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Transverse magnetoconductivity o,, is investigated for a two-dimensional electron-gas 2D EG)
system in magnetic fields. A scattering model commonly applicable to both Si metal-oxide-
semiconductor (MOS) and Al,Ga,;_,As-GaAs heterostructure field-effect transistors (FET’s) is in-
vestigated. Ionized impurities are taken to exert a Coulomb force which is screened by the 2D EG.
The screened Coulomb force determines widths of Landau subbands and, hence, the density of states
at the Fermi energy in Landau subbands, which specifies the degree of screening. Thus, when calcu-
lating the widths, broadening of subbands and static dielectric response (i.e., screening) are con-
sidered self-consistently (self-consistent screening model). Both widths and o, are solved analyti-
cally as well as numerically. Calculations are carried out both when impurities exist within the 2D
EG and when they are in a remote sheet. Calculated o, is compared with the experiment by Narita
et al. and good agreement, though qualitative, is obtained. The real-space behavior of the screened
potential is also discussed. The force range becomes short or remains long, depending on the degree
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of screening.

I. INTRODUCTION

In a series of papers'™* (for a review, see Ref. 5)

magnetoconductive  properties of Si  metal-oxide-
semiconductor field-effect transistors (MOSFET’s) have
been studied and the basic concept in understanding them
was constructed on a &-function-type scattering potential,
i.e., an extremely short-range potential. Along with this
theory! ~* most theories of conduction in two- and three-
dimensional (2D or 3D) electron gas (EG) in magnetic
fields use a Gaussian potential due to ease of handling.
The potential is advantageous for analytical study in
terms of force range.

Throughout the present study the nature of force range
is always considered. The most effective way to deter-
mine it is thought to be the screening effect. As is com-
monly accepted nowadays, one of the most dominant
scatterings in MOSFET’s and heterostructure devices is
due to ionized impurities, however near or far from 2D
EG they exist, so long as the density of carriers is at low
levels. Since only low-temperature properties are of
present concern in this study, phonon scatterings play a
minor role.

The screening effect in 3D magnetoplasma has been
discussed by several authors.®~® For a 2D EG in magnet-
ic fields, screening was first precisely investigated in ion-
ized impurity scattering by one of the present authors
(T.A.).>1° In particular, the importance of a self-
consistent treatment in such a problem was stressed.'°

The calculational scheme of dielectric response in Ref.
9 assumes that scattering is of an extremely short-ranged
nature. Then the damping of an electron, T, is always in-
dependent of the Landau quantum number N, which
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makes it easy to calculate the response, taking all sub-
bands into account. After completing the formulation, I'
is replaced by I'y. The scheme was applied to studying
cyclotron resonance widths and o, . '

Following this idea Das Sarma'' discussed self-
consistent Landau subband widths in the quantum limit.
Lassnig and Gornik!? also solved self-consistent cyclotron
resonance widths using the formulas given in Ref. 9.

The point of self-consistent screening in a 2D EG under
magnetic fields is as follows. A Landau quantized 2D
EG gives a series of discrete but broadened subbands due
to several scattering mechanisms. If the Fermi level is si-
tuated within a gap region between two neighboring sub-
bands and, hence, every nonoverlapping subband is com-
pletely occupied or unoccupied, it is intuitively under-
stood that no carriers are mobile and there cannot occur
any reallocation of carriers causing screening within a sin-
gle subband.

As for intersubband terms they do not contribute to
screening, at least in the limit of vanishing momentum
transfer, g—0. Thus the “bare” Coulomb potential still
remains unscreened.

On the other hand, maximum screening occurs when
the density of states (DOS) at the Fermi level is maximal,
that is, when the Fermi level is at the center of a symme-
trical subband. When a single scattering origin, i.e, ion-
ized impurity scattering is assumed to exist, broadening
features are determined by the Coulomb potential whose
manner of screening is determined by the broadening.

This kind of exact self-consistency in screening was
first applied to a 2D EG apart from impurities.'* When
subband and cyclotron widths are calculated, they become
very broad for Fermi levels lying between subbands.!®!3
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Since extraordinary broadening occurs in that case, some
overlap of subbands certainly results. The effect limits
the widths to grow infinitely and reasonable widths can be
calculated.'*

In this paper, self-consistency is pursued extensively
within a single subband approximation. Special attention
is placed on analytical solutions of self-consistent equa-
tions.

In this model how o, behaves as a function of Landau
quantum number N is one of the main subjects of interest.
For an extremely short-range potential an important re-
sult! is that peak values in o,, are expressed by a univer-
sal constant, (N + 5 )e?/m*#, where e is the electronic
charge and # the Planck constant per 27. It is interesting
to see how the peaks behave when a potential is not as-
sumed a priori to be extremely short ranged but is speci-
fied by screening.

Dopants sometimes exist in a remote region from the
2D EG. It is also interesting to understand conductive
properties when scatterers exist outside a channel.!> As is
seen in Fig. 1, the peaks in o,, do not increase with N,
but rather decrease. It is easy to show that for a Gaussian
potential with a constant, long potential range d such as
d >>1 [l the cyclotron radius, equal to (#/eB)'/?], peak
values do not increase with N but are almost constant.'’
However, it is quite difficult to understand why the same
screened Coulomb potential is short ranged in Si
MOSFET’s (Refs. 16 and 17) and long ranged in hetero-
structure devices,!8~2° so long as impurities are similarly
present within 2D EG. The difference seems to come
from the fact that impurities in Si MOSFET’s exist just at
the Si-SiO, interface, whereas in GaAs-Al,Ga;_,As de-
vices they are present only outside a channel. Since at the
GaAs-Al,Ga;_,As interface both semiconductor layers
are grown successively and heteroepitaxially during a sin-
gle batch process, it is certainly believed that this system
induces few ionized centers. Here we aim at affirming
whether remote impurities exert a “long-ranged” potential
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FIG. 1. Observed transverse magnetoconductivity o, versus
gate voltage in an Al,Ga;_,As-GaAs heterostructure FET.
go=e?/m*#. After Narita (Ref. 18).

on 2D EG.

The structure of this paper is as follows. First the
screening effect due to 2D Landau electrons is considered.
Next, o,, is calculated using Kubo’s X-X correlation for-
mula.??? Assuming that w.7>>1, a single subband ap-
proximation is justified. The behavior of the screened
Coulomb potential in real space is eventually discussed
after a self-consistent potential has been calculated in its
Fourier transform. A part of this work has already been

reported.?>

II. MODEL AND FORMALISM

We start from Dyson equations for a Landau state as
shown in Fig. 2. Each heavy solid line, i.e., the propaga-
tor of a Landau electron G, includes a repetition of the
self-energy part 2. X is composed of scattering events by
impurities. All kinds of crossed diagrams are discarded
from the start for simplicity. If one is aiming at a discus-
sion of localized states or multiple scattering by a single
impurity with a long-range potential, crossed diagrams
seem to play an important role.?* Here only extended
states are of concern. The peaking structure in o,, im-
plies that the extended character of Landau states carries
the whole current.?

A bare Coulomb potential is screened, as is shown by
the wavy lines in Fig. 2. The polarizability Il includes a
vertex correction V, which is also expressed by a Dyson
equation in the figure. The transverse magnetoconduc-
tivity is given by an X-X correlation function.?"?> As has
been considered,' the X-X correlation implicitly includes
all orders of ladder-type interaction between two propaga-
tors, as suggested at the bottom in Fig. 2. Hence, the
same vertex correction (i.e., all the higher-order terms ap-
pearing in o are summed up giving the same vertex
correction) should be precluded in the X-X diagram. (The
double dashed lines therein stand for the dv/dy interac-
tion, instead of the v interaction, which has two wavy
lines on both sides.) The replacement of the j-j correla-
tion by the X-X correlation within a single subband is jus-

N
0 =1 1 i< G i< D
N+l N
WeT—» o0
N

FIG. 2. Diagrammatic equations for Landau electrons con-
sidered in this study.
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tified in the limit of @, 7— 0.

Following a textbook such as that of Abrikosov
et al.,”’ we easily proceed to obtain final equations in ex-
plicit forms. Two assumptions are the following.

(i) All coupling between different quantum numbers is
neglected. Hence, the Green’s function Vyy- is taken to
be diagonal. This is justified when w.7>>1. There,
higher Landau subbands are well separated, and the mix-
ing of states with different quantum numbers is con-
sidered to be negligibly small.

(i) Temperature is assumed to be 0 K.

From translational symmetry, all Green’s functions are
independent of X, the quantum number corresponding to
the coordinate of the center of cyclotron motion.

The Coulomb interaction between electrons and ionized
impurities, which are randomly distributed, is effectively
expressed as follows:?2

(U(q,2)*U(q,2))s

—L _4 z<eiQ'R‘-—iq'~Rj ,-jv(q,Z)*U(ql’Z)
iJj

=n,L 72| v(q,2) [ *8gq » 2.1)
|

(NX |e'97 | N'X") = explilq,(X /I +1q, /2)+i(N'—=N)(¢p—7/2) NN ()8

is easy to obtain in terms of tand=q, /q,. [=(#/eB)'/’.
Jan(q) is given in Appendix B. The phase factor in Eq.
(2.3) plays an important role when a vertex correction is
calculated.

First of all, utilized formulas are listed. The Green’s
function Gy(E) is given by the following Dyson equation:

SN(E)=(T%/4)Gy(E) , (2.4)

where Ty is defined by
T3 /4=(n/2m) [ dgq|v(a,z) | L@ . (2.5
The screened Coulomb interaction v(q,z;) is?®
v(q,z;)=Voexp(—q |z |)/[q+Volly(g)],
Vo=2me’/k, (2.6

where « is an effective static dielectric constant. As is ex-
pressed in Fig. 2, [1y(q) is calculated as

My (g)={[Jyn(g)]*/27%1%}
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where U(r) is zjv(r—Rj) and its Fourier transform
U(q,z) reads L ‘sze —iaRjy(q,z). All variables are two
dimensional and n; is the 2D density of impurities. z is
the coordinate of an impurity in the direction perpendicu-
lar to the 2D EG. Throughout this study a 8(z—z;)-
shaped profile of impurities is assumed for clarity.
(+++)s means an average over randomly distributed
scatterers’ 2D variables: (R4j,R,;). The distribution is
assumed homogeneous and no coherence is considered be-
tween scattering events (Born approximation). L is a di-
mension within which the system is quantized. The ran-
dom variable R; stands always within (z=0) or in a re-
mote sheet (z£0) from the 2D EG. In the equation

(NX|U(r)|N'X")

_ —ig-R: .
=L 23 (g2 (NX [T N'X'Y . (2.2)
q,j

the matrix element

X%, (2.3)

where f(E) is the Fermi-Dirac distribution function. In
the above equation,

By(q)=(T% /4)Fy(q)
=(n,/2m) [ dg’ q'Jo(I%qq") | v(q',2;) | 2

X [Ian(g)7T? (2.8)

implies an effect of vertex correction. J,(I%qq’) is the
Bessel function of zeroth order and should not be con-
fused with the Jyy function. In Appendix A a more de-
tailed derivation of this equation is described. The effect
of the vertex correction will be discussed in the following
section.

The solution of the Dyson equation (2.4),
Sy=35(E—ey)+it+Ty{1—[(E —ey) /Ty 1}, (2.9
is used hereafter. The full width equals 2T .

For convenience these equations are rewritten in nor-
malized form. The normalization for energy is
E.=e?/kl, and the variable g is transformed into x by

X f dE f(E)Im[Gg /(1—By(9)G})] , (2.7 x=(gD)?/2. Then from Egs. (2.4)—(2.8),
|
M /4E2=c = =(¢,/2) [ dx [Iyy0Te 215 1vE 45072, (2.10)
— V% |z _
Fy(x)=(cc;/2) [ dy Jo(2Vxp Iy 0e 2 5 105 450072, 2.11)
and
E(x)=(lV0/\/§)HN(q)=(c/21r2)1/2[JNN(x)]2fdsf(e)(—e)[l—(8/2)2]”2/[(FN+1)Z—FNEZ] (2.12)

are obtained. Fy(0)=1 is obvious.

¢; is a parameter to describe the average number of impurities within the cyclotron radius, equal to 27/

The integra-
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tion in Eq. (2.12) is from e, to €. € stands for (

E—¢y)/E..

2255

€min @nd €f are the minimum energy of the Nth subband

and the Fermi level in the unit of E,, respectively. The transverse magnetoconductivity o,, in terms of the X-X correla-

tion reads

—2V'2x |z
O'X_x/O'():(CC,'/Z) fdxx[JNN(x)]Ze 2V2x |z | /1

Throughout this paper we are concerned only with the
peak values in o,,, i.e., when the Fermi level stands at the
peak position of each Nth subband. In this case the above
integral (2.12) becomes simple. The solution will be dis-
cussed in the following section.

III. ANALYTICAL CONSIDERATIONS
A. Screening

In order to calculate the dielectric response, we start

with Eq. (2.11), which expresses a contribution of the
J

My (x)=V25(x)/IVy=D(ep)[Iyn (x
(ii) For negative Fy:

My (x)=V25(x)/IVy=D(ep)[Jyn(x

The function contained inside of the curly brackets in
Egs. (3.1) and (3.2) denoted as .# y, is plotted in Fig. 3.
An approximate form of Fy in Eq. (2.8) is conceptually
discussed in terms of force range d for a Gaussian-type
potential.
(a) For a short-range potential (d <</),

Fy(@=[Iyn(@)]? (3.3)

is easily concluded, since |v(q,z;)|? is roughly indepen-
dent of q. (See Appendix B.)

(b) For a long-range potential, i.e., d >>1, cases should
be classified into two groups according to q value.

d>>1 and d/I*>>>q. We can approximate as Jo=1.

Hence,
Fy(g)=1. (3.4)
d>>1and ¢ >>d/I*>>1/l. Since J, in Eq. (2.8) oscil-

_‘__-.‘______-.______
&
w

______________ h_.:l____-
1 i
1 0 : FN(q)
short- long-range
wavelength gl_:mng
limit

FIG. 3. Rough sketch of Fy vs Fy.
the short-wavelength limit and Fy =

The point of Fy=0 is
1, the long-range limit.

/[Vx +5(x)]*.

(2.13)

I

corrected vertex to the polarizability. So long as a single
subband approximation is taken, only the zeroth-order
Bessel function J appears in the integral equation (2.11),
which stems from the phase factor in Eq. (2.3) (cf. Appen-
dix A).

First let us solve Eq. (2.12). The integral is given in an
analytical form, when the Fermi level stands at one of the
subband peaks. The calculation of Il in terms of Fy de-
fined in Eq. (2.11) is straightforward.

(i) For positive Fy:

) I*{1—[(1—Fy)/2VFylarctan[2v/Fy /(1—Fy)1} /Fy . 3.1
I+ | Fy | )/2| Fy |32 In[(1+V TFy /(0= TFy [)]1—1/|Fy |} . (3.2)
I
lates markedly, the integral almost vanishes, i.e.,
Fy(g)= (3.5

Using this Fy, an asymptotic behavior of I1y(q) is calcu-
lated from Eqgs. (2.7) and (2.8) when 0 K is assumed for
temperature.

In case Fy(q)=1, the calculation proceeds as follows:

My (q)={[Iyn(q)]*/27%1?}
X [dE f(E)Im[G} /(1—T%G} /4)]
Z[JNN(q)]ZD((‘ZF)

where the density of states is D(eF)——ImGN(EF)/
2m2 = 1/77212FN and an identity dGy/dE=—G}/
(1—T%G%/4) is used. The latter relation easily results
from differentiation of Eq. (2.4) along with
Gy'=E—¢ey—3y.

In case Fy(gq)=0, a rather complicated calculation fol-

(3.6)

lows. Usmg Xy=Gy' and the relation, dE/dX N
=1-T%/4X3%,
My (q) =}y /271 %270) f dEXN
=Jin+D(ep) 3.7

reads, where ep, =€+ 0.

We next summarize the behavior of Ily. Take the
N =0 case for example. (See Fig. 4.)

(@ In the short-range scattering case, Fo=J3
= exp( —q?2I? /2) vanes from 1 for ¢ =0 to 0 for g— .

I1, traces the J 2.D( €r) curve (short-wavelength limit)
for ¢ > 1/1 and then follows the J3D(er) curve for
g <I~!, which we call the long-range limit, as will be dis-
cussed in (b).

(b) In the long-range scattering case, a sketch similar to
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(i) Short-range scattering TCQ)/D(EE) d< ¢

Fl(@)2 Jyn(@)? 4/13

(i1} Long-range scattering

q»dlg2
Fn(@) ~0

q«die? a3 e dye
Fy@ =1 !

FIG. 4. Plots of polarizability I1(q) normalized by the densi-
ty of states D(er) [equal to FoJoo(q)?] versus g. d is a
representative force range.

that shown above is possible. Within the region of
g <I~!, where J 3 has an appreciable magnitude, I1, al-
ways follows a curve of J3,D(er). For g>>d /I3 it is
given by + as large as this, although Jo is quite small
there. With this meaning Ilo=J3,D(ef) is defined as the
long-range limit (LR limit).

The fact that the polarizability Iy is enhanced by a
factor of + is compatible with stronger screening, i.e., a
shorter-range case. Thus it is safe to say that the effect on
screening caused by force range is only by a factor of +.
Or, since the width of subbands and o, are proportional
to | v(q,z)|? i.e., to the inverse square of Iy, the effect
is at most doubled. This point will be affirmed by numer-
ical calculation in the following.

It is an elaborate task to numerically calculate Egs.
(2.11) and (2.12) self-consistently, using (3.1) and (3.2),
without any approximation. In the simplest case with
scatterers existing within 2D EG, the solution is obtained
by iterative calculation and is shown in Fig. 5.

In Fig. 5 (a) full widths of Landau subbands equal to
2Ty are plotted as a function of Landau quantum number
N of the subband of concern. In the parameter
¢;=2ml%n;, n; is the density of impurities. Also in Fig.
5(b) the peak values in o,, are plotted in a similar way.
The triangles represent the values for the short-
wavelength limit (i.e., when the polarizability has the fac-
tor +); the solid circles, the solutions for the short-range
limit, i.e., [y(g)=D(ep)Jyn(q)2F x with Fy evaluated
for Fy=Jyn(g)% the open circles, the self-consistently
numerically solved solutions and the crosses, the values
for the long-range limit, i.e., Fy(g)=1, or accordingly,
HN(Q)ZJNN(Q)ZD(EF).

From Fig. 5(a) it is seen that the solutions with vertex
correction self-consistently included always lie between
the long-range limit solutions (LR limit, X) and short-
wavelength ones (SWL limit, A). This is reasonable when
Fig. 6 is examined, where the self-consistently solved
Fy(x) (lower curves) and # y(x) (upper curves) are plot-
ted. Fy is almost between 1 (LR limit) and O (SWL lim-
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SWL LIMIT. a 7
[ ve ]
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TE .
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10 F yo | SWLLIMIT. & .
| sc scived .0 L
9 F LR LIMIT. . % ~ x .
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71 ¢=0.00183 (¥ |
x
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6F s
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FIG. 5. Calculated (a) full widths of Landau subbands 2T y
normalized by E.=e?/kl and (b) peaks in o,, normalized by o,
versus Landau quantum number N. Impurities are assumed to
exist within 2D EG. The crosses are for the long-range limit,
the solid circles for the short-range limit, the open circles for the
self-consistently solved widths, and the triangles for the short-
wavelength limit. ¢; is 27n;I2, where n; is the 2D density of im-
purities. n; =0.2418c; times (B in T)x 10'' /cm?.
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FIG. 6. Self-consistently solved .7 y(x) (upper curves) and Fy(x) (lower curves) versus x =(g/)?/2 in the case of ¢;=0.176. Solid
lines are for N =0 and the dotted lines are for n =1. For comparison Fy(x)=Jg(x)? is plotted by a thin dashed line in the lower

part, which is the short-range limit solution.

it), which implies that it is between both limits, whereas
F n defined by My(x)/D(ep)[Jyn(x)]? is between 1 (LR
limit) and + (SWL limit).

As is seen in Fig. 5, the self-consistent solutions almost
coincide with those in the short-range limit, except when
¢; is large (0.176). Thus for large c;’s, scattering seems
considerably long ranged.

When n;(c;), or accordingly, the subband width is
small, screening is very effective because of a large peak
DOS. Strong screening implies a short-range nature of
the scattering potential. Thus lower points in Fig. 5(a) [a
small n;(c;)] show short-range characteristics. The corre-
sponding o,, behaves as do the upper points in Fig. 5(b).
As is the case for an extremely short-range potential cal-
culation,! o,, grows as a function of N, as (N +3)oo
with oo=e?/7*#%. The present self-consistent solutions
are roughly several times as large as (N + 3 )0, (10 times
for N =0 and 1.8 times for N =5).

As for a large n;(c;), the dependence of the width on N
is highly alleviated compared to the above-mentioned
small n;(c;) cases. The o,, has a rather insensitive depen-
dence on N. This insensitivity is a marked feature for a
long-range potential.!> The analytical dependence on ¢; of
widths and peaks in o, will be investigated in the follow-
ing section.

Since it has been clarified that the self-consistent in-
clusion of the vertex correction does not drastically
change the behavior of physical quantities of present con-
cern, we will henceforth always treat problems in the
long-range limit, i.e., with the polarizability taken to be
Iy =J%yD(ep) and, therefore, Fy(x)=1.

B. Self-consistent solutions

It seems instructive to find analytical solutions to the
self-consistent equation. We reproduce Eq. (2.10) for
N =0 again:

[ dxei/vde =5 (Vx be =1, (3.8)

with b=V2/myo. vo=To/E, is the normalized width of
the Oth subband and z=V"72z;/l. The equation for o,
reads

Oy /O0=T1b"%; fdx xe X3z /(% +be 2. (3.9

The integrand in Eq. (3.8), denoted as f(x), has a form
not easily approximated. If the second term in the
denominator is neglected for x — «, the integral actually
diverges logarithmically. f(x) is plotted in Fig. 7 for
¢;=0.002, 0.018, and 0.176, when z=0. When ¢; is small
(e.g., ¢;=0.002 shown by the solid line in Fig. 7), the in-
tegral has its main contribution from the region with non-
vanishing g. As a result, the potential is oscillatory in real
space with a frequency g.x, Where the integrand becomes
maximal. In addition, in the meaning that the potential is
finite over a wide range of g, it seems rather like short
ranged. On the other hand, for ¢;=0.176 (the dashed-
dotted line in the figure) the potential decays rapidly with
g; that is, the force range is long and the screening is
weak.

We investigate analytically three cases classified by the
values of ¢; and z.

(i) For ¢; <<1 with such an arbitrary z as VX >>z, and
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INTEGRAND

VC LR LIMIT -
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N=0o c;=o0.002 N
o.o18... 4
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fo 12 14 16

x=(ql)2/2

FIG. 7. Integrand of Eq. (3.8) versus x =(gl)?/2. The vertex correction meets the long-range limit. The solid, the dashed, and the
dashed-dotted lines are for ¢; =0.002, 0.018, and 0.176, respectively. Impurities are assumed to exist within 2D EG (i.e., z; =0).

(ii) for ¢; >>1 with z?>>>m%c; /2. Both cases have a large
b and, hence, a large X.

The region of integration is divided in 2 in these cases:
[0,X) and [X, ). X is the solution of VX =b exp(—X).
X >>1 follows for a large b, and accordingly, a small y,.
In the first region V'x is neglected in the denominator and
the integration is simple, although not reproduced here.

For the other region, the second term in the denomina-
tor is neglected. The integral is given under the assump-
tion of VX >>z. The integration for o, is similarly exe-
cutable.

The final forms read

Yo=(VBme;/ | C | )| (224 C) /2 —z |~ 2lz+E+0)
(3.10)
and

Oxx /00=22>+C+22(z2+C)'?—7%¢; /2 , (3.11)

where C= —In(27%¢;).

These expressions are valid also for a large z such as
z2>>7%c; /2 along with ¢; >>1 (ii). Seeing that Inc; is
rather insensitive to c;, it is safe to say that the normal-
ized width of the Oth subband, y,, is proportional to ¢;
and o,, depends little on ¢; under these conditions. As
for a large z, the width decreases as exp—4z? and o, in-
creases as 4z% with z.

This rapid decrease in width was already suggested in
Ref. 13. It is a kind of “phase transition,” which is
caused by a positive feedback characteristic of the width

as functions of ¢; and z=V"2z/I; this is quite a natural
outcome of the self-consistent screening model. It was ac-
tually shown in Ref. 13 that Landau width becomes drast-
ically narrow for impurities apart from the channel, by
around 100 A, under a reasonable doping condition.

(iii) For ¢; >>1 with z << 1. This case has a small b
and, hence, a small X.

Calculating procedures are very similar to (i) and (ii).
Under the assumption of 1>> VX >>2z, we obtain

Yo=Qc;In{[m(a—V7z)]%c;})/? (3.12)

and

Oxx /O0=2¢;(1—V72) /Y , (3.13)

where a=1.2346. In this case y, is proportional to ¢;'/2.
O is a logarithmic function of ¢;, as was so in (i) and (ii).

The case with VX <<1 <<z does not appear, whose oc-
currence is physically difficult. Here it might help ones
understanding to say a little about X. Take c; to be 1073,
for example. By solving the transcendental equation,
VX =be X, and Eq. (3.10) for z =0, X becomes no more
than ~5.3. Since we use an expansion formula such as
—Ei(—X)=e X(1/X—1/X?*+ - - ) to reach the asymp-
totic solutions in (i) and (ii), ¢; =107 is still large for a
limit like X >>1. This point will be discussed further in
comparison with numerical solutions later.

It is desirable to calculate y and o, for N’s other than
0, but because of the complicated behavior of Jyy for
N=£0, the task is formidable. We are satisfied with nu-
merical solutions in the following section.
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IV. NUMERICAL SOLUTIONS

A. 0,x—impurities within 2D EG

We now proceed to a numerical calculation of I'y and
Oxx, When ionized impurities are assumed to exist within
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2D EG. That is, z; is zero in Egs. (2.10)—(2.12). Polari-
zability is given in the long-range limit, as was discussed
in the preceding section: Iy (x)=D(ep)yn(x)2

Figure 8(a) shows calculated subband full widths 2"y
normalized by E.=e?/kl, as a function of c; =2mn;1%
As for GaAs (k=13.1) and B=20T, E, is 19.2 meV and
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FIG. 8. Calculated (a) full widths of subbands, 2Ty, normalized by E. =e?/«! and (b) peaks in o,, normalized by o, vs ¢; =2m7n;I?
for z; =0. The solid, dotted, dashed-dotted, and the dashed-double-dotted lines are for N =0, 1, 2, and 3, respectively. The horizon-
tal axis scales to n; by multiplying 48.3x 10'°/cm? when B =20 T. The vertex correction is taken to be the long-range limit. The

(-0-) curve is the asymptote in the small-¢; limit for N =0.
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#iw, =35.6 meV. This relation of magnitudes justifies sin-
gle subband approximation. It is seen in the figure that
widths depend on N. The N =0 line is almost propor-
tional to ¢; in the small ¢; region; it is parallel to the
asymptote [Eq. (3.10) for z =0] plotted with a -0- line.
The region with large c;’s, where the asymptote derived
previously is valid, is out of the scope of the figure. How-
ever, it is seen that the cases from N =1 through 3 appear
to have a slightly smaller dependence on ¢;, which sug-
gests a closer affinity to the analytical
Yo« (¢;lnc;)/? [Eq. (3.12)].

Figure 8(b) is for self-consistently solved peak values in
0 /0o Regarding the variation with N the ratio of the
Nth to the (N + 1)th peak is approximately constant, ex-
cept for N =0 in the large-c; region. An analytically
solved o, claimed its rather insensitive dependence on c;:
Oy <In(1/c;). [Although Fig. 8(b) may at first sight
seem to depend highly sensitively on c;, one must be care-
ful that the range of variation in o,, /0 spans only one
decade, whereas the horizontal axis spans three orders of
magnitude.] The result that o, varies with ¢; stems from
the self-consistent screening treatment within the scope of
single subband approximation. Here self-consistency be-
tween the screening due to polarizable carriers and their
subband width is too strictly taken into account.

Using the values in Fig. 8(a) it is possible to discuss
parameter-dependent subband widths. Since in our model
o, peaks depend on B and ng through their ¢; depen-
dence, they behave differently in experiment when it is
performed for either the B or ng parameter. This was
pointed to in Ref. 23. When an experiment is performed

solution,
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by varying the density of carriers n; with a constant mag-
netic field B widths vary from N =0 to 3 on a vertical
line corresponding to a given ¢; value. Meanwhile, when
experiment is given as a function of B with a constant n;,
widths are obtained for ¢; =(N 4+ % )gn; /ng, where g is the
degree of degeneracy. For example, for gn;/n;=0.2, ¢;
varies from 0.1 to 0.7, corresponding to N =0 to 3. In
this region 'y is almost proportional to ¢;”?, and accord-
ingly, to /. Thus width should be proportional to /° or
independent of B, and the peak DOS is proportional to B.
For small ¢;’s, ygocc; «</? and the peak DOS is propor-
tional to B3/2. The experiment on the de Haas—van Al-
phen effect?® gave subband widths proportional to B'/%;
this dependence is not derived on the self-consistent
screening model. (According to Ref. 26 and private com-
munications from Eisenstein, their samples have a spacer
of 170 to 200 A thick. This value is large enough and it

seems to be more reasonable to assume that dopants far

from the channel affect transport properties less than the
imperfections within the channel, although the number of
the latter is far smaller.!* If so, the B dependence of the
subband width should be analyzed in terms of short-range
scattering.) For an extremely short-range potential "y is
known! to depend on / as B'/? and, hence, for the depen-
dence reinterpreted in the present terminology, the same
should be the case only when y is given by ¢ .

B. o.,—impurities apart from 2D EG

Considered next is the case of ionized impurities exist-
ing apart from 2D EG. The effective scattering potential
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FIG. 9. Same integrands as in Fig. 7 except that impurities exist apart from 2D EG by z;//=0.87. The solid, dotted, and dashed-

dotted lines are for ¢; =0.073, 0.719, and 7.056, respectively.
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in such devices as a modulation-doped heterostructure
FET is given by Eq. (2.6) with an exponential factor, as
was studied by Stern.?® For simplicity, the doped layer is
taken to be a 8-function-type sheet separated by z; from
2D EG. It is easy to spread the dopants out across a layer
of finite thickness Az.

Since it is laborious to solve the self-consistent equation
for N0 analytically, we perform numerical calculations.
However, it may be instructive to show how the integrand
runs as a function of x =(gl/)>/2 in Fig. 9, similarly to

Fig. 7 for z;=0. In Fig. 9, normalized integrands for
z;/1=0.87 are plotted for several c; values, only for
N =0. The z; /I value corresponds to z; =50 A for B=20
T. It is seen that the case with a small ¢; =0.073 has a
humped region, which contributes to the integral, besides
a region around x =0. Thus, the case behaves apparently
like a short-range potential, in the meaning that potential
has an appreciable magnitude throughout a finite-
wavelength region. This is because when ¢; is small, sub-
bandwidth is small, which causes strong screening, and
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force range looks short.

Numerically solved results are shown in Fig. 10(a).
2Ty /E, is plotted as a function of ¢; for z;/I=1.74.
Figure 10(b) shows o,, /0. In Fig. 10(a), it is remarkable
that widths change drastically, as already reported in Ref.
13. This is understandable when Fig. 11 is referred to,
which shows 2Ty /E, as a function of the thickness of
spacer z; normalized by /.

In self-consistent screening, once a spacer is sufficiently
thick, the effective scattering potential becomes sufficient-
ly weak, which causes the width to be small and, accord-
ingly, the screening to be effective, since screening is
determined by a DOS proportional to 1/T'y. This, in
turn, makes the effectiveness of scattering potential small.
Thus, a kind of positive feedback makes the width drasti-
cally small at around a finite spacer thickness of ~1.2/
for ¢;=0.414. When B =20 T, the critical value is some-
thing like 80—100 A."?

In terms of ¢;, the situation is similar. When the z;
value is kept constant (z; //=1.74), the width is expected
to be drastically reduced at a certain value of ¢;; for ¢;’s
less than the critical value, I' y becomes quite small. This
resembles a phase transition and it occurs around ¢; =0.8
for N =0 and 0.014 for N =1. For higher N’s the same
is expected to occur for much smaller ¢;’s.

Calculated o, in Fig. 10(b) differs noticeably from the
case with impurities within 2D EG [Fig. 8(b)]; i.e., peaks
in o, for N=0 are the greatest and decrease with N.
This inverse order of magnitude of o,, is typical of the
long-range force. In this case as well, peaks have different
dependences on N, corresponding to whether an experi-
ment is done with B or ng as a parameter.23 In Fig. 10
asymptotes for N =0 are also plotted (-0-), which
expresses the solutions in the “narrow width phase.”

Figure 12 shows peak values in o,, as a function of

normalized spacer thickness z;//. The order of these
peaks with N is reversed for spacer thicknesses larger
than ~0.5] when c; is taken to be 0.414. A remarkable
result is that the peak magnitudes are sufficiently large
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FIG. 12. Plot of peak values in o, /0, versus thickness of
spacer z; normalized by /. ¢;=0.414.
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and spread from 0.5 to 10 times o in order-of-magnitude interest is how the self-consistently solved potential
agreement with the experiment by Narita.!® behaves in real space.
The potential in real space, v(r), is divided in two:

C. Screened potential v(r)=vo(r)—Av(r) . 4.1)

Let us take vy(r) to be an unscreened part:
In the preceding sections, the self-consistent screening w —qlz]
effect has been discussed, from which the effective vo(r)=(Vo/2m) fo dq Jo(gre
Coulomb potential in its Fourier transf
oulomb potential in its Fourier transform, v(q,z;), has — (Vo/2m)/(r2 4222 4.2)

been calculated as a function of ¢;, N, and z;. Of further
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FIG. 13. (a) Potential in real space versus in-plane distance r (normalized by /) from an impurity within 2D EG (z;=0). N =0.
The solid, dotted, and dashed-dotted lines are for ¢; shown in the figures, respectively. (b) The ratio v(r)/vo(r) vs r/I for N =1.
v(r) is the screened and vo(r) the unscreened Coulomb potential. Comparisons are made among z; /I =0, 0.87, and 1.74 cases.
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and then
Av(r)=(V,y/2m) fo“’dq Volly(g)Jo(gr)

Vil g+ Volly(@)] (4.3)

Xe
follows. Vo=2me®/k. Figure 13(a) shows the case with
impurities within 2D EG for z;//=0. In the figure, a
thin dotted line depicts vy(r). Only the N =0 case is
shown. The horizontal axis is the distance normalized by
I and the vertical axis is in the unit of e?/k/. It is seen
that potentials drop rapidly to small values around r=/
according to screening. The smaller the ¢; is, the shorter
the force range. Potentials for smaller ¢;’s oscillate on
larger distances.

We are interested in a comparison between potentials
with various z; //. In Fig. 13(b) three lines express the ra-
tio v(r)/vy(r) for N =1, each corresponding to z;//=0,
0.87, or 1.74 for the same ¢; value.

In the figure, the z; =0 line (the solid line) is typical.
The force range, in other words, the screening length, is
2.0/ in this case. For z;//=0.87 (the dashed line), impur-
ities exist apart from 2D EG at least by the value beyond
a spacer; consequently, one can simulate by sketch the sit-
uation by shifting the z; =0 line by 0.87 to the left. This
procedure reduces the largest part on the solid line to a
smaller one, as is seen on the dashed line. For the
z;/l=1.74 case, a similar procedure causes more reduc-
tion of the peak around »=0. Thus, when impurities ex-
ist well apart from the channel, their potential has none of
the dominant unscreened part, but only the small screened
part. Accordingly, the resultant potential appears to be a
roughly constant fraction of the bare Coulomb potential,
and to exert a weak force similarly throughout the entire »
region. This means that the potential looks long ranged,
although it is highly reduced in magnitude. The long-
ranged nature is more remarkable for large c; values.

V. DISCUSSION AND CONCLUSION

The study that motivated the present authors was the
Shubnikov—de Haas phenomenon observed at the hetero-
structure interface.'® It showed a remarkable contrast to
that observed at the Si-SiO, interface. The latter was suc-
cessfully interpreted based on the extremely short-range
scattering potential model.! By assuming a long-ranged
Gaussian potential, it is derived that a quite different
behavior is expected from that of a short-range one.'’
However, calculated transverse magnetoconductance on
that Gaussian model with d >>! was too small by one or
two orders of magnitude to explain experiments, although
it succeeded in reproducing roughly N-independent peak
values in o ,.

For a long-range d >>I, a squared step on a single
scattering event (AX)? equals (12/d)* and, hence, 0, /0
is given by (//d)?, except for a numerical factor of order
of unity. This value is actually quite small so long as
d >>1 is assumed. If an experiment is performed with
magnetic field as a parameter and keeping n, (i.e., gate
voltage) constant,'”!® peaks should appear to grow rough-
ly proportional to N, since o, «</ 2. This fact also seems
to show the infeasibility of the Gaussian model with a
constant force range.

In the present calculation the peaks are enhanced and
given by In(1/27%¢;), due to the self-consistent treatment
of screening. In order to have order-of-magnitude agree-
ment in o,, with the observed, the self-consistent screen-
ing model seemed the most plausible. If an experiment
takes magnetic field as a parameter, calculated peaks still
decrease with N in our model.?* In this paper, study is
limited to the case with Fermi energy at peaks of DOS.
Broadening, o, and cyclotron resonance width for other
energies have been investigated on the same model, taking
into account a more realistic distribution of impurities
across a device.!?

When Fermi energy lies around subband edges, screen-
ing is reduced due to a small DOS. This fact must force
electrons to easily localize, because fluctuations due to a
less screened Coulomb potential are possibly enhanced. In
this situation inhomogeneous broadening surpasses col-
lision broadening. Although in Ref. 13 broadening was
calculated for energies around edges and extraordinarily
broadened states were actually obtained, it lacks the
viewpoint of localization, which is thought to be necessary
for understanding correctly the features of the states near
edges. The present work was also free from localization
of Landau electrons. It is guaranteed, however, that
around the peaks of subbands, electronic states are extend-
ed.?>?* Accordingly, peaking behavior of Shubnikov—de
Haas oscillations must be interpreted by considering ex-
tended states.

We have studied the effect of uncrossed vertex correc-
tion on polarizability and showed that the effect is at
most +. Vertex correction to the self-energy of an elec-
tron as well as current vertex were also discussed by Mi-
yake®® using the Ward identity, by assuming that impurity
potential is extremely long ranged. According to his cal-
culation, the effect is fairly large, so long as the magneto-
phonon phenomenon is concerned in a nondegenerate 3D
EG system.

For a long-range potential multiple scattering is very
likely to be efficient. Scattering due to many site impuri-
ties was also considered® in a self-consistent z-matrix ap-
proximation. Tsukada® and Ono®! investigated the effect
of impurity potential on Landau electrons by solving the
Schrodinger equation including the potential. Crossed di-
agrams are considered in all these studies and they are
known to highly distort the shape of Landau subbands.

According to the present study, impurities within 2D
EG are well screened and the potential appears short
ranged. When impurities are apart from 2D EG, the po-
tential is to some extent screened, but the remaining part
has an appreciable long-ranged feature.

It should be noted that asymptotic solution of the self-
consistent equation may lose its meaning for extremely
small c;’s because, there, each Landau level may generate
an impurity level below and over it, not being broadened.
The present solution holds true for such concentrations of
impurities as to make the levels form broadened subbands.
As for large c;’s, a similar problem may occur; any over-
lapping subbands are out of the scope of the present
theory, since this is based on a single subband approxima-
tion.

Through this study we took a single subband approxi-
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mation which is believed to be good for strong fields. The
approximation brings a transparent view into the physics
of screening. All the preceding calculations will change
when screening due to multiple subband structure is taken
into account. If a specific N is of concern, polarizability
is composed of Ily and X v nIIyy. The latter is
roughly smaller than the former by a factor of 1/w, 7. It
is obvious that Il is the most dominant so long as ef
stays around the Nth peak. However, for large
x =(ql)?/2, Iy becomes more effective, since

My o< [Iyn(x)Pocx V=N exp(—x) .

This causes the hump in Fig. 7 to be relatively reduced for
small ¢;’s. Thus, the inclusion of other subbands in
screening will make the scattering feature appear more
long ranged. In other words, peaks in o, will be reduced
for small ¢;’s and will become less sensitive to N. For an
extremely short-range force the inclusion of multiple sub-
bands was rather an easy matter, because damping
Im3Sy(E) was independent of N therein.! However, in
our case, it is a tedious process to take a number of sub-
bands and make consistent their widths and polarizabili-
ties due to so many subbands.

Every calculation was performed in a normalized form,
irrespective of specific material constants. Therefore, all
the results can be applied to both Si MOS and GaAs het-
erostructure FET’s as well. This means that if the same
kind of impurity distribution occurs in the Si-Si0, inter-

face, the system would develop such a Shubnikov—de
|

Haas effect as was calculated in the present work. The
actual Si-Si0, system is believed to have dominant ionized
impurities just at the interface. Measurements in that sys-
tem also agree qualitatively with the present results when
impurities are taken to exist within 2D EG, but not quan-
titatively; calculated peaks in o, are quite larger than the
observed.

In summary, self-consistent screening between widths
of Landau subbands and polarizability was discussed, and
it has been shown that the states thus solved can really
simulate successfully the behavior of peaks in o,, at the
heterostructure interface, which is quite different from
what is seen at the Si-Si0, interface. Numerical as well as
asymptotically analytical solutions of self-consistent equa-
tions were obtained. Calculations were made on widths of
Landau subbands and on peak values in o, as well as on
screened Coulomb potentials in real space.
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APPENDIX A

Let 77 and & be temperature Green’s functions for the
vertex part and propagator, respectively. Then

Y nxnxle—0,6Q)=Iny(@+kp TS 3 (n; /L7

N,,,X,+[2q,(e—w—w',e—w’;q)
o N".N".q y

N"x+12qy’
X exp[ —il*(qy*qy —qx°qy) +i[N""—N"—N'+N](¢—¢")]
X |v(q’,2) | 2JNN~(q‘)JNme(q')gNn(e—w—w')yNw(s—w’) (A1)

is obtained, where ¢ =arctan(q, /q,) and ¢’ =arctan(qy /qy). After replacing Zq, by (L /27)* f q'dq’ f d¢’ and calcu-
lating the integral, a Bessel function 27Jy:_ y . y»_n~(1%qq’) results. If only the Nth subband is of concern, we are left
with Jo(I%gq’), as seen in Eq. (2.8).

APPENDIX B

For readers’ convenience we reproduce here

(IANX | UMD [N'X") | D) s=(n;/LY) S |v(q,2) | UynAX,qx, X W yn( X, —qx,X')qu)(X_X,)/lz , (B1)
9x9y
where
(NN =)V NLPY N (k|?), for N>N’
Inn(X,q,, X' )= exp( — |k |2/2) X “ N ] (B2)

(NY/NDV2@)N =NLWV =Nk |?), for N<N'
with |k |2=k?=k3 +K§,=.(l.qx /\/5)2+[(X —X')/V21}?, and L? is the associated Laguerre polynomial of rank (p,q).*
For q=(q,,(X'—X)/I?) it is easy to obtain
2m)~2 [ Iynlg)%e 9T dq=[1/2a1*Wyy (0,5 /1,3 )y x (0,5 /1%%) (B3)
where X =1%q, and y=1/%q,. Thus
2m)~2 [ dk Iy (kP explikx ql?)=[Tyy (@)1 /271 (B4)

was proved.
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