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Using a new technique for optically determining strain in the diamond cell, we have measured the
static compression of fused silica and a Ca-Mg-Na glass to over 10 GPa. In our experiments, ir-
reversible compaction of fused silica is precipitated by shear stresses above 10 GPa. For the Ca-
Mg-Na glass we observe irreversible compaction beyond 8 GPa under hydrostatic loading. In both
glasses we find that the bulk modulus increases sharply at high hydrostatic pressures (~11 and ~7
GPa, respectively). We show that this increase in bulk modulus can be explained in terms of the
transition between relaxed and unrelaxec moduli that is observed at zero pressure, low temperatures,
and higher frequencies. Our compression data, measured under quasistatic ( ~10~* Hz) conditions,
are consistent with a wide range of acoustic absorption ( ~ 10°—10'° Hz) and dielectric loss (10°—10*
Hz) measurements in constraining the activation volume for this relaxation process to be
V*=7.9+1.7 cm’/mol. We propose that the relaxation involves a change in the compression mech-
anism, from Si—O—Si bond bending to Si—O bond compression induced either by low tempera-

tures or by high pressure.

I. INTRODUCTION

Fused silica and quartz are both composed of linked
SiO, tetrahedra, yet the two have profoundly different
elastic and thermodynamic properties. Fused silica has a
negative or small thermal expansion coefficient,! it has
two large acoustic absorption peaks at low temperatures,’
and below 2 K it has a large specific-heat anomaly® and
small thermal conductivity.* Similar anomalies have been
found in a wide range of glasses®>® and disordered crys-
tals,*—? suggesting that these are characteristic properties
of the amorphous state.

Roughly, the anomalies can be divided into low- and
high-temperature phenomena. A large acoustic and
dielectric absorption peak at ~50 K in fused silica has
been extensively studied between hypersonic and kilohertz
frequencies at zero pressure.®~!®  Anderson and
Bommel'© first proposed that the attenuation was due to
thermal relaxation of a group of atoms between two
equilibrium configurations in the glass, and they showed
that the position of the relaxation peak was well described
by a single activation energy over the entire range of ex-
perimental data.

Fifteen years later, additional anomalies of excess
specific heat,’ small or negative thermal expansion coeffi-
cients,?’ and large values of acoustic absorption®! were
found in fused silica and other glass forming systems
below 2 K. Anderson et al.?? were able to reconcile all of
these new anomalies with a model of a two-level system
(TLS) which couples strongly to thermal and acoustic
phonons. They suggested that groups of atoms in the
glass could occupy two equilibrium configurations.
Phonon-assisted tunneling between the two states then
provides a low-temperature mechanism for high acoustic
absorption, excess specific heat, and low thermal conduc-
tivity. Jickle et al.?® pointed out that Anderson’s TLS
model was qualitatively similar to the higher temperature
thermal relaxation model, and thus the two may represent
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relaxation of the same structural unit in the glass but by
different processes. While both the TLS and thermal re-
laxation models have been widely accepted as physically
attractive explanations for the elastic and thermodynamic
anomalies, and both have been the focus of intense experi-
mental and theoretical interest for the past thirty years,
neither has been uniquely correlated with any molecular-
scale configuration in an amorphous solid. Moreover,
since only the ‘“average” structure of these materials is
known, it has been difficult to design experiments which
test a model against a particular feature of the glass struc-
ture.

In the present study, we have extended the frequency
range over which these relaxation processes have been ob-
served by measuring the static compression of fused silica
and a Ca-Mg-Na silicate glass to 10 GPa in the diamond
cell. As the diamond cell transmits essentially static pres-
sures to the samples, our experiments probe anelastic
behavior at long relaxation times and large volume
strains. In both glasses, we observe nonelastic deforma-
tion and anomalous increases in the bulk modulus at high
pressures. We show that our compression data are con-
sistent with a large body of low temperature, high fre-
quency measurements of acoustic attenuation and dielec-
tric loss in silicate glasses. In addition we find that the
elastic and anelastic properties of fused silica and crystal-
line SiO, are comparable at equivalent volumes.

II. EXPERIMENTAL METHODS

The experiments were performed with a new optical
technique for measuring strain in the diamond cell.?*
Glass samples, approximately 10—20 um thick and 100
pm across are prepared on one face with a thin (0.1 um)
chromium emulsion mask of ~1 pm-wide lines that are
spaced 33—65 um apart. In both experiments, we deter-
mine the linear strains at different pressures by optically
measuring the change in spacing between the lines on the
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glass fragments. The samples were compressed in a gas-
ketted Mao-Bell—type diamond cell with a 4:1 mixture of
methanol-ethanol as a pressure medium.?>?® The pressure
is measured with the ruby fluorescence technique®”?® and
remains hydrostatic up to at least 10 GPa. As a check of
the hydrostaticity the pressure was measured at four or
more points in each run. By monitoring the lack of
birefringence in the sample, and by focusing the objective
on the upper culet and separately on the sample we check
that the sample is not pinched between the diamonds or
becoming anisotropic. We note that these are among the
first direct equation-of-state measurements of an amor-
phous material in the diamond cell.

III. RESULTS

A. Fused silica

Linear strains were measured on three separate samples
at pressures of up to 15 GPa. The samples were portions
of fused-silica photomasks manufactured by Hoya Elec-
tronics. Because the glass is isotropic, we can convert
measurements of linear strains directly into volume
strains. The results for all runs are summarized in Fig. 1
and Table I. The lack of birefringence confirms the as-
sumption of isotropy, and we note that there is little
scatter between strains measured on different samples.
Sample lengths (/=a given line spacing) are measured be-
fore, during, and after compression, and completely rever-
sible elastic strain is obtained on increasing and decreasing
pressures to 10 GPa. Above this point the samples suf-
fered irreversible compaction under nonhydrostatic condi-
tions as shown by the hysteresis in three of the
decompression measurements to zero pressure. In general,
the samples with larger shear stresses show greater com-
paction.
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FIG. 1. Volume strain for fused silica as a function of hydro-
static pressure. Up and down pointing triangles indicate mea-
surements on increasing and decreasing pressure. The line spac-
ing is 33 um. Above 10 GPa nonhydrostatic stresses (error bars)
irreversibly compact the samples (open symbols). These runs
show hysteresis on decompression, which is schematically
shown by the arrows. The final volumes for the compacted
samples are plotted at zero pressure.

TABLE 1. Compression of fused SiO,

V/Vy? Uncertainty P (GPa) Uncertainty
Run 1 0.8708 0.0046 4.47 0.10
0.8196 0.0048 7.00 0.09
0.8527 0.0039 5.43 0.10
0.8885 0.0047 3.92 0.02
0.9978 0.0038 0 0
Run 2 0.9451 0.0045 1.77 0.06
09112 0.0048 2.92 0.05
0.8210 0.0039 6.64 0.07
0.7835 0.0036 8.64 0.03
0.7633 0.0034 10.11 0.15
0.7543 0.0037 12.90 0.46
0.8494 0.0038 4.49 0.09
0.8812 0.0034 2.79 0.04
0.9377 0.0044 0 0
Run 3 0.9564 0.0040 1.46 0.04
0.9314 0.0033 2.19 0.08
0.8901 0.0041 3.79 0.07
0.8402 0.0041 5.94 0.08
0.8039 0.0037 7.50 0.10
0.8798 0.0041 4.09 0.07
0.9222 0.0037 2.65 0.09
0.9993 0.0045 0 0
Run 4 0.9536 0.0047 1.59 0.04
0.9628 0.0050 1.37 0.05
0.9877 0.0050 0.49 0.05
0.9913 0.0048 0.31 0.04
0.9426 0.0046 1.32 0.06
0.9731 0.0036 0.97 0.04
0.7604 0.0038 14.58 0.36
0.9543 0.0040 0 0
Run 5 0.7433 0.0035 11.76 1.16
0.9157 0.0031 0 0

AV /Vo=(1/1y)* with subscript zero referring to zero pressure.

B. Glass

We carried out a similar compression study on a Ca-
Mg-Na glass. The sample was obtained from a low
thermal-expansion photomask manufactured by the IM-
TEC Corporation. Its composition, determined by elec-
tron microprobe analysis, is shown in Table II. Its silica
content is similar to Pyrex, however it contains a larger
amount of calcium, sodium and magnesium relative to
aluminum. The deficit in the total for the analysis is

TABLE II. Composition of Ca-Mg-Na glass (in wt. %).

SiO, 79.60(0.67)
CaO 5.71(0.11)
MgO 4.88(0.08)
Na,O 4.97(0.56)
ALO; 1.05(0.08)
K,0 0.32(0.03)
FeO 0.11(0.02)
ZnO 0.09 (0.05)
Total 96.71
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presumably due to the boron content of the glass (3.29%
B,0O; by difference). Linear strains were measured on
three samples at hydrostatic pressures up to 11.6 GPa
(Fig. 2, Table III). As before, measurements were made
on increasing and decreasing pressures. Although no hys-
teresis was observed on measurements down to 2.5 GPa,
the two recovered samples were compacted ~5% when
remeasured at O pressure. The transition between elastic
and nonelastic behavior is not well defined in these experi-
ments. However, we infer from the observation of hydro-
static pressures, the lack of scatter between measurements,
and the similarity with the results for fused silica that our
measurements reflect recoverable elastic strains to at least
7 GPa.

IV. DISCUSSION

A. Equations of state for fused silica and Ca-Mg-Na glass

We use Birch’s finite-strain formalism to fit the elastic
pressure-volume data to a Birch-Murnaghan equation of
state.”’ Defining the Eulerian finite strain parameter

2
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and a normalized pressure
P
3£(1421)%3
we fit the data by a weighted least-squares polynomial for
F in terms of f:
F=a+bf+cf?. (3)

In these expressions, P is the experimentally measured
pressure and subscript O refers to zero-pressure conditions.
The coefficients a, b, and ¢ in (3) can be expressed in
terms of the zero-pressure bulk modulus (K,) and its pres-

(2)

10— 71
| A\ Na-Ca-Mg_Glass
L ool |
= | Match Point
L 1=65pm
08 S R 1

0 2 4 6 8 10 12
PRESSURE (GPa)

FIG. 2. Volume strain and pressure for Ca-Mg-Na silica
glass. Symbols are the same as Fig. 1. The pressure remained
hydrostatic up to 11.6 GPa. Strains were measured on
decompression to 2.5 GPa, and there was no measurable hys-
teresis except at zero pressure.

TABLE III. Compression of Ca-Mg-Na glass.

V/Vy? Uncertainty P (GPa) Uncertainty
Run 1 0.9740 0.0025 0.99 0.07
0.9477 0.0025 1.84 0.07
0.9439 0.0026 1.93 0.07
0.9377 0.0024 2.15 0.08
0.9163 0.0026 2.88 0.04
0.8904 0.0026 3.74 0.04
0.8565 0.0024 5.24 0.07
0.9261 0.0024 2.52 0.01
Run 2 0.8426 0.0018 6.22 0.06
0.8389 0.0022 6.49 0.06
0.8094 0.0021 11.56 0.03
0.8073 0.0018 11.50 0.07
0.8223 0.0020 9.78 0.10
0.8421 0.0023 6.37 0.07
0.9376 0.0021 0 0
Run 3 0.8298 0.0018 7.63 0.06
0.8253 0.0024 8.98 0.04
0.8174 0.0017 10.80 0.14
0.8768 0.0023 4.42 0.09
0.9306 0.0024 2.27 0.04
0.9308 0.0020 0 0

2V /Vo=(1/1y)* with subscript zero referring to zero pressure.

sure derivatives (K (,Ky):
a=K,,
b=—3Ky4—Kj), 4)
c=3Ko[KoKy+(Ko—T)+217.

The polynomial expansion of F in terms of f follows
directly from the definitions of the strain parameter and
normalized pressure, and from a Taylor-series expansion
for the compressional energy in terms of f. Second-order
polynomials in f, which are fourth order in the strain ex-
pansion of the energy, successfully describe the equations
of state of many crystalline materials up to large compres-
sions.’*=32 The results for fused silica (Fig. 3) and the
Ca-Mg-Na glass (Fig. 4), however, are highly nonlinear,
and we find that a weighted quadratic polynomial in f
systematically misfits the low-strain (low-weight) points.
Higher-order polynomials overfit the data, requiring a
larger number of parameters (higher-order derivatives of
the bulk modulus) to fit the data than is justified by the
number of observations.

Thus, to derive a physically realistic equation of state,
which best describes the data with a small number of pa-
rameters, we fit the F-versus-f data with quadratic
splines. This technique increases the weight of the low-
pressure points relative to those at high pressure without
overfitting the data to higher-order polynomials.

In a previous paper,’* we showed that our extrapolated
zero pressure values of K, and K derived from the hy-
drostatic measurements are in good agreement with previ-
ous ultrasonic studies on fused silica and alkali silicate
glasses (Table 1V). For fused silica we find Kq=37+5.5
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FIG. 3. Normalized pressure F vs strain f for fused silica
(see text). Symbols are the same as in Fig. 1. The line
represents the room-temperature isotherm (Eulerian fourth-
order finite-strain fit to our data). The fit was made with two
quadratic splines matched at f =0.039. The zero-pressure bulk
modulus K, is compared with the ultrasonically determined
values (open circle). The open squares show the original static-
compression data of Bridgman (Ref. 33). On this plot our fit is
indistinguishable from the ultrasonically determined equation of
state up to 3 GPa. At pressure and on decompression the sam-
ples above 10 GPa differ significantly from the equation-of-state
fit. In general, the most hydrostatic points show the greatest de-
viation. The arrows schematically show the decompression of
compacted samples. The final compacted volumes are plotted at
F=0.

and Kyg=—5.61+6.2. For the Ca-Mg-Na glass the corre-
sponding values are Kq=35.5+3.7 and K(=—2.9+4.1.
At higher pressures (or strains) the trend in the F-
versus-f data is nearly linear, and the equation of state for
both glasses can be fitted with greater certainty. In both
fits we cnly include the hydrostatic points. For the Ca-
Mg-Na glass, the physical meaning of the fit between 7
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FIG. 4. Normalized pressure F vs strain f for Ca-Mg-Na
glass (see text and Fig. 3). The fit was made with two quadratic
splines matched at f=0.050. The final compacted volumes of
the recovered samples are plotted at F =0.

TABLE IV. Comparison of zero-pressure K, and K; values
from hydrostatic measurements and ultrasonic studies on fused
silica and alkali-metal silicate glass.

K, K Reference
Fused SiO, 36.7 —6.3 35
36.8 —5.9 36
36.5 —6.2 37
36.9 —5.3 38
37.0+5.5 —5.6+6.2 This study
Ca-Mg-Na glass 35.5+3.7 —2.9+4.1 This study

and 11 GPa is not clear, as we are measuring nonelastic
strain under hydrostatic pressures. However, we include
the data in the fit since there is so little scatter between
the measurements.

Above 6 GPa our data for fused silica differ signifi-
cantly from the original compression study of Bridg-
man.*3 Like our results, however, his extrapolated values
of K, and K are in good agreement with ultrasonic stud-
ies. It is difficult to estimate the sources of discrepancy at
higher pressures because there are many uncertainties
about Bridgman’s sample material and experimental tech-
niques.>*

From the F-versus-f fits the bulk modulus is given as a
function of strain by?’
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In Figs. 5, 6, and 7 we plot the bulk moduli derived from
the fits to our data against pressure and volume. For
comparison, we also show the moduli of the crystalline
SiO, polymorphs. Up to 2 GPa, both glasses show an
anomalous decrease in K with pressure. As a negative K
has also been measured in ultrasonic®>~3% and Brillouin
scattering studies’>*® on fused silica, we infer from our
data that this result is independent of frequency. Similar
behavior has also been observed in Pyrex at ultrasonic fre-
quencies.*!

Above 5 GPa, K increases sharply in the Ca-Mg-Na
glass under hydrostatic loading. As there is some nonelas-
tic strain at high hydrostatic pressures our determination
of K with (5) is a conservative measure of the bulk
modulus above 7 GPa. In fused silica, K does not in-
crease appreciably between 2 and 10 GPa. Above this
point, the pressures are not hydrostatic and the glass
suffers compaction. However, as shown in Figs. 1 and 3,
the more hydrostatic samples appear increasingly in-
compressible. Thus we infer that K must increase sharply
above 11 GPa under hydrostatic loading, as does the Ca-
Mg-Na glass at lower pressures, and we have used our
most hydrostatic point as a conservative estimate of the
bulk modulus to dash the curve above 10 GPa in Fig. 5.
We will justify this assumption further in our discussion
of anelastic relaxation at high pressure.
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FIG. 5. Bulk modulus of fused silica as a function of pres-
sure determined from our equation-of-state measurements to 10
GPa. Initially, K’ is negative and the bulk modulus decreases to
a minimum at ~2 GPa. Above 10 GPa, the line is dashed to
show that the data are consistent with a sharp increase in the
bulk modulus. The values for the crystalline SiO, polymorphs
are shown for comparison (Ref. 63).
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FIG. 6. Bulk modulus of the Ca-Mg-Na glass as a function
of pressure determined from our equation of state measurements
to 11.6 GPa. K| is negative and the minimum in K occurs ~2
GPa. The values of the SiO, polymorphs are shown for com-
parison.
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FIG. 7. Bulk modulus of SiO, polymorphs and Ca-Mg-Na
glass as a function of volume/mole SiO,. Both glasses show a
sharp increase in their bulk moduli at approximately the same
volume.

B. Irreversible compaction

In both experiments a few of the samples were irreversi-
bly compacted at high pressures. As shown in Tables I
and III the permanent volume strain was approximately
8V/Vy~5%. On subsequent examination none of the
glasses showed signs of stress birefringence or cracking.
At the highest pressures on a run, the strain was repeated-
ly measured over several days to check for evidence of
creep deformation. We were not able to measure any
within our resolution (~10~% in linear strain**) and thus
we interpret the compaction as occurring rapidly upon
compression beyond a critical strain.

On decompression, the densified samples appear initial-
ly to retrace the compression curves (Figs. 1 and 2),
branching off only at low pressures. By comparison,
Grimsditch’s measurements of Brillouin scattering on
fused silica to 17 GPa (Ref. 39) show complete hysteresis
on increasing and decreasing pressures. From this result,
he argues that the densified glass is a separate amorphous
phase of fused silica. Our measurements on decompres-
sion show that the compacted samples have a larger bulk
modulus than the starting material. This is consistent
with the result quoted by Suigura et al.*? of K;~70 GPa
for fused silica compacted to py=2.6 g/cm?>.

There is an extensive literature which suggests that
shear stresses play an important role in the compaction of
silicate glasses,>**** though in part, this reflects the bias
of previous experimental methods which could not
achieve large hydrostatic pressures. As all of the earlier
compression experiments contained significant but un-
quantified shear stresses, the relative importance of hy-
drostatic pressures and shear stresses has not been dis-
tinguished. Our measurements on the Ca-Mg-Na glass
remained hydrostatic to 11.6 GPa while those on fused
silica became nonhydrostatic above 10 GPa. This
behavior is consistent with previous observations*’ that
the range of hydrostatic pressures in methanol-ethanol de-
pends on the kinetics of the freezing transition above 10
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GPa. In all cases, the shear stresses are quantified by
measuring the pressure gradients across.the samples with
the ruby fluorescence technique.

Our data for fused silica suggest that irreversible com-
paction is indeed precipitated by shear stresses on the
sample. This is evident from the scatter between measure-
ments above 10 GPa and the large pressure gradients mea-
sured across the samples. Invariably, the samples with the
largest shear stresses show the largest compression above
10 GPa, and the largest amount of permanent densifica-
tion upon recovery to zero pressure.

In the Ca-Mg-Na glass, the transition between elastic
and nonelastic behavior is not well defined. In a separate
experiment a sample was compressed to 8.54 GPa. The
measured pressure in the cell was entirely hydrostatic, yet
after decompression the sample showed permanent com-
paction of 2.43%. Presumably, irreversible compaction
occurs under these hydrostatic pressures once the packing
of the SiO, tetrahedra reaches a critical volume. As the
glass has a smaller volume per mole of SiO, than fused
silica, we would expect the critical volume to occur at a
lower pressure. Hence we might observe a similar, hy-
drostatically induced densification in fused silica at hy-
drostatic pressures above 10 GPa.

C. Anelastic relaxation

There is a large body of acoustic and dielectric absorp-
tion measurements on fused silica over a wide range of
frequencies and temperatures.!®~!® The most striking re-
sult from this work has been that the relaxation peak mea-
sured over eight orders of magnitude in frequency at zero
pressure can be characterized by a single activation ener-
gy. These data, plotted in Fig. 8, include longitudinal and
shear attenuation as well as dielectric loss.

Diamond-cell measurements probe anelastic bulk relax-
ation at ultralow frequencies. The data of Kondo et al.’®
show that bulk attenuation in fused silica shows the same
frequency dependence as longitudinal and shear relaxa-
tion, and thus we can compare our compression measure-
ments with the data in Fig. 8. From the large number of
data at zero pressure, the activation energy, E* /k ~615
K, and high-temperature relaxation time, 7,~2.1x 10~ 13
s are well constrained. We then use existing data from ul-
trasonic measurements under pressure’®*® to find an ac-
tivation volume, ¥* for the relaxation process. We as-
sume that 7o determined in the zero pressure measure-
ments is valid at P >0 and fit a line through each data
point at pressure. V* is proportional to the difference be-
tween the slopes of these lines and the line describing the
zero pressure measurements. By averaging the values for
all measurements we find V* ~7.9+1.7 cm>.

In Fig. 8 we also plot the frequencies (1.2X 107 % <w
<2.8%10™% and corresponding inverse temperature (293
K) of our “static” compression measurements in the dia-
mond cell. Using the constrained values of E* and V*
we find that measurements in this frequency range are
consistent with a peak in attenuation at 11 GPa. Note
that this pressure corresponds to the sharp increase in the
bulk modulus under hydrostatic loading. This suggests
that the increase in K evident in Figs. 5—7 may be the re-
sult of an anelastic transition between a relaxed and unre-
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FIG. 8. Inverse temperature of the peak in acoustic attenua-
tion (@ and dielectric loss (/) measurements at different fre-
quencies (Refs. 10—19, 38, and 46). The measurements at zero
pressure are used to constrain an activation energy E* /k =614
K and 7,=2.1Xx 101 s. Ultrasonic attenuation measurements
at pressure are consistent with an activation volume
V*=7.941.7 cm’/mole (see text for discussion). The solid lines
are the best fit to the published data, showing the trade off be-
tween inverse temperature and frequency based on the con-
strained values of E* and V*. The frequencies and tempera-
tures of diamond-cell measurements (this study) are consistent
with a peak in bulk attenuation at 11 GPa.

laxed modulus.

Since there have not been such extensive measurements
on silicate glasses, as compared with fused silica, we can-
not constrain a value of V* for the Ca-Mg-Na glass.
However, acoustic attenuation'® and dielectric loss*’ mea-
surements at zero pressure on alkali borosilicate glasses
are broadly consistent with our compression results. At a
particular temperature, these silica glasses have a longer
relaxation time than fused silica. Extrapolating to pres-
sures greater than zero implies that constant frequency
measurements should show an attenuation peak at lower
pressures than for fused silica. This is in agreement with
our determinations of the bulk moduli against pressure for
fused silica and the Ca-Mg-Na glass (Figs. 5 and 6).

D. Elastic compression of SiO, polymorphs

A wide range of theoretical studies on the tetrahedrally
coordinated SiO, polymorphs have found that the restor-
ing force for Si—O—Si angle bending is much smaller
than for Si—O compression. Lattice dynamical calcula-
tions for a-quartz*® and fused silica,*® ab initio calcula-
tions of a-quartz’® and simple vibrational models of
linked SiO, tetrahedra®! are all consistent with a ratio of
noncentral to central forces ~0.11—0.18. '

This disparity has important implications for the elastic
properities of crystalline SiO, and presumably for fused
silica. For example, a systematic increase in K from
quartz to coesite to stishovite is accompanied by a shift
from Si—O-—Si bending to Si—O compression (in the
latter case for octahedrally coordinated silicon). X-ray



242 CHARLES MEADE AND RAYMOND JEANLOZ 35

compression studies of a-quartz’>3} show that at low

pressures volume strain is accommodated by bending of
the Si—O—Si angle and concerted rotations of the SiO,
tetrahedra in threefold symmetry about the c axis.
Compression of the SiO,4 tetrahedra may only be impor-
tant above 6 GPa, beyond the limit of present experi-
ments. In coesite,” the relative rotations of the tetrahedra
are more constrained by the four membered SiO, rings,
and the bulk modulus is higher than that of quartz. Up
to 6 GPa, strain takes place by compressing the region be-
tween rings, bending the Si—O—Si bonds, and direct
compression of the SiO, tetrahedra. The bulk modulus is
extremely large for stishovite since the octahedrally coor-
dinated silicon requires direct straining of the Si—O
bond.

Figure 7 shows the bulk moduli against volume per
mole of SiO, for the two glasses and the SiO, po-
lymorphs. The results for the two glasses plot as a single
line within the error bars of the fits. There is a broad
similarity between the results for the glasses and the crys-
talline polymorphs: the glasses have comparable bulk
moduli to quartz and coesite at comparable volumes. We
infer that at high pressures the compression mechanisms
are similar at equivalent volumes and thus the increase in
K is due to the increasing importance of Si—O compres-
sion.

We propose that at low pressures, volume strain is ac-
commodated by compressing the region between tetrahe-
dra as well as bending the Si—O—Si bond. Jorgensen®3
has argued, however, that since the thermal expansion
coefficient (a) of fused silica is so much smaller than for
a-quartz, the crystal and the glass cannot have similar
compression mechanisms (i.e., no Si—O—Si bending). In
quartz, thermal expansion takes place by Si—O—Si bend-
ing and rotations of the tetrahedra, except at low tempera-
tures where the tetrahedra become constrained and the
thermal expansion decreases.”> Jorgensen proposes that
the random glass structure restricts these rotations. Thus,
he argues, a-GeO, and amorphous GeO, have similar
values of a since tetrahedral rotations are hindered in
elastic compression of the crystal. This match between
thermal expansion and elastic compression mechanisms,
however, may not be valid between glass and crystal since
K is comparable for quartz and fused silica and substan-
tially smaller in amorphous GeO, than in a-GeO,.’® Ex-
tending Jorgensen’s argument, the bulk moduli would be
larger in the glass since Si—O compression would be im-
portant.

In the discussion of Fig. 8, we noted that the sharp in-
crease in K for fused silica at ultralow frequencies and
high pressures is consistent with the activation volume
and energy of anelastic relaxation at high frequencies.
The zero pressure relaxation data are described over eight
orders of magnitude by a single activation energy and thus
it is not implausible that the anelastic process would per-
sist to the low frequencies of our experiments. Our data
also indicate, however, that anelastic relaxation takes
place in fused silica at the P =0 volume of a-quartz.

At present, there are few constraints on the origin of
anomalous low-temperature properties in fused silica.
Qualitative models of anelastic relaxation and tunneling

states in fused silica, are based either on rotations of the
SiO, tetrahedra between two configurations®”® or oscilla-
tions of single oxygen atoms between two silicon
atoms.!®!> Tetrahedral rotations have been observed in
quartz near the a-f3 transition,” and may occur in low
cristobalite.*) Experiments have also shown that neutron
irradiated quartz displays glasslike, low-temperature
anomalies in specific heat, thermal conductivity and
acoustic absorption.”® The radiation induced E} defect
centers appear to be identical in a-quartz and fused sili-
ca,®! however, it is not clear that these are present in
nonirradiated glass. In fact, ultrasonic attenuation de-
creases substantially in neutron irradiated fused silica.!’
From these data Strakna argues that the anelasticity is
due to a structural relaxation of oxygen between two sil-
icon atoms in an elongated Si—O—Si bond. Neutron ir-
radiation may destroy these bonds and hence decrease at-
tenuation. Our data do not constrain one particular
model, though they do require a mechanism which can be
activated at large volume strains.

The sharp increase in K in both fused silica and the
Ca-Mg-Na glass indicates that the relaxation strength of
our inferred high-pressure bulk attenuation is much larger
than the values found at high frequencies, low tempera-
tures, and zero pressure, e.g., Ref. 14. This is consistent
with previous ultrasonic studies which have shown that
anelastic relaxation in fused silica is strongly pressure
dependent. The data of Bartell and Hunklinger*® show
the relaxation strength doubles between 0 and 0.4 GPa at
43 MHz and low temperatures. Also, Kondo er al.3®
found a room temperature absorption peak at 3 GPa and
10 MHz that is an order of magnitude larger than com-
parable measurements at low temperatures and zero pres-
sure. Finally, Raman scattering from fused silica demon-
strates a dramatic change in its vibrational properties be-
tween 0 and 10 GPa.®? Presumably this reflects important
structural changes, interpreted as a narrowing of the dis-
tribution of Si—O—Si angles, and hence concomitant
changes in anelastic properties.

V. CONCLUSIONS

Using a new technique for optically determining strain
in the diamond cell we measured the static compression of
fused silica and a Ca-Mg-Na silicate glass to 10 GPa. In
both glasses we observe nonelastic deformation and a
sharp increase in the bulk modulus at high pressures. In
fused silica this occurs at 11 GPa, just above the hydro-
static limit of our experiments. Shear stresses on these
samples at high pressures produced permanent volume
strains of up to 6V /¥V,~5%. In the Ca-Mg-Na glass, the
bulk modulus increases sharply above 7 GPa. We have
also measured irreversible compaction of this glass at 8
GPa under hydrostatic conditions. We show that the in-
crease in K is consistent with an anelastic transition be-
tween a relaxed and unrelaxed modulus. By inverting a
wide range of acoustic absorption and dielectric loss mea-
surements we constrain an activation volume (¥*) for the
process as V*=7.9+1.7 cm3/mole. Our compression
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data are consistent with this result. By transmitting bulk
strains under quasistatic conditions, the diamond cell
probes relaxation times in the silicate glasses at large
volume strains and at ultra long periods of 10* s or more.
We find that at high pressures the long-range disorder
in the glass does not fundamentally change the elastic
properties of SiO, relative to the (tetrahedral) crystalline
polymorphs. At comparable volumes the glass and crys-
tals have similar bulk moduli. By comparison, our data
suggests that the anelastic properties of fused silica and
quartz are profoundly different at comparable volumes.
We propose that the elastic properties of fused silica are
limited by the same compressions mechanisms which are

known to be important in the crystalline SiO, po-
lymorphs. At low pressure, the glass accommodates
volume strain by mutual rotation of the SiO, tetrahedra
and bending of the Si—O—Si bond. As the volume is re-
duced, the rotations of the tetrahedra are progressively
constrained, forcing strain of the Si—O bond.
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