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Effect of disorder on exciton binding in semiconductor alloys
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We apply the coherent-potential approximation to the Wannier exciton and show that broadening
of the conduction and valence bands, which pushes down the absorption edge relative to the virtual-

crystal band position, has less influence on the exciton states, thus reducing the binding energy. We
also show that the effective interaction induced by simultaneous scattering of the electron and hole

by the same impurity can be either attractive or repulsive depending on the band lineup. In most
semiconductor alloys, this turns out to be attractive and cancels partially the binding-energy reduc-

tion due to bowing. These results are obtained by an approximate solution to the Bethe-Salpeter
equation appropriate to a disordered system. Our theory is compared with available experimental
data in Ga (As, P).

I. INTRODUCTION

Optical properties of semiconductor alloys are of great
technological interest. The low-energy edge of absorption
spectra is determined by excitons —bound electron-hole
pairs. It is therefore interesting to investigate the
behavior of the exciton in disordered systems. One of the
fundamental questions in this problem, whether disorder
enhances the electron-hole binding, is addressed in this pa-
per.

We shall consider an exciton associated with the direct
gap of a semiconductor alloy. Then our system consists
of an electron (particle 1) in the conduction band (c) with
mass m, and a hole (particle 2) in the valence band (v)
with mass m, . Our problem is to solve the Hamiltonian

p p2 m,H= +u(r)+ +V, R+ r
2mr 2M ' M

mc+ V„R— r (1.2)

where m, and M are reduced and total masses, respective-
ly. Because of the random potential, the translational and
the relative degrees of freedom cannot be decoupled. This
is the essential difficulty in the two-body problem in a
disordered system.

When the exciton energy is much larger than typical

H = + +u (r] —r~)+ V, (r])+ V„(r2),P& Pz

2m, 2m,

with both the Coulomb interaction u and the potential V&

due to disorder (p=c, v). (We have neglected disorder-
induced interband mixing. ) In place of the electron-hole
coordinates, (r, ,p~) and (rq, pz), one may introduce the
center-of-mass and relative coordinates, (R,P) and (r, p),
to rewrite (1.1) as

disorder energy, ' one can first look for the eigenfunction
tb for the relative part

p2
H, = - + V, (R)+ V, (R) .

2M
(1.3)

Here V, and V, are averages of V, and V, with respect to
the relative state P; for instance,

V(R)= J d r ~P(r)
~

V, R+ r
M

This approach is very similar to the Born-Oppenheimer
adiabatic approximation: The translational motion in the
exciton problem corresponds to the atomic motion in the
molecular problem. From this analogy, one can tell im-
mediately that this method is valid if the exciton state in
question is well separated from other states so that the en-

ergy spacing is much larger than the translational width
and disorder. In this case, one can neglect the relative
motion and apply any single-particle alloy theory solely to
their translational motion (1.3). ' This holds in mixed al-
kali halide and probably II-VE crystals.

On the contrary, when the exciton energy is comparable
to the disorder energy, the "adiabatic approximation"
breaks down, and it is essential to take into account the
effect of disorder both on the translational and relative
motions. This is the case with the Wannier exciton in
III-V alloys in which we shall be interested hereafter. In
this case, as far as we know, there is no theoretical ap-
proach except to start from independent electron and hole
by neglecting u in (1.1) and then to take into account the

H„= +u (r),
2mr

and then solve, for each exciton states P, the translational
part
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Coulomb interaction between an average electron and an
average hole. A further simplified approach adopted by
Mahanti in solving the Bethe-Salpeter equation is to sup-
pose free-electron-like one-particle Green's function with
a built-in width to allow for the random potential due to
disorder. This, of course, is not very satisfactory except
for the very-small-disorder case.

We shall show in this paper an approximate method for
solving (1.1) with both the Coulomb interaction and disor-
der. Our paper is organized as follows. In Sec. II we de-
fine our model of disordered semiconductor and introduce
the one-particle Green's function for a given configuration
of alloy atoms. Then we consider the configuration aver-
age of their products. In Sec. III we analyze the Bethe-
Salpeter equation for an electron and a hole in a disor-
dered system. Section IV deals with the weak disorder
case, where one can obtain alloy exciton states analytical-
ly. In Sec. V we investigate the exciton state for an arbi-
trary strength of disorder using the coherent-potential ap-
proximation. Section VI compares our theoretical results
with available experimental data. In Sec. VII we discuss
the validity of our approximation and suggest some possi-
ble extensions. Finally, Sec. VIII is a resume of the
present work.

is the "locator" and t&(i —j) is the transfer integral be-
tween site i and j, which determines the width w&. Usu-
ally it is very difficult to solve (2.2) to obtain the
configuration-dependent Green's function G.

Fortunately, many physical quantities can be derived
from the configuration average

S=(G&, (2.4)

(2.5)

vanishes on auerage:

(r) =0, (2.6)

where

which can be obtained more easily in approximate form.
Of the numerous approaches to this problem which have
been proposed over the last three decades, one of the most
successful is the single-site coherent-potential approxima-
tion (CPA) which is theoretically reasonable yet numeri-
cally manageable. The essence of this approach is to find
an average potential (or the self-energy X ), called
"coherent potential, " so that the single-site scattering ma-
trix due to residual potential c"; —X@,

II. THE BINARY SEMICONDUCTOR ALLOY F„=(o
~ &„~o) (2.7)

A. Model

The disordered system we consider is a two-band gen-
eralization of the binary-alloy model frequently used by
many authors. We take an alloy A Bj, x and 1 —x
being the concentration of A and B atoms, respectively.
Each band p (p=c, v) has its center-of-mass energy e"„or
c~z depending on the site n being of A or B type. The en-
ergy difference 6& ——c~z —c~z measures the disorder. The
band widths w& are supposed to be independent of the al-
loy composition x. Our model is characterized by the fol-
lowing six quantities: concentration x, the average gap co,
the conduction- and valence-band widths w„w„andtheir
site-energy differences (disorder) 6„6„.

In this model, the average (or "virtual-crystal" ) gap is
given by

Es'(x) =so+(6, —6, )(x ——,
'

) . (2.1)

We shall see in the following sections that there is a
strong deviation from this linear law when higher-order
effects in 6, and 6, are taken into account.

B. One-particle Green's function

where

The Green's function describing the propagation of an
electron or hole is defined as usual. For a given alloy
configuration, it obeys the equation of motion

G„(c,ik) =6;kg„(c,i, )

(2.2)

is the site-diagonal element of the Green's function.
When the condition (2.6) is used, Eq. (2.5) gives a func-
tional relation between X and S. Combining this with
the Dyson equation giving S in terms of X, one can solve
it for P and X.

C. The vertex parts

In the following sections, we shall encounter averages
of products of several Green's functions. It is important
to note that these are different from products of averages
(2.4):

(GG&~(G)(G) =aW,
( GGG)~(G)(G) (G ):—9'8 4

(2.8a)

(2.8b)

etc. For the two-particle average (2.8a), we define the ir-
reducible vertex part W& by the equation

(G„G„)=S„S+S„S„W„„(G„G),
where the second term allows for the difference between
the both sides in (2.8a). We can define higher irreducible
vertex parts in a similar way.

Velicky expresses the two-particle irreducible vertex in
terms of the average of a product of single-site t matrices:

(t~(z, )t (zp))W„„(z,,z2) = " . (2.9)
I +F&(z, )(tz(z, )t„(zq))F (zz)

We then need to calculate explicitly the average of prod-
uct of two t matrices, (t„t). When the single-site CPA
condition (2.6) is used, it turns out that

gz(e, &') = 1/(e —s";) (2.3)
(2.10)
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5 X„(z))—5„X(z2)
(2. 1 1)

Especially, in the intraband case p=v, we have

X„(z( ) —X„(zz)
(2.12)

Equations (2.11) and (2.12) tell that the two-particle
vertex part is completely determined by the one-particle
quantities (X and F). This is in accordance with the gen-
eral requirement of the gauge invariance which guarantees

I

Here the self-energies X&,X are to be measured from each
band center. Equations (2.9) and (2.10) give finally the re-
quired vertex part

the charge conservation. In fact, (2.12) seems to be a
direct manifestation of the generalized Ward identity. In
the limit of z&~zz, this reduces to the Leath formula.
We also note that Abe and Toyozawa have obtained a
formula similar to (2.11) for a model slightly different
from ours.

III. THE BETHE-SALPETER EQUATION

As is well known, exciton states are obtained as poles in
the two-particle Green's function K for the electron and
hole. ' '" We can write down the Bethe-Salpeter equation
obeyed by K for a given alloy configuration of atoms. In
the site representation (i,j,k, l;a, b, c,d =sites), it reads [see
Fig. 1(a)]

II
K' '(cc', ij, kl) =Ko '(c,ij, kl)2vr5(c c')+—i f g Ko '(c,ij,ab)u (ab, cd)KI '(c"c',cd, kl) .

a, b, c,d
(3.1)

Here

Ko '(c, ij, kl) =G, (c+co, ik)G„(c,jl) (3.2)

u (ab, cd) = U (a b)5«5~d ——w (a c)5,~5,d—, (3.3)

including the direct ( u) and exchange ( m) parts.
Equations (3.1) and (3.2) tell that, in principle, if we

is the product of one-particle Green's functions G, and
G„for the electron in the conduction band (c) and the
hole in the valence band ( U), respectively. In (3.1) we have
only taken the bare Coulomb interaction [see Fig. 1(b))

know the one-particle Green's functions for a particular
configuration, the two-particle function K for that config-
uration is completely determined. This program, unfor-
tunately, cannot usually be carried out, for the
configuration-dependent quantities lack translational sym-
metry. (However, in the Appendix, the configuration-
dependent Green's function is obtained in the special case
of the atomic limit. ) Thus one must have recourse to con-
figurationally averaged quantities, which are more easily
obtained in approximate form.

In contrast to the configuration-dependent case, the
averaged two-particle Green's function

(a) K

6+6), k

Gc Gc

K

cannot be expressed solely in terms of the averaged one-
particle Green's functions (2.4). This is because the aver-
age of Eq. (3.1) in iterated form written symbolically as

A =(G,G„)+i(G,G„uG,G„)
+i (G, G„uG,G, uG, G, )+ (3.4)

(b)

contains averages of products of 2,4,6, . . . one-particle
Green's functions, which are different from products of
averages of Green's functions (2.4), as in (2.8). When all
the vertex corrections are taken into account, (3.4) takes
the form

m =S,S„+S,S,(W+ le)m, (3.5)

FIG. 1. (a) Diagrammatic representation of the Bethe-
Salpeter equation (3.1) for an electron and hole pertinent to a
particular configuration of semiconductor alloy. The solid line
represents the one-particle Green's function for this configura-
tion. The two-particle Green's function K '(cc', ij,kl) describes
the process where the electron with energy c'+co at site k and
the hole with energy c' at site I are scattered into the electron
with energy a+co at site i and the hole with energy c at site j.
These configuration-dependent Green's functions lack transla-
tional symmetry. (b) The kernel u of the Bethe-Salpeter equa-
tion consists of the direct ( v) and the exchange ( m) parts of the
Coulomb interaction.

where W=W,
„

is the interband irreducible vertex (2.11)
and

U =u +(S,W„S,)u+u (%„W,„g„)
+(S,UWW„)+.. . (3.6)

is the Coulomb interaction modified by disorder.
and W„„areintraband vertex parts (2.12). Since the
translational symmetry is restored by averaging, it is con-
venient to employ the momentum representation. Using
the four-vector notation, P =(c., p), g =(co,q), etc. , we
write Eq. (3.5) explicitly as
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M' 2'(P, P') =A '~'(P)5 +M ~ (P) y [W'~'(P, P")+iU'~'(P, P"))A '~'(P",P')
Ptl

(3.7)

(the P" sum includes E" integration). This is an integral
equation involving four variables P =(c.,p). The impurity
scattering is elastic, and for the single-site CPA, which we
will use subsequently, W does not depend on momentum:

W'~'(P, P ) =~"(.)2~g.—') . (3.8)

Further, since we are interested in concurrent effects of
disorder and the Coulomb interaction in (3.7), we shall
neglect in (3.6) the modification of the latter due to ran-
dom potentials and take the lowest-order term, the unper-
turbed Coulomb potential:

U'~'(P, P') = u' 'i(p, p')—:v~ ~
—wq . (3.9)

The validity of these approximations will be discussed
later. With all these simplifications, (3.7) is still an in-
tegral equation involving nontrivially four variables. AI-
though it may not be impossible to solve it numerically,
we would prefer to adopt one more assumption of short-
range "Coulomb" potential

Without disorder, 9~G'~', M~K"y', W~O, and
the solution for the polarization part H ~H" ' is simply

IICfyS(
11crys( Q) 1+u',q'11',~'(Q) ' (3.10)

~here

Qp —=Up —Wq
(q) (3.11)

is the coupling constant (short-range Coulomb and ex-
change), and

IIpP'(Q) = i g G,'~'(P+Q—)G„""'(P). (3.12)

Equation (3.10) is quite similar to the Koster-Slater model
for impurities. For each q, bound states may occur at en-
ergy co for which the denominator of (3.10) vanishes:

I+upq'Ilpp'(cv, q) =0 . (3.13)

This gives the exciton of total momentum q.
On the other hand, if the Coulomb coupling is absent,

(3.7) yields

~~
Wp~'(e)

Hp(Q) = i-
2ir 1 —w' '(E)w'~'(E)

(3.14)

V p p Up COnSt

This assumption allows us to obtain an algebraic solution,
from which the absorption coefficient is calculated. For a
photon with Q =(cv, q), this is proportional to the imagi-
nary part of the polarization part

a(Q) = —i g ~I~'(P, P ) .
P, P'

a,''2'(E) = g s, (P+Q, P)s„(P).
P

(3.15)

For q=0, (3.14) reduces to the result of Abe and Toyo-
zawa.

With both disorder and the Coulomb interaction, we
can still solve (3.7). The result can be written as

H(Q)= ~p(Q)
I+u'q'H (Q)

(3.16)

in terms of (3.14). This formula is very similar to (3.10):
The effect of disorder is to replace the polarization part
IIp'y' by the averaged (IIp) = Hp. This is related to our
approximation (3.9) of truncating the series (3.6). We
shall discuss this more in detail in Sec. VII. We also note
that though the vertex function and the Coulomb interac-
tion enter in a similar way in (3.7), they appear completely
differently in the final result (3.16). This is because the
vertex function is momentum-independent and diagonal
in energy [there is no exchange in energy between the elec-
tron and hole by potential scattering, see (3.8)], while the
Coulomb interaction does not depend on energy (static in-
teraction).

IV. WEAK DISORDER CASE

=(2/w„)[z—(z' —w„')]' ', (4.1)

but not of the product of two Green's functions (3.12)
without specifying the dispersion relations for the conduc-
tion and valence bands. Here we assume, following Abe
and Toyozawa, similar dispersion in the conduction and
valence bands, which makes the p sum feasible for q =0.
The result is

II('P'(co) =(2/w)[rv —(cv —w )]'

with the absorption-band width given by

W =Wc+Wv

(4.2)

(4.3)

Using the condition (3.13), one can tell that the bound
state occurs when the coupling constant up is sufficiently
large:

In this section, we shall examine the consequences of
Sec. III in a weak disorder case, 5„5,«w„w„wherewe
can apply the perturbation theory and obtain final results
analytically. But before doing this, let us first consider
the case without disorder. The exciton state is determined
from (3.13), and one must calculate the polarization part
(3.12). We assume the Hubbard density of states ' for
both the conduction and valence bands with width w, and
w„respectively. This permits us to calculate the p sum
of a single Green's function (p=c, v)

F„'~'(z)= (0
i
G "y'(z)

i
0)

whose imaginary part is proportional to the interband op-
tical absorption coefficient, with

Qp )w/2,

where

(4.4)
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Es = DO+ w /(4uo ) —w (4.5)

Let us now go back to the disordered case. To the
second order in 5& (p=c, v), one has the Edwards formu-
la' for the self-energy of the one-particle Green's func-
tions

X„=E„+x(1 x)6—„F„, (4.6)

where Ez is the virtual crystal energy, and F„is the site-
diagonal element of the Green's function (2.7). For the
momentum-independent self-energy like (4.6), the Green's
function S can be obtained by replacing z by z —X in

G "~'. Thus, using (4.1), we have

z —X„=F„'+w„F„/4. (4.7)

Eliminating X& from (4.6) and (4.7), one obtains a quadra-
tic equation for F„,which can be easily solved. The re-
sult has the same form as (4.1) with the origin shifted by

F& and the width w„replaced by

wp =w~+2x ( 1 —x)6p/wp

The second term represents the so-called bowing. This
bowing occurring for both the conduction (p, =c) and
valence (p, = v) bands, the gap decreases by

Eb,„=2x (1—x)(5, /w, +6„/w, ) . (4.8)

This is the first correction to (2.1).
The polarization part Hp in the disordered case can be

calculated easily. The result has the same form as (4.2)
with the origin shifted by the second term of (2.1) and the
width w replaced by

Qp =Vp —LUp

is the coupling constant (3.11) at q=O. ' The binding en-

ergy (defined as the band edge minus the exciton energy)
is given by

Here the second term represents the reduction in exciton
binding due to bowing of the band edge (4.8): Owing to
(4.4), the factor in the parentheses is always positive.
Thus one can tell that the excitation follows only partially
the bowing of the absorption edge and that this makes the
exciton binding more shallow. The last term in (4.11), ef-
fective electron-hole coupling due to disorder, can be posi-
tive or negative depending on the relative sign of 6, and
6„[see(4.10)]. Two cases may occur in going from
crystal to 8 crystal: Either both the conduction and
valence bands move upward (or both downward), 6,6„&0,
or one band goes up while the other goes down, 6,6, &0.
The latter seems to be the case in most semiconductor al-
loys. Then the effective interaction term E,ff &0 deepens
the binding.

V. EXCITON IN THE COHERENT-POTENTIAL
APPROXIMATION

In order to check more quantitively the above analysis
for an arbitrary strength of disorder, we have solved the
two-particle problem formulated in Sec. III in the
coherent-potential approximation (CPA).

We use the Hubbard density of states as in Sec. IV to
calculate explicitly the one-particle Green's functions and,
with the same assumption as in Sec. IV, the two-particle
Green's function (3.15) for q=O. We show in Fig. 2 the
behavior of the interband vertex part (2.11) as a function
of c. for a given co at q=0. Its real part does not vary
much from the asymptotic value [which turn out to be
equivalent to the second-order result (4.9)] except near res-
onances in the conduction and valence bands, where W
also acquires a small imaginary part. When the denomi-
nator in (3.14) vanishes,

LU =M +LU =M +Eb --0 1

X =0.6

The condition of vanishing denominator in (3.16) gives
the exciton binding energy.

Besides the above effect due to the modification in
single-particle motion, there arises an effective correlation
between the electron and the hole because they can be
scattered simultaneously by the same impurity. The mag-
nitude of this effective interaction is the interband irredu-
cible vertex part W—:W„[Eq.(2.11)] divided by a typi-
cal width (4.3). To the lowest order in disorder, (2.11)
reduces to

W =x (1—x)6,6„, (4.9)

which then gives the correction to the exciton binding en-

ergy in disordered system

E,ff —x(1—x)5,5, /w . (4.10)

Eg ——Eg ' —Ebpw
2Qp

Eeff . (4.11)

When this term is taken into account, one has finally
the exciton binding energy in disordered solids:

Re

im o
Isa~ t

— 0. 5

0. 5—
1

-- -0.1
Re

FIG. 2. Irreducible vertex part W'"'(c. ) for a given co (taken
as co=3.03) as a function of energy c. Due to simultaneous
scattering of the electron and the hole by the same impurity,
there arises a correlation between their motions. The irreducible
vertex part W( '(c) describes this effective interaction as a func-
tion of the electron energy c+co and the hole energy c. Its real

part does not vary much from its asymptotic value x (1—x)5,6„
except at resonances due to conduction and valence bands,
where W also acquires a small imaginary part. Parameters
used are concentration x =0.6; band widths, w, =2, w, =1;
conduction-band disorder, 6, =0.5; valence-band disorder,
6, = —0.5 (solid curve), 6„=0.5 (dashed curve). All energies are
measured in the unit of valence-band width.
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I

, I
'1 --1.0
II —Im

6
Cx3

Uo

---1 0

05 (a)
virtual crystal

- 0.0

0.5

FIG. 3. Short-range exciton model in disordered semiconduc-
tors. The solid lines represent the noninteracting electron-hole
polarization part Ho, whose imaginary part is proportional to
the free-carrier optical absorption intensity. When there is a
short-range "Coulomb" interaction between the electron and the
hole, bound state (exciton) may occur, and its position is deter-
mined by the intersection of Re&o and —1/uo. The optical ab-
sorption intensity —Im& in this case is shown by the dashed
curve. Parameters used are concentration x =0.6; band widths,
m, =2, m„=1;Coulomb strength uo ——2.5; disorder, 5, =0.5,
6„=—0.5. The exciton state is infinitely sharp and a small
width of 0.005 is arbitrary added to represent it on the figure.
All energies are measured in the unit of valence-band width.

1 —W'"'(E)AO '(E)=0, (5.1)

outside the absorption band determined by the single-
particle density of states, this might introduce additional
absorption band. However, in the range of disorder pa-
rameters of interest, this is not likely to happen. We
checked it numerically, but could not determine analyti-
cally the threshold values for the parameters which make
the condition (5.1) hold.

We have carried out numerical calculation of (3.14) for
different parameter sets and then used (3.16) to determine
the exciton states. All energies are measured in the unit
of valence band width. A typical example is shown on
Fig. 3. The solid line represents Ho. The imaginary part
vanishes abruptly at well-defined edges. This lack of
"tail" states is known to be a shortcoming of the CPA.
Exciton state is obtained as the intersection of Re&o and
—1/uo. This appears outside the main band, and because
the CPA does not yield tail states there, the exciton states
have no width.

Figure 4 shows the concentration dependence of the ab-
sorption band edge, exciton peak, and its binding energy.
Two different sets of disorder parameters are taken: anti-
parallel 5, =0.5, 5, = —0.25 and parallel 5, =1,5„=0.25.
In the linear (virtual-crystal) approximation (2.1), these
two eases give identical behavior. We see in Fig. 4 that
second- and higher-order terms give considerable differ-
ence between these two cases. We also note a striking
asymmetry around x =0.5 unlike the prediction of the
second-order theory (Sec. IV). The fact that x &0.5 is
more "bowed" than x &0.5 is related to the tendency of
impurity band formation near x = 1, where atom A is
host and atom B with lower site energy behaves as an im-
purity. (Near x =0, on the contrary, the impurity band
would be formed at the upper band edge. )

Figure 4 also shows the exciton binding energy as a
function of alloy concentration x. Excitons are more
shallow in alloys, because they do not follow the bowing
of the absorption edge sufficiently. This tendency is al-
ready seen in the lowest-order theory (4.11). The stronger
the exciton binding (or the stronger the coupling uo), the
less the exciton sees the disorder and hence its absolute
position remains unaffected. (For very strong uo, the ex-
citon is pinned at the virtual-crystal exciton energy. ) This
makes the apparent binding energy reduced, since it is de-
fined as the difference in position of the absorption edge
and the exciton energy.

0.2

EB
o.f—

(b) exciton bin dinq energy
~ ~ ~ ~ To ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

/J'

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0

FIG. 4. Absorption edge and exciton energy (a) and the exci-
ton binding energy (b) as a function of concentration x. Band
width, w, =2, m, =1; Coulomb strength uo ——2. 12. Solid curve:
5, =0.5, 6, = —0.25 (antiparallel motion). Dashed curve:
5, =1, 6„=0.25 (parallel motion). These two cases give the
same virtual-crystal behavior (dotted line). All energies are mea-
sured in the unit of valence-band width.

VI. COMPARISON WITH EXPERIMENT

Let us compare our theory with experiment. Free-
exciton peaks are observed in some III-V alloys including
(In,Ga)P (Ref. 14) and (Ga,A1)As (Ref. 15). Detailed ex-
perimental results have been obtained in GaAs& P„by
Nelson, Holonyak, and Groves. ' For x =0.37, these au-
thors observe in the optical spectra two exciton peaks,
n =1 and n =2, which allow them to determine the bind-
ing energy to be 4.8 meV. In considering the appropriate
value in the virtual-crystal case, it is necessary to allow
for changes in the reduced mass and dielectric constant
with alloying. When this is done, the expected binding
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energy is 5.6 meV. The difference of 0.8 meV, 14% of
the expected binding energy, is considered to be due to
disorder.

In order to apply our theory to this material, we must
determine the site-energy differences, 6, and 6„and the
band widths, w, and ur, . The absolute position of the
valence-band edge is obtained from the ionization ener-
gies. For GaAs and GaP, these are 5.4 and 5.95 eV below
the vacuum level, respectively, ' which give 6, = —0.55
eV. Next, using the direct band-gap energies, 1.52 eV for
GaAs (Ref. 18) and 2.89 eV for GaP (Ref. 19), we obtain
6, =0.82 eV. The conduction- and valence-band widths
are somewhat difficult to determine, as we are using the
short-range disorder potential which "sees" states well
above in the conduction band and deep in the valence
band. This means we must use an effective width. One
way to do so is to assume that the observed bowing is en-
tirely due to disorder as was shown by Baldereschi and
Maschke, and then to use the second-order formula (4.8)
to determine m, and w„by imposing w, :u„=m, :I,
Taking the average masses at x =0.37 as m, =0.11rna
and m„=0.61ma, and the bowing parameter [coefficient
of x(1 —x) in (4.8)] c =0.21, ' we obtain w, =23. 1 eV
and w, =4.0 eV. Finally we must choose a value for the
electron-hole Coulomb potential ua. Again, because of
the short-range nature of the model, this is a delicate
problem. A reasonable way would be to put Ez'~'=4. 8
meV in the crystal exciton formula (4.5) to determine u0,
which gives ua ——13.8 eV. However, this value is too
close to the threshold w/2= 13.6 eV and, as is well
known, bound-state energies in the Koster-Slater-type
model are extremely sensitive to the value of the short-
range interaction when they lie very close to the edge. For
this reason, we have taken somewhat arbitrarily a slightly
larger value of u p = 14.5 eV, which corresponds to
E&~' ——56 meV.

With all these parameters, at x =0.37 we obtain the
binding energy Ez ——48 meV, which corresponds to the
reduction in binding of 14%, as is observed experimental-
ly. Incidentally, this percentage reduction changes from
35'Fo to 11'Fo when u0 is changed from 14.2 to 15.5 eV.
[Though, as we have seen, the absolute value of reduction
increases when ua is increased, the percentage decreases
because the binding energy increases faster going as
(u0 —w/2) . ] In this way, though the absolute value of
the theoretical binding energies cannot be directly com-
parable with observed binding energies (an order of mag-
nitude greater than observed), we believe our main con-
clusion, disorder-induced shallowing, is in agreement with
experiment. There is a further evidence for this: Ref. 16
reports the value of bowing parameter c =0.186 obtained
from the exciton data is much smaller than the electrore-
flectance value c =0.210. ' This might also indicate that
the exciton is shallower in alloys.

Finally, we have also calculated the exciton binding en-
ergy without the vertex correction and obtained Ez ——42
meV. Comparing this with the value including the vertex
correction, 48 meV, we can conclude that the effective
electron-hole interaction induced by simultaneous scatter-
ing from the same impurity deepens the binding. This is
in agreement with our assertion deduced from the weak-
disorder theory in Sec. IV, since 5,5„&0 for Ga(As, P).

VII. DISCUSSION

In this section we shall examine the nature of our ap-
proximation employed in Sec. III, especially the trunca-
tion of the series (3.6) by (3.9) and consider some possible
extensions. For a given configuration of impurity atoms,
the exciton state is determined in principle by the pole of
the formal solution to (A2):

U = IID(1+uDIIp) (7.1)

(UQuQIIQuQ ' ' ' )~(IID)up(Ilp)uQ (7.2)

Our approximation thus takes into account correctly the
impurity-induced correlation of two particles but not
more. In the case of the Wannier exciton, for which the
Coulomb binding is loose, the electron-hole pair en-
counters many impurities before they get Coulomb scat-
tered, and the replacement of the true pair propagator Ha
by its average ( II0) in (7.2) is justifiable.

A. Frenkel exciton limit

In the Appendix, we show explicitly that our
configuration-dependent equation (3.1) can describe the
Frenkel exciton in disordered solids if appropriate limits
are taken. The Frenkel exciton equation (A3) turns out to
be equivalent to the one-particle alloy problem (2.2). We
do not know the exact solution to the Frenkel problem
(A3) either, although the single-particle CPA gives a
reasonable approximation in this case. However, in a lim-
it of isolated atoms, we know the correct answer (A4)
which gives the average polarization part (A5). This for-
mula is different from our main result (3.16), where the
denominator contains the averaged (IID) =&~0. As we
have seen, this is closely related to our approximation
(3.9). To describe the Frenkel exciton, it is necessary to
take into account in (3.6) higher vertex corrections than
the lowest (2.11) we considered. At least for short-range
Coulomb interaction, there seems to be a reasonable hope
that the series (3.6) or (3.4) can be summed in a way simi-
lar to the diagrammatic perturbation method pioneered
by Edwards and developed by many other people.

B. Impurity-bound excitons

At low concentration, when disorder is sufficiently
strong, impurity states detached from the main band may
be formed. In our model this occurs when 6„/u„~0.5
for y=—1 —x~0. There are now two types of optical
transitions, involving the host band and the impurity
band. If these two types of transitions are sufficiently
separated, one might expect two types of excitons. How-
ever, because in (3.16) one is using the average pair propa-
gator %0, the resonance due to impurity (with intensity

This is similar to (3.10), but Il's are considered to be ma-
trices whose (i,j) element is II(co,ii,jj ), and matrix inver-
sion is implied on the right-hand side of (7.1). Our ap-
proximation (3.9) is thus seen to be equivalent to replacing
the true configurational average of (7.1) by (3.16), or

(II (1+u, lI ) ') (II )(1+u (U, ))-' .

In other words, (3.9) results in the replacement
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y «1) is wiped out by the host resonance with intensity
x=1, and there is no impurity-bound exciton. This has
been confirmed by our numerical calculation.

occurs when the hopping integral t(i —j) in (2.2) van-
ishes. Then the excitation becomes localized on atoms
and its transfer takes place via the exchange interaction w.

C. Moving exciton

Finally, we have concentrated until now on the exciton
states at zero total momentum q=o. Our formalism per-
mits us to investigate its properties at finite q if we speci-
fy explicitly the conduction- and valence-band dispersion
in order to evaluate (3.15). One of the fundamental prob-
lems here is the question of whether disorder can trap the
exciton (without impurity or other defect). This is simi-
lar to the problem of localization of an electron in disor-
dered systems. In our exciton case it is the translational
degree of freedom represented by q which is to be con-
sidered. Unfortunately since the single-particle CPA can-
not generate localization, there is no hope to obtain this in
our CPA theory. Other theories, which describe the tail
states better and emphasize localization effect, ' are re-
quired.

VIII. CONCLUSIONS

I

H(co, ij,kl)= f J K' '(ee', ij,kl) .2' 27T
(A 1)

The equation satisfied by H can be obtained by integrating
(3.1) and reads

II(co,ij, kl) = Hp(co, ij,kl)

g IIp( co,ij,ab )v ( a —b )II(co,a b, k1)
a, b

1. Equation for the polarization part

As long as the kernel u does not depend on energy, it is
possible to treat the equation for the polarization part in-
stead of dealing with the two-particle Green's function K
[Eq. (3.1)]. To do so, let us define the configuration-
dependent polarization part H in the site representation in
terms of the two-particle Green's function as

In conclusion, we have developed a systematic approxi-
mate treatment of the two-body problem in disordered
systems. To our knowledge, this is the first time that a
Bethe-Salpeter-type problem in disordered systems has
been solved starting from the solution to the one-particle
Green's functions.

+ g H(pcoij, a a)tv(a b)H(co,—bb, kl), (A2)
a, b

where Ho is the noninteracting polarization part derived
from (3.2) in a similar way to (Al). In (A2), we have also
used the explicit form (3.3).
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APPENDIX: FRENKEL EXCITON
IN DISORDERED SOLIDS

2. Frenkel exciton

When the overlap of atomic wave functions is negligi-
ble, the one-particle Green's function reduces to the loca-
tor (2.3):

G„(e,ik) =6;kg„(e,i) (p =c,v)

and Ho takes the form

Hp(co, ij,kl) =5;k5&Ivrp(co, ij ),
where

dE, dE
mp(co, ij )= g, (a+co, i)g, (cj ) .2' 2'

In this appendix, we show how the Frenkel exciton in
an alloy may be derived from (3.1). Essentially, this

In this case, (A2) takes a particularly simple form for the
site-diagonal polarization part (i =j, k =l), namely

[I+op(co, i)v(0)]H(co, i& kk)=&.k'rrp(co ')+'trp(co ') +tv(' J)H(co JJ kk)
j

(A3)

where harp(co, i) =mp(co, ii ) de—scribes the intra-atomic excitation.
Equation (A4) is very similar to (2.2)for a single electron in alloys. In fact, we only need to make a "translation" of

notation in going from (2.2) to (A3):

locator

interactor

g (e, i)

t(i —j) (transfer)

Careen's function ~ G(e,ik)

[1+vrp(co, i)v (0)] 'vrp(co, i)

tv (i —j) (exchange)

II(co,ii, kk)
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The reason for this similarity of the two-body problem to
the one-body problem is clear. The electron and hole are
so tightly bound that they are always at the same site, and
thus their relative motion is negligible. It is then neces-
sary to consider solely the translational degree of freedom,
which corresponds to the one-particle motion described by
(2.2).

5;krro(ta, t )
II(co, ii, kk) =

1+pro(ta, i)v (0)
(A4)

At this stage, we can safely average this over all configu-
rations. In our case of binary alloy, site i can be either 3
or B with probability x and 1 —x, and thus

polar coupling between them due to the exchange interac-
tion. In this case, we can trivially solve (A3) to obtain

3. Isolated atoms

As is the case for the one-electron problem (2.2), it is
not possible to obtain an exact solution II for (A3) per-
tinent to a particular configuration except for the case of
w =0, where atoms are totally separate and there is no di-

x~o(co, A)
H (cv, ii, kk ) =5;k

1+vro(tv, A)v (0)

(1 x)tro—(tv, B)
+

I +pro(ta»)v (0)
(A5)
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