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A new iterative algorithm is introduced that enables the direct calculation of Wannier-type func-

tions. These functions are practically identical to the Wannier functions except for a minor differ-

ence in the structure of the Lagrange multiplier matrix. With this method, multiband systems are as

easy to study as single-band systems. This method is used to carry out fully self-consistent local-

spin-density I,'LSD) calculations on the silicon crystal. The resulting Wannier-type functions are

guaranteed to satisfy the site othogonality constraints to the arbitrarily chosen value of 0.00001.
The LSD band centroids and band structures which are obtained within the Wannier-type formula-

tion are in excellent agreement with those obtained using the usual Bloch formulation.

I. INTRODUCTION

During the past decade, there has been a renewed effort
on the part of various researchers' ' for obtaining ab ini-
tio methods for the explicit construction of Wannier func-
tions. ' To a large extent, this is due to a series of pa-
pers by Kohn et al. ' These papers have demonstrated
that, within the framework of the linear combination of
atomiclike orbitals (LCAO) method, Wannier functions
enjoy practical advantages over Bloch functions in the
quantum-mechanical description of nonperiodic systems.
For example, suppose the Wannier functions for a certain
perfect crystal are known. If a defect is introduced at the
origin, it is expected that the charge density far from the
origin will be unperturbed but that in the vicinity of the
origin there will indeed be rather large changes in the elec-
tron density. One might then assume that outside a cer-
tain shell (Q) of nearest-neighbor atoms, the occupied or-
bitals may be represented exactly by the perfect-crystal
Wannier functions. Inside the shell Q, one might use the
perfect-crystal Wannier functions plus some additional
basis functions localized about the origin to describe the
occupied orbitals near the defect. The key point which is
needed to justify this approach is that in the Hartree-
Fock (HF) theory, local-spin-density (LSD)
theory, ' and self-interaction corrected local-spin densi-
ty theory ' (SIC-LSD), it is not necessary to describe
electronic ground states by the canonical orbitals. It is
only a question of how many nearest-neighbor shells (Q)
of atoms are affected by the defect. In a practical calcula-
tion, this may be answered by allowing Q to be an input
parameter and monitoring the convergence of the results
as a function of Q. Calculations of this nature have been
carried out for one-dimensional model defect systems, and
it has been demonstrated that a set of "generalized Wan-
nier functions" may be found which, far from the defect
center, converge to those of the one-dimensional perfect
crystal. ' Likewise, for the description of a surface, it is
expected that the interior of the crystal should be well
described by the perfect-crystal Wannier functions but

that there will be perturbations near the surface. Using
techniques analogous to those described for defects, one-
dimensional model surface systems have been studied in
terms of generalized Wannier functions. ' Methods for
carrying out self-consistent calculations on metals, which
may have partially filled bands, in terms of Wannier func-
tions have also been discussed. In addition to a descrip-
tion of ground-state properties, it is possible to describe
excitonic and particle-hole effects in terms of Wannier
functions. Work along these lines has been carried out by
various researchers.

While there are many practical applications for Wan-
nier functions, an obvious prerequisite to utilizing Wan-
nier functions in studies of real systems are efficient and
accurate methods for finding them. Although various
researchers" have discussed variational methods for the
direct calculation of Wannier functions, there have been
little numerical results on real systems given in the litera-
ture. The existing numerical results on real systems in-
clude a metallic hydrogen calculation by Andreoni and
valence-only calculations on covalent crystals by Kane
and others. ' ' All of these calculations are similar in
that the occupied states are all described in terms of sym-
metry operations on a single function. To the best of our
knowledge, there have been no all-electron (multiple-
bands) methods discussed which have led to practical and
feasible calculations. In our applications of the SIC-LSD
theory to electronic systems, we have often found it con-
venient to carry out our calculations in terms of non-
canonical orbitals rather than the usual canonical orbi-
tals. ' ' These orbitals satisfy Schrodinger-type equations
which are coupled together by off-diagonal Lagrange mul-
tipliers which (formally) must not be neglected. In a re-
cent paper on the application of SIC-LSD to diatomic
lithium, ' an eigenvalue equation which is satisfied by
noncanonical orbitals has been introduced. In this paper,
the approach is generalized to enable all-electron varia-
tional methods for the explicit calculation of Wannier
functions.

In Sec. II an eigenvalue equation which is satisfied by
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Wannier functions is presented. This eigenvalue equation
suggests a variational procedure for the direct calculation
of functions which are essentially the same as the Wan-
nier functions aside from a minor difference in the struc-
ture of the Lagrange multiplier matrix. We refer to these
functions as Wannier-type functions. In Sec. III the for-
malism is slightly modified which enables applications
within the framework of the LCAO method. In Sec. IV
this method is used to generate perfect-silicon-crystal
LSD core and valence Wannier-type functions. These
Wannier-type functions are guaranteed to satisfy the
orthogonality constraints to the chosen value of 0.00001
and lead to a fully self-consistent variational minimization
of the LSD total energy. We have chosen silicon for a test
calculation due to the rather large overlaps between the
neighboring atoms. This provides a very stringent test of
the method. In order to further test the method, the band
centroids obtained within the Wannier-type formulation
are compared to those obtained within the Bloch formula-
tion using two different schemes of averaging over the
Brillouin zone which have been proposed by Heaton and
by Chadi and Cohen. The accuracy of the final self-
consistent field (SCF) potentials are also monitored by
comparing the valence-band structure obtained from the
Wannier-type formulation and the Bloch formulation.
The two formulations are in excellent agreement with one
another. A more detailed account of this work and some
group theoretical techniques which are necessary for ap-
plications appear in Ref. 36.

Ho
I 0pqk& =~pqk

I 0pqk&

'( 0pqk I 0p'q'k' & =~kk'~pp'~qq' ~

I 1 pqk& = exp( —i~. )
I &pqk& .

(2)

(3)

(4)

For each band, a set of symmetry-adapted Wannier func-
tions may be constructed from a unitary transformation
on the symmetry-adapted Bloch waves Ipprrk) of that
band. The site-zero Wannier functions may be expressed
as

II. AN EIGENVALUE EQUATION FOR WANNIER
AND WANNIER- TYPE FUNCTIONS

To obtain the Wannier functions directly from the
Schrodinger-type equations requires the solution of a set
of coupled differential equations. To circumvent this dif-
ficulty we derive an eigenvalue equation which is satisfied
by Wannier functions. Here, spin-unpolarized LSD-type
Hamiltonians are considered. We will start by reviewing
the general aspects of Bloch functions and their relation
to Wannier functions so as to introduce and clarify some
of the notation which we will be using.

Suppose that the Hamiltonian, Hp ——
I
——,

' V' + Vp(r)I,
is invariant under the translations generated by the group
of symmetry operations I Tp, . . . , T~ ~ I where

T g(r)=g(r —R ),
with To designated as the identity operator (Rp ——0). The
canonical orbitals I1tpqkI, labeled by a band index P, a
subband index q, and a momentumlike index k satisfy the
following equations:

I 4pnk& = g Unq(&~P )
I Wpqk& . (6)

The method for finding the unitary transformation
U(k,P ) for a composite band is quite complicated and has
been discussed in detail by Des Cloizeaux. The in-
dices I and I are, respectively, the irreducible representa-
tion index and the row index for that irreducible represen-
tation. The Wannier functions at other sites are then
formed by translating the site-zero Wannier functions.
These will be designated as

I

T apri & with

1
I

T apn&=Tm Iapri&= gT Idpnk&N

1 g exp( —ik R )
I Ppnk&.

Since Ro ——0, the above equation may be taken as the defi-
nition for all of the Wannier functions. It can be shown
that

1
I bprrk& = +exp(ik. R~) I Tmapn &

iV

( T apn I T.a, r i &
=&pp orr oII o~, . (9)

Further, from Eqs. (2), (6), and (7), it follows that the
site-zero Wannier functions satisfy the coupled
Schrodinger-type equation

Ho
I apn & =~rin(0)

I apn &

+ g g ~rin(R )
I

T apri &

m(&0) I ', I'

~r I n(R ) = ( T apl 'I'
I
Ho

I apn & .

(10)

The off-diagonal Lagrange multipliers between the site-
zero Wannier functions of the same band index are
guaranteed to vanish due to the point-group symmetry.
The equations for the Wannier functions located at other
sites may be obtained by operating on the left-hand side of
Eq. (10) with the translation operator T„. However, it is
evident that the equations for the Wannier functions lo-
cated at other sites are satisfied if and only if the equa-
tions for the site-zero Wannier functions are satisfied. All
the relevant information is contained in Eq. (10).

Now consider the Hermitian operator Ho which is de-
fined by

Hp =[1—P )Hp[1 —P ]
P'= g g I

T aprt&&T aprr I

m(~0) p, I, I

(12)

(13)

It is easily verified that if Eqs. (9) and (10) are satisfied,
the site-zero Wannier functions are eigenfunctions of the
Ho Hamiltonian. That is,

Ho
I apn &

=~rrrl(0)
I apri & . (14)

1
I apri & —= ~ g I 0'prlk &

where the set of [ppnkI are formed from a unitary
transformation on the eigenfunctions I 1(tpqkI according to
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We now wish to address the converse question. Sup-
pose that we are furnished with a set of functions [ropri )

which are eigenfunctions of the H0 Hamiltonian and
which satisfy the Wannier-type orthonormality condi-
tions,

H o I
ro n & =~P'ir i (0)

I

ro r i &

& Tmropri
I

Tnrop r i &=Bpp&rr&iifimn .

(15)

(16)

In Eq. (15) the projection operator used in the construc-
tion of the Ho Hamiltonian is due to the translated co or-
bitals rather than the a orbitals, i.e., in Eq. (12), the pro-
jection operator P' has been replaced by P which in
analogy to Eq. (13) is defined according to

ways possible to decompose the quantity Ho
I
ropri) in

terms of a linear combination of the site-zero and translat-
ed co functions and a state

I Opri) which is orthogonal to
all of the co functions. This may be written as

m =0 p', I ', I'

(20)

L r i ri(R ) = & Tm cop r i I
Ho

I
ropn & ~

PP

N

I
~pn&=Ho Iropri& —g g Lriri(Rm)

I
Tmropri &

pp

(21)

m =0 p', I",I'

(22)

N

Ho lropn&= g g LViri«)
I

T ropri &+
I capri&,

m(&0) p, I, I
I Tmropri && Tmropri

I

.
However, since

=(1 P)Ho
I
copri), — (19)

since due to the orthogonality of the site-zero and
translated co functions, P

I copri) =0. Further, it is al-

In a paragraph below, we will show that Eqs. (15) and (16)
are sufficient conditions to ensure that

Ho I ropn & =~Kiri(0)
I
ropn &

+ g g ~r~in(R )
I

T ropri & .
m(&0) p', I"',I'

However, we first wish to discuss the above equations a
bit. For the remainder of the paper, we will refer to the co

functions as Wannier-type functions due to the similarity
between these functions and the actual Wannier a func-
tions of Eqs. (9) and (10). The only quantitative differ-
ence between the two sets of functions is that we neither
guarantee nor require that the Lagrange multipliers be-
tween Wannier-type functions of different "bands" on dif-
ferent sites vanish. This is a small difference and will
(rigorously) not affect either the total energy or SCF
eigenvalue spectrum. That is, from the standpoint of
minimizing the total energy, the only requirement on the
SCF Lagrange multiplier matrix is that it should be Her-
mitian. Any set of orbitals which satisfies the equations
Ho

I u; ) = g. A~; I ui ) minimize the total energy and lead
to the same canonical orbitals and associated eigenvalues.
The flexibility on the SCF Lagrange multiplier matrix al-
lows us to look for the Wannier-type functions discussed
above. However, if one is interested in finding true Wan-
nier functions, a slight modification of the procedure
which we are about to discuss is presented in the Appen-
dix. We do not advocate following the procedure of the
Appendix since, with less computational effort, one may
reap the same benefits from the Wannier-type functions as
the Wannier functions. Also, our belief is that the
Wannier-type functions come extremely close to coincid-
ing with the Wannier functions since the site-zero
Lagrange multipliers between orbitals of different bands
vanish.

We now proceed with the proof of Eq. (18). Suppose
Eqs. (15) and (16) are satisfied. Using Eqs. (15) and (17),
we may write

Ho
I copri ) =(1—P )Ho(1 P")

I ropri)—

)
I Tmropri&=&mo I ropri &

(1 —P )I~,n&= I(),n&

Eq. (19) becomes

Ho Iropn&= g LPiri(0) ropri &+
I capri& ~

p, r, I

(23)

Po = g g I
Tm(ropri)'&& &m(ropri)'I

m(&0) p, I, I
(24)

and with the above projection operator, the zeroth-order
Ho Hamiltonian is constructed according to Eq. (12).

but, if Eq. (15) holds, it follows that
I Hpri) and the off-

diagonal numbers Lr i ri(0) (p'I"I'&pI l) must be identi-
cally zero. Once this has been established it follows that
the numbers L r-i r i(Rm ) must coincide with the Lagrange
multipliers A,r i ri(R ). Hence, we have proved that if the
site-zero Wannier-type functions Icopri I are eigenfunc-
tions of the H0 Hamiltonian and if the ~PI-I orbitals and
their translations form an orthonormal set, Eq. (18) is au-
tomatically satisfied. This implies that the copI-I-orbitals
span the same space as the canonical Bloch functions and
the unitary transformation between these two representa-
tions may be found by translationally symmetrizing the
Wannier-type functions and diagonalizing the resulting
Hamiltonian matrix.

The result of the preceding paragraph suggests that it is
possible to find an iterative approach which enables one to
find Wannier-type functions which satisfy Eqs. (15)
through (19). Let us suppose that we are furnished with a
zeroth-order set of site zero Wannier-type functions
Icopri), such as atomic orbitals, where the superscript 0
designates the iteration index. These orbitals do not satis-
fy the Wannier-type orthogonality constraints [Eq. (16)].
So, for the purposes of discussion, suppose we use
Lowdin's method of symmetric orthogonalization to
find a modified set of site-zero Wannier-type functions
I (copri) I which do indeed satisfy the Wannier-type
orthogonality constraints. We may now use this set of
functions to construct the 00 Hamiltonian. That is, we
construct the zeroth-order projection operator P0 in
terms of the primed zeroth-order Wannier-type functions
according to
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(1 Pi )Ho—(1 P)
I

T—n(ropri) & =0 for n&0 . (25)

Further, since the (i+1)th iteration site-zero Wannier-

type functions and the ith iteration translated primed
Wannier-type functions are eigenstates of the same Her-
mitian operator, they are guaranteed to be orthogonal to
one another. Now, suppose this iterative procedure is re-
peated over and over, and for some iteration E conver-
gence is reached. By this, we mean

Now, to close the iterative cycle, we define a first-order
set of site-zero Wannier-type functions [cozri) to be the
lowest eigenfunctions of the zeroth-order Ho Hamiltoni-
an. Once the first-order set of site-zero Wannier-type
functions are found, they are used to construct a first-
order Ho Hamiltonian in an analogous way as was done
to construct the zeroth-order Ho Hamiltonian. This cycle
is repeated over and over with the ith-order site-zero
Wannier-type functions used to construct the ith-order
Ho Hamiltonian which, in turn, yield the (i+1)th-order
Wannier-type functions.

We wish to show that if this iterative algorithm con-
verges, it converges to a set of Wannier-type functions
which satisfy Eqs. (15) through (18). In order to do this,
it is necessary to note that the &th-order primed translated
Wannier-type functions are themselves eigenfunctions of
the ith-order Ho Hamiltonian with an eigenvalue of zero,

be accomplished by using either Lowdin s method of sym-
metric orthogonalization ' or Gram-Schmidt orthogo-
nalization. In the next section, an alternative orthogonali-
zation scheme will be introduced so this formalism can be
used within the framework of LCAO. This modified
method still guarantees Wannier-type functions which, to
any desired accuracy, are exact.

III. A %'ANNIER-TYPE VARIATIONAL PROCEDURE
FOR LCAO CALCULATIONS

A. The nontruncated (infinite crystal) case

In this section, several modifications in the formalism
are made which enable practical calculations within the
framework of the LCAO method. The first step is to de-
fine an alternative way of orthogonalizing functions to
one another in order to construct the operator P

&
. This

method reduces to Lowdin's method of symmetric orthog-
onalization under certain conditions but provides a con-
venient way for truncating the orthogonality constraints
at a given shell Q. Let us start by considering the varia-
tional minimization of the error functional

D= 2 1&T-~k
I
T.~, & I'

n, m, j,k

—(r+I) g I&T cokIT co &I~,

(I +ac )Ho(1 ——&2 )
I

roar+i' & =~Firi(0)
I

roi r+i' &

I
(oiqri) &

=
I
oiiri &—:

I
oui ri & for all pl 1 .

(26)

(27)

m, j,k

subject to the simple orthonormality constraints

& cok
I coj &

=5kj (30)

Under these conditions, it is possible to remove the primes
and the iteration indices from Eqs. (26) and simply write

H o I
ro ri &

=

~Kiri�(0)

I
~ ri & (28)

which is the necessary result to ensure that, when conver-
gence is achieved, the ~ functions are indeed Wannier-
type functions.

%'hile the methods discussed in this section would, in
principle, lead to Wannier-type functions, there are several
improvements in the formalism which may be made to
render this procedure more amenable to applications
within the framework of LCAO. For example, in practice
it is necessary to find a proper way of truncating the P
operator at a certain shell Q. In doing so, the site-zero
Wannier-type functions are constrained to be orthogonal
to only those Wannier-type functions on the first Q
nearest-neighbor shells. Since the site-zero Wannier-type
functions are assumed to be well localized about the ori-
gin, for Q large enough, the overlaps between the site-zero
Wannier-type functions and those outside of the Qth
nearest-neighbor shell are negligibly small. From a prac-
tical standpoint it would be most convenient to express
the site-zero Wannier-type functions in terms of
symmetry-adapted linear combinations of atomiclike orbi-
tals (SALC's) which are on the first Q nearest-neighbor
shells. In this way, the entire procedure depends on a
number Q, which when made large enough will reproduce
the perfect-crystal Wannier-type functions. This cannot

In the above equation, the subscripts k and j stand for the
indices p I l and cover 1,2, . . . , L. For the time being, ~ is
an arbitrary positive parameter. If Eq. (30) is satisfied,
the expression for D becomes

D=

nm kj
—7 g I

&T Nk
m, k,j

2'2
I &T-~k

n, m kj

2'X I&T ~kl
nm kj

Tn~oj & I

IT cubi&I',

(31)

& T rok
I T„ro& &=0 for n&m . . (32)

So, minimizing D with the constraints &o~k
I cubi & =5kj

ensures that the more complicated constraints
& T rok

I
T„roj & =5kj5„are satisfied. In other words, D

is a functional which takes on its minimum for functions
which satisfy the Wannier-type orthonormality relations.

In order for D to be minimized, the first variation of D
with respect to orthonorm-conserving variations of the co

orbitals must vanish. Varying Eq. (29) yields

where the prime on the summation symbol indicates that
we are not to sum over the terms where n =m. Since the
first term of Eq. (31) consists of a sum of non-negative
quantities, it is apparent that D is minimized if and only
1f
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5~k
I
T ~J' & & T ~J I

Tm ~k &
—(r+ 1) g & Tm 5~k

I Tm ~) & & T ~q'
I
T cuk & +c.c. ,

n, m, k,j m, k,j
5D =2 g g (5cok

I
T T„co& ).( T T„ci)&

I
Qlk ) —(7+ 1)g (5@ok

I
ci)J ) (ci7J

I
cok ) +C.C.

m kjn k,j

(33)

where c.c. stands for the complex conjugate of the former quantity. The above equation may be further simplified by
making use of the group rearrangement theorem as

5D=2+ g (5~k
I T„~,)(T„co&

I
cok) —(v+1) g (5cok

I
co&)(co&

I cok) +c.c. ,
m kj n' k,j

5D=2/ /&5 k IIII k&+
m k

(34)

II
I
~k ) =Pkk I ~k ) . (36)

We wish to use the H operator instead of Lowdin's
method of symmetric orthogonalization to identify the
translated primed Wannier-type functions.

In order to see how this is done, consider the ith
iteration's H operator

N —1 L

m=1 j=l
(37)

Next, define the space which is spanned by the translated
(co )' orbitals to be all those orbitals which coincide with
the eigenfunctions of II(i ) that have a positive eigenvalue.
It is evident that if the co functions and their translations
are indeed orthonormal, the operator II(i) has exactly
(N 1)L eigenfunc—tions with an eigenvalue of unity and
exactly L eigenfunctions with an eigenvalue of —~. The
L eigenfunctions with an eigenvalue of rspan the spac—e
of the site zero co-functions and the (N 1)L eigenfunc-—
tions with an eigenvalue of unity span the space of the
translated co' functions. So, what this method does is pro-
vide us with a way to find (N 1)L orthonorma—l orbitals
which, when the process converges, span the same space
as the (N 1)L translated co funct—ions. The advantage of
this method is that the translated co functions so obtained
are automatically orthogonal to the cu functions. In the
forthcoming discussions, we will refer to the eigenfunc-
tions which have positive eigenvalues as the 7' functions.

In the above equation we have introduced a Hermitian
operator II, which is defined by

N —1 L L
II= g g I

T )(T,. I

— g I,)(, I, (35)
m=1 j=l

with L the total number of site-zero Wannier-type func-
tions. Requiring that Eq. (34) vanish subject to the con-
straints that (cok

I
coj ) =5kj yields the eigenvalue equa-

tions

The operator II(i) will be referred to as the X-finding
operator. Due to the fact that the 7' functions and the
translated (co')' functions span the same space, the P;
projection operator may now be constructed according to

m(&0) j
(38)

( co;
I
co,

' ) =5k, ,

I
(T~~'k I~~) I

«(T &the identity operator),

(39)

(40)

where c is a positive number which is small compared to
unity. Further, ~ should be on the order of unity or
greater. Under these circumstances, it can be shown that,
to order c, the site-zero primed Wannier-type functions
[(co'i)', . . . , (co&)'j are given by

(~k)') = 1 — P; cok)1+& (41)

Equation (41) is easiest to prove by substituting it into Eq.
(36). In order to measure the speed of convergence, the
corresponding ith-order primed and unprimed overlaps,
(T (co'k)'

I
(co~ )') and (T. co'k

I co&), should be compared.
By doing this, and using Eq. (41), it is found with some
algebraic reduction

In practice, it is more convenient to use a set of 7 orbitals
rather than the co' orbitals since group theory may be used
to block diagonalize the projection operator in terms of a
set of g orbitals.

The parameter ~ has not been specified. It is in fact a
free parameter and does not affect the converged solution.
However, the rate of convergence is affected by this pa-
rameter. In order to understand this, a perturbative
analysis can be made which should be fairly accurate pro-
vided that

(T (cok)'~(rojV)= T 1 — P; m'„1 — P; co,'),1+~

(T (~k)'I(aj)')=(T cok Icoj) +o(E') .x+1
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From Eq. (42) it is evident that by choosing r= 1, if the
overlaps between the ith iteration approximation to the
primed Wannier-type functions are of order s the corre-
sponding overlaps for the ith iteration are of order c. . So,
from the above analysis, it is apparent that convergence is
fastest for r= 1. Further justification for choosing the
value of unity for r is that for a complete basis set and
near orthogonality of the ith iteration Wannier-type func-
tions, it corresponds to Lowdin's method of symmetric
orthogonalization. ' In practice, a finite dimensional
basis set is employed, and although the speed of conver-
gence still depends on ~, the dependence is more compli-
cated and the preceding argument does not apply exactly.
In practice, it is found that ~= —,

' is the best value to
choose for finite dimensional applications.

B. The truncated g-finding operator

We now turn our attention to carrying out a calculation
in terms of a finite fixed basis set. To simplify the
analysis (without loss of generality), it is assumed that the
site-zero Wannier-type functions are to be expanded in
terms of M orthonormal basis functions If&, . . . ,f~ I:

I~J&=2~17 I~7& (43)

m=1 j=1
(45)

I

(44)

The functions f~(r) are assumed to be centered in the vi-
cinity of the origin and to vanish quickly far from the ori-
gin. In practice, the f functions will be replaced by a set
of (nonorthogonal) symmetry-adapted linear combina-
tions (SALC's) of Gaussian-type orbitals lying on the
first Q nearest-neighbor shells of atoms. The number g
will be an input parameter and when chosen to be large
enough does not affect the solution. Even for a perfect
crystal there are only a finite number of orthogonality
constraints since the overlap between the function cuj(r)
and cok(r —R ) will be negligible for

I
R

I
large enough.

Let I T, , . . . , T~ I
(X' (X—1) be the symmetry opera-

tors which translate the Wannier functions to the N' sites
which are closest to the origin and are expected to lead to
a non-negligible overlap if the orthogonality is not strictly
enforced. The g-finding operator can now be truncated
and is written as

In the non-truncated case diagonalizing the 7-finding
operator was justified since it corresponded to minimizing
an error functional which took on its minimum for
Wannier-type functions. Provided that the set of opera-
tors IT&, . . . , T& I is chosen so that, as will be done in
Sec. IV, its inverse set I T& ', . . . , T~ '

I is identical to it-
self, a similar variational principle applies. Under these
conditions, diagonalizing the truncated 7-finding operator
is equivalent to minimizing the error functional D given
by

m, J, l

(46)

subject to the orthonormality constraints of the site-zero
functions. Earlier, we were interested in forcing
&mj I

T co'k& to vanish. However, now with the con-
straint that the function coj(r) is to be a linear combina-
tion of the functions If&, . . . ,fM ], it becomes apparent
that the job has been reduced to forcing the part of the
function

I

T cu'k & lying in the space spanned by the func-
tions If&, . . . ,fM I to be orthogonal to the function

I
co& &. That is, the function

I
T cu'k & may be uniquely

decomposed as

(47)

(48)

(49)

The first and second kets on the right-hand side of Eq.
(47) are referred to as the parallel and perpendicular com-
ponents of

I
T cuk &, respectively. Since the overlap be-

tween the perpendicular component of
I

T co'k & and any
ket

I f~ & vanishes, it immediately follows that
&coj.

I
(T co'k)~& also vanishes. Thus, it is only necessary

to ensure that &~, I
(T cok)ll& vanishes.

The most straightforward way of dealing with this
problem would be to modify the way the J'-finding opera-
tor is constructed. That is, first one would decompose the
translated Wannier-type functions into their parallel and
perpendicular components. Next, the 7-finding operator
would be redefined in terms of the parallel components of
the translated Wannier-type functions. In practice, this
would be quite tedious and fortunately there is a much
more elegant way of carrying out this procedure. Note
that the 7-finding operator may be decomposed using Eq.
(47) as

N' L

m =1 j=1
J))( I

+
I
(T

L

+ l(T ~~)~~&&(T ~J)il+ l(T ~,'4&&(T ~,')ill —r g I~J&&~~ I
(50)

From the above expression, it follows that the matrix ele-
ments & fz I

II(i)
I fz & are not affected by the perpendicu-

lar contributions to the X-finding operator. Hence, the
P-finding operator may be set up and diagonalized in the

usual way. The eigenfunctions of the truncated X-finding
operator may be divided into three sets. The first set of
eigenfunctions have an eigenvalue of —r (when conver-
gence is reached) and span the space of the site-zero
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d(i)= g g ) (coj
~

T co'k) ~'
m=1 jk

(51)

It is easy to show that d(i) & ( (col.
~

T cu'k) (. An alt«-
native measure of the error which is computationally
much more convenient to calculate is given by

L N" 1/2

(52)
j=1 k=1

where pkk is the eigenvalue corresponding to X'k. In the
above expression, N" is the number of X states with posi-
tive eigenvalues obtained by diagonalizing the operator
II(i ). It can be shown that providing the translated
Wannier-type functions are nearly orthogonal to the site-
zero Wannier-type functions, d (i ) = ( 1 +r )d'(i ). (Strictly
speaking, the proof of this required a complete basis set,
but it is found to be true for fixed basis sets also. )

At this point, it is appropriate to note that, in analogy
to canonical orbital fixed basis calculations, the modifica-
tions discussed in this section still yield Wannier-type
functions which are exact to any desired accuracy. For
example, for a calculation with a basis set Ig&, . . . , gM I,
the SCF canonical orbitals (obtained by such methods as
HF and LSD) which extremize the total energy need only
satisfy Ho

~
u; ) =e;

~
u; ) +

~

v; ), where
~
v; ) is a function

which is orthogonal to all the g-basis functions. Likewise,
in the truncated Wannier-type function case, the summa-
tion in Eq. (18) should be truncated at N' and a state

~

pearl

) which is orthogonal to all the f functions may be
appended to the right-hand side of the equation. It can be
shown that, with the modifications of this section, the co

functions satisfy an equation of this type which implies
that, within the orthonorrnality constraints and the im-
posed finite dimensional space, they extremize the total
energy.

IV. A LSD APPLICATION OF THE WANNIER-TYPE
FORMULATION ON SILICON

In this section, the variational procedure discussed in
the previous sections is utilized to carry out an all electron
SCF calculation on the perfect silicon crystal. We start
by reviewing the ground-state configuration of the perfect

Wannier-type functions. The second set of eigenfunctions
have positive eigenvalues. These X-functions represent the
parts of the translated Wannier-type functions which ex-
tend into the space spanned by the f functions. In con-
trast to the earlier results which assumed a complete basis
set, the eigenvalues of the 7 functions are not all unity.
The magnitude of the eigenvalue corresponds to the prob-
ability of finding the translated Wannier-type function
within the space spanned by the basis functions. The
remaining eigenfunctions have an eigenvalue of zero and
are orthogonal to the site-zero Wannier-type functions
and the translated Wannier-type functions.

In order to monitor the convergence, it is most con-
venient to find a single number which is an upper limit on
the largest overlap between the site-zero and translated
Wannier-type functions. One such number is given by

1/2N'

silicon crystal in terms of Wannier-type functions.
It has been customary to represent the valence configu-

ration of the silicon crystal in terms of bond-centered
Wannier-type functions which have been proposed by
Kohn. ' The valence-bond-centered Wannier functions are
labeled by an fcc site index R„, a bond index (tl, tq, t3 t4),
and the letter U for valence. For example, the site-zero
valence configuration is represented by

2 2 2 2
aut +ut aut aut (53)

with

tl ——a(1, 1, 1)/4, t2 ——a(1, —1, —1)/4,

t3 -—a( —1, 1, —1)/4, tq=a( —1, —1, 1)/4 .

The above functions form a reducible (permutation) repre-
sentation of the Td point group. Because of this, it is
only necessary to know the spatial form of one of the
site-zero functions and the remaining functions in the
crystal may be generated by applying the Td rotations and
the fcc translations. Due to the glide plane symmetry,
each valence function is symmetric under inversion
through its center. That is,

a„(r)=a„, (t; —r) . (54)

Also each bond-centered function exhibits threefold sym-
metry about its axis.

A way of representing the core Wannier-type functions
is in terms of an fcc site index R„, an atom index (to or
t&), and a band index (pI 1=is,2s, 2p„,2p~, 2p, ). For ex-
ample, the site-zero core states could be taken as the
atom-centered functions

2 2 6 2 2 6
~1sto~2sto~2pto~ 1st&~2st&~2pt& ~ (55)

alprlt)( ) alprlto(tl —r) . (56)

From a computational standpoint, it is convenient to uni-

fy the treatment of the core and valence Wannier-type
functions so that they are either all bond centered or all
atom centered. While the former approach is certainly
possible, we have chosen to carry out our calculations in
terms of atom-centered functions. In order to do this, we
note that the valence-bond-centered Wannier-type func-
tions transform like sp hybrids under the Td symmetry
operations. As such, it is possible to find an irreducible
set of functions which we refer to as cu3 t co3p t co3p

and co3p t For example, at the origin we havep to'

with to ——(0,0,0). Strictly speaking, with the notation of
Johnson and Smith ' (Kohn'), the symmetry indices
should be labeled a, (I &) for the s states and t2 (I', s) for
the p states. For the remainder of this paper, it is under-
stood that when we use the atomiclike symmetry labels (s
and p), we really mean their respective Td counterparts.
Due to the glide plane symmetry, the core Wannier-type
functions located on the t1 sites are related to those on the
to sites according to
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~3sto

Ct) 3p

~3p t

~3pzto

1 1

—1 —11 1

1 —1 1

1 —1 —1

avt

avt

avt,

avt 4

(57)
2 for t; = to or p I = 1s,2s, 2p

0 for t; =t1 and pI =3s, 3p .f( r1t )=. (61)

where R is an fcc site lattice. The numbers f(pl lt;) ac-
count for the spin multiplicities of each Wannier-type
function and are given by

With the above considerations, it is evident that all the
Wannier-type functions in the crystal may be generated in
terms of the site-zero Wannier-type functions

2 2 6 2 6
~1sto~2st0~2pto~3st0~3pto . (58)

V,gr(r) = g
—Z p (r' —R„)

+ dr'
/r —R /r —r'/

1/3—gp (r —R)k

77
(59)

p"(r —R„)= g f(pl lt;)
~
co~rI, (r R, ) ~—

p, I, l, t,

(60)

The core states are translated (or glide plane translated) to
all sites in the crystal, and the valence states are translated
to only the fcc sites in the crystal. As demonstrated in
Ref. 36, with the atom centered Wannier-type functions,
it is possible to allow the crystal to dissociate to a lattice
of separated S silicon atoms for large lattice constants.
From a practical standpoint, we mention that all the in-
formation which is necessary for construction of the 7-
finding operator may be obtained by translating each
function to a given atom on each shell. Hence the compu-
tational work increases linearly with the number of
nearest-neighbor shells as opposed to the number of
atoms. The complications due to the glide plane transla-
tions require a slightly more general argument to show
that the eigenfunctions of the 7-finding operator lead to
functions which satisfy the Wannier-type orthonormality
conditions. It is necessary to note that, for each co„, if
II

~

co„)= r~ co„) th—en (co„~&
~

co„)=0. But since

(co„~P
~

co„) is the sum of the squares of the overlaps
between a site-zero Wannier-type function and a translat-
ed or glide plane translated Wannier-type function, the
truncated error functional is minimized.

To achieve self-consistency, the usual iterative pro-
cedure is used in which the k th iterations site-zero
Wannier-type functions court (r) are used to find the
(@+1)th iterations Wannier-type functions cozen~'(r)

through the potential

In Eq. (59), the spin unpolarized version of the Kohn-
Sham exchange-only version of LSD is used.

For these silicon calculations, the potential was generat-
ed by first fitting the difference between the crystal densi-
ty and the overlapping atomic density to a linear corn-
bination of symmetrized Slater-type functions centered on
each atom and then integrating the result. To this, the
overlapping atomic Coulomb and nuclear potential and
the crystal exchange potential are added to yield the crys-
tal LSD potential. The exchange potential was computed
from the crystal electron density for a large number of
points in the fundamental wedge. The LSD potential was
then fit to a lattice superposition of linear combinations of
Gaussian-type functions [r ' exp( ar ) —and
exp( ar )]—plus a constant. For both fits we have in-
cluded I =0, 3 and 4 angular fit functions. To obtain
high-quality fits, both the linear and nonlinear parameters
were optimized. A set of fourteen bare Gaussians was
used to construct an optimized contracted basis set of four
s-type and three p-type orbitals. The fourteen bare
Gaussians were obtained by some modifications of the
12s-9p set given by Veillard. All the multicenter in-
tegrals in the Hamiltonian and overlap matrix elements
can be computed exactly by means of the Gaussian tech-
nique as explained in Ref. 43. The largest calculation
which has been carried out enforced all the orthogonality
constraints between the site-zero Wannier-type functions
and those translated to the atoms within six nearest neigh-
bors. For this calculation, the basis set consisted of all the
SALC's constructed from the 1s, 2s, and 2p atomic orbi-
tals on the origin and six nearest neighbors, the SALC's
from the 3s and 3p atomic orbitals on the shells (0,0,0),
(1,1,1), (2,2,0), ( —1, —1, —3), (0,0,4), ( —2, —2, —4), and
(2,2,4), plus the SALC's constructed from the 4s', and 4p'
(single long-range Gaussian a=0.06543) basis functions
on the shells (0,0,0), (1,1,1), and (2,2,0). Here we have
used units of a/4 with a =10.26 a.u.

As noted earlier, since the SCF Wannier-type functions
are expected to be well localized about their respective ori-
gins, many of the orthogonality constraints are guaranteed
to be negligibly small and zero to computational precision.

TABLE I. The dependence of the diagonal Lagrange rnultipliers ((rir~rI
~
Ho I cr7~ri ) ) for the

Wannier-type functions on the number of nearest-neighbor (NN) orthogonality constraints.

ONN
Diagonal Lagrange multiplier (a.u. )

1NN 2NN 4NN 6NN

1$
2$
3$
2p
3p

—64.8990
—4.8940
—0.5081
—3.3291
—0.4582

—64.8990
—4.8940
—0.4074
—3.3291
—0.2828

—64.8990
—4.8940
—0.3942
—3.3292
—0.2128

—64.8990
—4.8940
—0.3943
—3 ~ 3292
—0.2132

—64.8990
—4.8940
—0.3953
—3.3292
—0.2181
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1s
2$
2p
3$p

—64.8990
—4.8940
—3.3292
—0.2624

—64.8990
—4.8941
—3.3292
—0.2644

—64.8990
—4.8941
—3.3292
—0.2666

Hence, it is only necessary to ensure that the orthogonali-
ty constraints between the site-zero Wannier-type func-
tions and those on a "relatively small" number of
nearest-neighbor shells are satisfied. Clearly, the number
of strict orthogonality constraints which need to be satis-
fied will be dependent on the system in question. This
question is easily addressed by allowing the number of
nearest-neighbor shells Q for which the orthogonality
constraints are strictly enforced to be an input parameter
for the computer program. For a given number of shells

Q, the X-finding operator is set up as many times as is
necessary to ensure that the overlaps between the site-zero
Wannier-type functions and those translated to the sites
on and within shell Q are less than 0.00001 (using d' de-
fined before as a guide). This number has been chosen ar-
bitrarily and could be made smaller if desired. In fact, at
SCF most of the overlaps are found to be several orders of
magnitude smaller than this. Typically, using ~= —,, it is
necessary to set up the 7-finding operator about ten times
to achieve this. By steadily increasing Q, it is possible to
monitor the convergence of the site-zero diagonal
Lagrange multipliers kzlrt(0) and hence the band cen-
troids as a function of the number of nearest-neighbor
orthogonality constraints. A final test is to compare the
band centroids obtained from a Bloch-function calcula-
tion to those obtained from the Wannier-type function
calculation.

In Table I the (LSD) diagonal Lagrange multipliers of
the SCF Wannier-type functions are compared as a func-
tion of Q. It is apparent that orthogonality to at least two
nearest neighbors must be imposed in order to achieve ac-
curate diagonal Lagrange multipliers. On the other hand,

TABLE II. Comparison of the band centroids for the silicon
crystal obtained from the Wannier functions and from the Bloch
functions. The centroids obtained from the Bloch calculation
have utilized the same basis set as that used in the Wannier cal-
culations. The columns labeled by Bloch (a) and Bloch (b) corre-
spond to the selection of k points according to Refs. 34 and 35,
respectively.

Silicon band centroids (a.u. )

Wannier Bloch (a) Bloch (b)

comparison of the two nearest-neighbor results to the four
and six nearest-neighbor results indicates that for silicon
very accurate centroids may be obtained by enforcing
orthogonality to two nearest neighbors. In Table II the
1s, 2s, gp, and 3sp centroids obtained using the Wannier-
type function formalism are compared to the correspond-
ing band centroids from a Bloch-function calculation
which used the same basis set and SCF potential. The
Bloch-function calculation was carried out using a pro-
gram which was supplied by Heaton. Comparison of the
two sets of calculations is extremely encouraging. The
core bands are in perfect agreement and the valence-band
centroids differ by 0.003 a.u. or 1.2%%u&.

Another useful test of convergence is to examine the
spatial variation of the site zero Wannier-type functions
as additional orthogonality constraints are imposed. Due
to the rather complicated decomposition of the Wannier-
type functions in terms of SALC's which are themselves
constructed from contracted gaussian-type orbitals, it is
convenient to introduce a simple property of the
Wannier-type function which enables one to monitor the
convergence of the Wannier-type functions as a function
of Q. To do this, we introduce the rms radial momentr, defined by

1/2r, = f drr
~
cozrt(r)

~

(62)

which gives an idea of the spatial extent or localization of
the Wannier-type functions. In Table III the rms radial
moments are presented as a function of nearest-neighbor
orthogonality constraints. Again, the convergence is ob-
served to be quite good. It is particularly interesting to
note that the effect of the orthogonality constraints for
Q )2 is to reduce the rms radial moments of the valence
states and hence lead to states which are more localized
than those which would be expected from the crude
single-center atomic approximation (Q=0). This can be
understood by noting that in the absence of any ortho-
gonality constraints, the Q =0 approximation to the
Wannier-type functions will try to extend onto the bare
nuclei surrounding them. When the orthogonality con-
straints are imposed, the desired vector space is occupied
by Wannier functions on other sites which force the
valence states to contract.

An alternative way of monitoring the convergence of
the Wannier-type functions is to utilize a Mulliken
analysis to find the total amount of charge which is as-
sociated with the SALC's lying on the first q shells with

q (Q. This number c (p I I:q ) is given by

TABLE III. The dependence of the rms radial moments ((co~rl r'
~

corri)'~'l for the Wannier-type
functions on the number of nearest neighbor orthogonality constraints.

ONN 1NN
rms radial moment (a.u. )

2NN 4NN 6NN

1s
2s
3s
2p
3p

0.1295
0.6265
3.7076
0.6067
4.5826

0.1295
0.6265
2.9976
0.6067
4.2849

0.1296
0.6268
2.6985
0.6074
3.3245

0.1296
0.6269
2.7150
0.6074
3.3538

0.1296
0.6270
2.7759
0.6077
3.8703
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I I I ~0. TABLE IV. Some selected band energies obtained from the

SCF Wannier-type formulation as compared with the corre-
sponding values which were obtained from the SCF Bloch for-
mulation. The energy of the I 25 has been taken as zero.

Energies (eV)
0.2 Wannier Bloch

a5

0.1

CO

0.0 i s s ~ I s e

—5 —2.5 0

X Axis (a.u. )
2.5

I ]U
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LI„
X],
X4,

0.00
—12.40
—9.98
—1.48
—7.48
—8.18
—3.31

0.00
—12.41
—10.02
—1.48
—7.44
—8.20
—3.29

FIG. 1. The orbital amplitude (absolute value) of the silicon
3s Wannier-type function along the [111]direction. These func-
tions were generated with the imposition of orthogonality to
four nearest neighbors.

Q
c(pI I:q)= g g (P~q~(A)~ P~r~(A, '. )),

where P~t-~ represents the part of the Wannier-type func-
tion m&~I which consists of the SALC's on sheI1 k. When
this number is close to one it is an indication that the con-
tributions from the outer shells are negligible. A Mulli-
ken analysis has been carried out for the valence 3s and
3p Wannier-type functions which were obtained by en-
forcing orthogonality to six nearest neighbors. It was
found that the Mulliken charge associated with the origin
and first two nearest-neighbor shells is given by 0.998 862
and 0.997383 for the 3s and 3p Wannier-type functions,
respectively. This analysis supports the assertion that the
site-zero valence Wannier-type functions are reasonably
well localized on the origin and two nearest-neighbor
shells of' atoms. Actually, by looking at the pictures of
the 3s and 3p Wannier-type functions, (Figs. 1 and 2) it is
apparent that the resulting Wannier-type functions are
well localized on the origin and first nearest-neighbor
atoms. A similar analysis for the 1s, 2s, and 2p

Wannier-type functions shows that they are extremely
well localized at the origin.

As a final test on the accuracy of the local orbital for-
mulation, the band structure from the SCF potential ob-
tained within the Wannier-type formulation will be com-
pared to the band structure which was obtained using the
SCF Bloch-function formulation by Heaton. For this cal-
culation, a 7s-4p contracted basis set of Heaton was used
for both calculations so that any differences in the result-
ing band structure are entirely due to the input potentials.
In Table IV selected valence eigenvalues (I,L,X) which
were obtained using the Bloch and Wannier-type formula-
tions are compared. The agreement between the two
theoretical formulations is excellent. For nine other k
points which were suggested by Heaton, the valence-band
structure obtained using the Wannier-type formulation
agrees with that of the Bloch formulation to 0.05 eV.
Both formulations lead to an indirect band gap with the
bottom of the conduction band at (2m /a)(0. 8,0,0) in
agreement with experiment. However, as is well known
for LSD calculations, the resulting band gap of 0.72 eV
(both formulations) is found to be significantly smaller
than the experimental value of 1.17 eV. It is likely that
addition of d-type basis functions would further decrease
the calculated band gap, but for our purposes this is ir-
relevant since we are concerned with a systematic compar-
ison of the two methods.

.4 s r i &

t

» r i

~

y i e &

]
~ s ~0. r &

~

» r r V. CONCLUSION

0.3

X=Q=Z

0.1

O

o.o —5 —2.5 0

X Axis (a.u. )

!
2.5

FIG. 2. The orbital amplitude (absolute valve) of the silicon
3p Wannier-type function along the [111] direction. These
functions were generated with the imposition of orthogonality to
four nearest neighbors.

In this paper, an iterative algorithm has been intro-
duced which has enabled an all-band self-consistent varia-
tional treatment of the perfect silicon crystal in terms of
Wannier-type functions. Silicon has been chosen for this
study due to the large overlap between the nearest-
neighbor valence wave functions. The accuracy of this
method has been tested by comparing the band centroids
obtained from our Wannier-type formulation to those ob-
tained from the Bloch formulations. The results are in
excellent agreement with one another. We believe that, in
analogy to the one-dimensional model defect calculations
of Refs. 3, 4, and 7, this method may provide an alterna-
tive computational scheme for theoretical studies on point
defects in crystals. Other problems which could be stud-
ied within the Wannier-type formulation include studies
on excitonic transistions, and total energy calculations.
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APPENDIX

The algorithm which has been described allows one to
find Wannier-type functions which are distinguished from
actual Wannier functions since the Lagrange multipliers
between orbitals of different bands at different sites do
not vanish. Since the Wannier-type and Wannier func-
tions are related by a unitary transformation, neither rep-
resentation is preferred over the other. Nevertheless, we
wish to note that a slight modification of the procedure
allows one to calculate actual Wannier functions instead
of Wannier-type functions.

In order to see this, it is first noted that, if there is only

one occupied band, the Wannier-type functions will coin-
cide with the Wannier functions. Suppose that we are in-
terested in finding true Wannier functions for a system
containing B bands. Further, suppose that the true Wan-
nier functions for the b(b &8) lowest bands are known.
To find the next lowest band of Wannier functions, it is
only necessary to replace the Hamiltonian Hp by

Hp~IgHpIb, (A 1)

m i=1
(A2)

where the sum over i indicates a sum over all the
Wannier-type functions which are in the lowest b bands.
Now, by carrying out the original algorithm for the
(b+1)th band only with the above definition of Ho, it
can be verified that the SCF orbitals will indeed corre-
spond to Wannier functions of band (6+1). But since it
is possible to find the Wannier functions for the lowest
band by using the original algorithm for this band only, it
is clear that one could iterate over each band index and
find true Wannier functions with this method.
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