation and should have much reduced tempera-
ture dependence. The growth in the strand separation
displayed by our theory is a growth that takes place in the
presence of both the H-bond force constants and non-
bonded force constants. The instability is similarly an in-
stability in the presence of all force constants.

Every calculation of our self-consistent phonon theory
at each temperature is based on the temperature-
independent Morse potential of the hydrogen bonds whose
parameters are determined from the dynamical data at
293 K.>7 There are two reasons to believe that our pa-
rametrization for the Morse potential represents a reason-
able approximation to the actual potential in the double
helix. Firstly we predict the observed frequencies of a
number of modes in DNA and in particular the 85 cm—!
cm~! band®’ which is assigned as the principal H-bond
stretch mode.® These modes are observed to be resonant
rather than relaxational.’ Secondly the predicted melting
temperature is in reasonable agreement with observa-
tions.>*®

We have applied our model to the perfect infinite DNA
polymer and we have predicted the melting of the perfect
helix at 380 K.> Although this temperature is reasonably
close to the experimental melting one,'°~!2 this was a
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mean-field melting in which every set of the hydrogen
bonds melts simultaneously. In contrast, the actual melt-
ing can be expected to involve nucleation sites. We have
therefore applied the self-consistent theory to the hydro-
gen bonds around a simple but physically and biologically
meaningful nucleation defect.* The nucleation defect for
the melting we considered was the defect depicted in Fig.
1. As can be seen from Fig. 1, the three H bonds of the
base pair of the cell (0) of the perfect helix has been cut.
In our model it is assumed that no local change in confor-
mation about the defect occurs. Long-lived defects might
cause local deformation, but the details of the deforma-
tion are difficult to predict and incorporating such defects
in our system greatly complicates the calculation. We
then determine at what temperature the hydrogen bonds
of the cell (1) and cell (—1) become unstable. The tem-
perature of the instability should be lower than that of the
mean-field melting, because the thermal fluctuation of the
H bonds around the defect should be enhanced by the de-
fect. We find the instability arises at 350 K (Ref. 4)
which is very close to the experimental one.'° We also
find some directional effects when the H bonds begin to
become unstable around defect. Around 350 K in the cell
(1) the H bond adjacent to the major groove melts first
followed by the other two bonds as in the case of the per-
fect helix. But in the cell (—1) the H bond near the minor
groove first showed the instability followed by the other
bonds.

On raising the temperature the double strand of the
DNA helix separates into two single strands due to the
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FIG. 1. Portion of three unit cells of poly(dG)-poly(dC)
which shows the nucleation defect in hydrogen bonds of cell (0).
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thermal fluctuations breaking the weak hydrogen bonds
which hold the two strands together. Since in this melt-
ing certain specific bonds are disrupted, there exists the
possibility that certain vibrational excitations (or phonons)
are more effective at enhancing the vibrational fluctuation
which drives the melting. It is the purpose of this paper
to analyze the role of the particular phonons of specific
frequency in bringing about the melting of H bonds
around the nucleation defect of Fig. 1. Specifically we
want to see how phonons of specific frequency contribute
to the vibrational fluctuations of the H bonds near the de-
fect compared to those which lie far from the defect and
how the directional effects arise near the temperature of
the instability. First we calculate the frequency-
dependent thermal fluctuation of the stretch of H bonds
at 293 K. At this temperature the H bonds near the de-
fect are quite stable. Next we calculate the fluctuations at
340 K near the temperature at which the H bonds around
the defect become unstable. Although we have reported
the result at 340 K briefly,’ in this paper we want to ex-
plain the result at 340 K more specifically with compar-
ison to the result at 293 K.

II. COMPLEX GREEN’S FUNCTION
AND SELF-CONSISTENT PHONON THEORY

The vibrational equation of motion of the helix with the
defect is

(F—a?+C)g =0, ¢))

where F is the force-constant matrix of the perfect helix,
C is the perturbation of finite size for the cut of the three
hydrogen bonds of cell (0) (see Fig. 1) and w? is the eigen-
frequency. In the presence of a defect in an otherwise
perfect helix, helical symmetry!3 is broken locally and a
deviation from the perfect-helix phonon-dispersion rela-
tions® occurs. There are differences in the eigenvectors of
the inband modes whose frequencies lie within the phonon
dispersion curves of the perfect helix as well as the possi-
ble creation of localized modes within the branch gaps of
dispersion curves of the perfect helix. To analyze the in-
band case we introduce the complex Green’s function g of
the perfect helix which is defined as

glw)=(*—F)""'. )

For o* lying in the perfect helix dispersion curves g(w?)
has first-order poles. Using the famous identity

lim =P(1/x)—imd(x) , (3)

e—0X —|—l€
the singularities of g appear as the imaginary part of com-
plex g.*'* The imaginary part of the complex Green’s
function is very important in calculating the vibrational
fluctuation of given H bonds. The defect Green’s func-
tion G (w?) is then from Egs. (1) and (2),

G(0?)=g(0?)+gT(0?)g , (4)
where
T(0?)=C(l1—g(a®)C)™!. (5)
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In numerical calculation we first calculate the perfect
helix complex Green’s function.* In this calculation at
293 K we have used the result of the phonon dispersion
curves and eigenfunctions of the perfect helix.® In con-
trast at 340 K we have used the new dispersion curves and
eigenfunctions calculated by the self-consistent phonon
theory of the perfect helix in which the correction for the
thermal vibration is included.> We then calculate the T
matrix of Eq. (5) and then the defect Green’s function of
cell (1) and cell (—1). For the localized states which may
occur within the branch gaps of the phonon dispersion
curves of the perfect helix, the Green’s function g(w?)
never develops a singularity and g may be easily calculat-
ed. Then the new localized states are found by searching
for zeroes in a determinant of finite size>* and the corre-
sponding eigenfunctions for the cells (1) and (—1) are
evaluated by use of Eq. (1). Among 123 bands of the per-
fect helix, the frequency bands 28 to 123 are essentially
dispersionless,>® and we treat these bands in the Einstein
approximation. The other bands whose frequencies are
lower than 220 cm ! are treated exactly.

Among all the force constants of DNA we assume that
the six force constants for the hydrogen bond stretches of
cells (1) and (— 1) change significantly and the other force
constants of the cells are assumed not to change signifi-
cantly. Thus for the self-consistent calculation to exam-
ine the stability of the hydrogen bonds of the cells (1) and
(—1) we do every calculation in the subspace of six
hydrogen-bond stretch coordinates of cells (1) and (—1) of
the DNA helix internal coordinates.!> In each iteration of
the modified self-consistent phonon theory there are three
steps which include the anharmonic effects as was stated
in the Introduction. First we calculate the correlation ten-
sor D; for each H bond which represents the thermal
average of fluctuations of H-bond stretches. D; can be
written as*

D;=(s's’)= [ do Df(0)+3 D}w,) , (6)
A

where s’ means the stretch coordinate of ith H bond, { )

means the thermal average, f means the integration over
all continuous frequency bands and D;(w) means the con-
tribution of the inband modes to D; and D} is the contri-
bution of Ath localized states to D;. Here

Df(@)= L coth(Bew/2)ImG;(w?) )
T
and
DMaw,)= —l—si}‘s,-)“coth(ﬁwl/Z) , (8)
2(01

where G;(w?) is the diagonal part of the ith H bond of the
defect Green’s function from Eq. (4), and s} is the com-
plex eigenfunction of the ith H bond of localized states
with the eigenfrequency w,. In the first iteration D; is
calculated from the defect Green’s function of inband
modes and localized states for H bonds of the cells (1) and
(—1) using the method of the first part of this section.
After the first iteration D; can be calculated by the result
of the previous iteration. Next using a Morse potential we

calculate the force constants for the hydrogen-bond
stretches of the cell (1) and (—1). The Morse potential pa-
rameters® used here are determined by fitting the experi-
mentally observed dynamic behavior at 293 K (Ref. 3). In
the subsequent calculations we use the parameters without
modification even though we vary temperatures. Final
step in the iteration is the calculation of a new G;(w) and
new localized states in terms of the calculated force con-
stants as the new force constants. In this step the method
of the first part of this section is taken to calculate the
new G;(w) of Eq. (4) and new localized states.

Our calculations of the force constants differs from the
standard self-consistent phonon approach. We allow for
thermal expansion in a self-consistent manner.! The cen-
troid of the fluctuations in bond length is not at the
minimum of the potential function. If it were the sym-
metric distribution of fluctuations about the minimum
would guarantee that all odd power terms in an expansion
of the potential about the minimum would cancel. In our
asymmetric calculation odd power contributions do occur
about the thermal expansion. The location of the centroid
of the fluctuations is the self-consistent midpoint between
the classical turnaround points of the oscillator. This def-
inition of equilibrium position is consistent with standard
theories of thermal expansion.

III. RESULTS AND DISCUSSIONS

The three steps are iterated and we get self-consistency
both at 293 and at 340 K. As was stated in the Introduc-
tion, it is our purpose to see the detailed frequency depen-
dence of Df(w) for each H bond of the two neighboring
cells to the cell with the defect at both room temperature
293 and 340 K which is near the temperature 350 K at
which the H bonds are unstable.* As already explained,
the critical bonds among the six H bonds at the defect are
the bond adjacent to the major groove of the cell (1) and
the bond adjacent to the minor groove of the cell (—1) at
350 K.* Here the + z direction is the 3'—5’ direction to
the G backbone. The results of our calculation are seen in
Figs. 2 and 3. The result for the bond which is located at
the center of the three H bonds is not displayed, since this
bond does not initiate melting in the temperature range
between 293 and 340 K. Each bar in Figs. 2 and 3 is the
average density D $(») of Eq. (7) in the corresponding cell
which is defined as

wi+Aw.

D 1 ‘Dfw)dw , ©)

Di(wi)zXa_)i— o

for the given frequency band with the range between w;
and w; + Aw;. The area under the given bar from the very
bottom of the graph is the contribution of the given band
to the total fluctuation D; of Eq. (6). The cell ( ) means
a cell lying far away from the defect. The D;(w)’s for cell
(o0 ) are the same as those for the perfect infinite helix.
We display the average fluctuation densities of the bond
near the major groove in Fig. 2(a) for 293 K and Fig. 2(b)
for 340 K and those of the bond near the minor groove in
Fig. 3(a) for 293 and Fig. 3(b) for 340 K.

The frequency band structure of the perfect DNA poly-
mer is as follows. Below ~66 cm™! the bands are over-
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lapped and look like a single continuous band with no
branch gaps.»® From ~66 to 1656 cm™! there are 110
discrete bands with relatively small bandwidths. We do
not display the fluctuation densities for the frequency
band above 130 cm™! because the densities of the neigh-
boring cells are essentially the same as those far from the
defect. At 293 K the fluctuation densities of the neigh-
boring cells to the defect are slightly increased around 10
cm~! and between 60 and 120 cm~!. Compared to the
perfect helix this includes an effect from the localized
states in this frequency range. At 293 K the H bonds
near the major groove of both cell (1) and (— 1) have more
thermal fluctuation than the other two bonds. This situa-
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tion is similar to those of H bonds far from the defect.
There are no critical fluctuations or critical directional
dependences at 293 K. There is a slight increase in the
thermal fluctuation of the bond of cell (1) adjacent to the
major groove from the band between 80 and 110 cm ™!
[Fig. 2(a)] and a slight increase in that of the bond near
the minor groove of the cell (—1) from the band around
10 cm~! [Fig. 3(a)]. At 293 K the helix is very stable
around the defect.? In contrast, at 340 K near the critical
temperature the fluctuation densities around the defect are
increased critically for the band below 20 cm ™! and that
between 60 and 120 cm ™! [Figs. 2(b) and 3(b)].

From Fig. 2(b) we see that a band at ~70 cm ™! is very
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effective at inducing thermal fluctuations in the H bond
near the major groove in cells far from the defect. Anoth-
er band above 120 cm~! also contributes to this motion.
This closely mimics the bands most effective at inducing
melting in a perfect helix as found in our calculation of
mean-field melting.?

The bond near the major groove of cell (1) is the most
critical bond in cell (1). The total fluctuatlon D; of Eq.
(6) of this bond is increased by 1.3 A? compared to that of
the corresponding bond of the perfect helix. About 20%
of this increase comes from the band under 20 cm™!.
About 60% of this increase comes from the band between
60 and 120 cm™! including the contribution from the
pure localized states whose frequencies are 67.2, 68.75,
72.83, 84.45, 86.47, 102.79, 108.50, and 116.14 cm ! [see
Fig. 2(b)]. The contribution from the two bands whose
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frequencies are between 78.16 and 82.7 cm~! and between
95.65 and 100.51 cm™! is about 30%. These are thought
to be the critical bands for the fluctuation of the H bond
near the major groove around the defect. Thus bands at
80—100 cm ™! are very effective at inducing the thermal
fluctuations of the H bond in the cell (1) which in our
model is the 3'—5’ direction for the guanine strand.

In the cell (— 1) the most critical bond for the instabili-
ty is the bond near the minor groove. The total fluctua-
tion D; of this bond is increased by 1.25 A2 comparing
that of the perfect infinite helix. About 70% of this in-
crease comes from the bands under 20 cm~! [see Fig.
3(b)]. This band is the critical band for the fluctuation of
the H bond near the minor groove.

We may state our conclusion as follows. There are two
critical frequency bands around the nucleation defect.
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One is the band between 60 and 120 cm~! and the other is
the band under 20 cm~!. The first band is important for
the melting proceeding in + z direction, and the second
band is important for the melting proceeding in — z direc-
tion. The fluctuation at 10 cm~! is a virtual resonance'®
similar to others found in microwave region located
around the terminus.'*

In all our calculations the integration over bands was
carried out by summation over a mesh of frequencies for
that band. Sharp resonant modes like that found in a pre-
vious DNA Green’s-function calculation'* may not show
up explicitly in these calculations. Further calculations
on a finer mesh are needed particularly in the broad bands
at the lowest end of the spectrum.

This paper calculates the onset of an instability in a set
of bands holding the double helix together. We have asso-
ciated this instability with helix melting but this is not a
detailed theory of helix melting. Broken bands can re-
form. The actual melting occurs when the free energy of
the melting system is lower than that of the unmelted sys-
tem. The instability calculated here is related to melting
as the onset of the instability raises the free energy of the
unmelted system substantially. The free energy of the
unmelted system is related to the fluctuation parameter D.
As shown in a previous work this parameter increases
without bound at the temperature of the onset of the in-
stability.> The rapid increase in free energy of the unmelt-
ed phase when no particular increase should occur in the

melted phase should result in the melted state being at the
lower free energy. In a previous work we showed that
changes in salt concentration, etc., did alter the tempera-
ture® at which the instability occurs. We believe that ef-
fects such as salt, water structure, etc., alter melting by
altering the onset of the instability. With the onset of the
instability with the associated rise in unmelted free energy
the melting occurs.

The fine points of melting and the applicability of this
approach to a theory of melting which properly handles
the cooperativity within a large system are still being ex-
plored. The principle point of this paper is to develop a
calculation which can suggest local details of critical
behavior in a very complex system. The result of this cal-
culation does indicate that very specific local effects can
occur as a result of details of the excitation spectra. The
DNA helix is seen to be a system capable of complex
responses to the introduction of excitations. The actual
biologically significant structures are more complex than
in the system considered here and should be capable of far
more complex responses.
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