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We study the electrical current transport in conductor-insulator-conductor structures, where the
charge carriers are assumed to traverse the insulating layer by tunneling. The current flow in the
conductor contacts is treated by solving self-consistently the Poisson equation and the relaxation
time form of the Boltzmann equation for an inhomogeneous electron system. The tunneling is taken
into account by the appropriate boundary conditions for the electronic distribution functions in the
two contacts. It is shown that the tunneling current density consists of two contributions, the first
of which is a direct generalization of the celebrated Landauer conductance formula into the non-

linear voltage regime. The second contribution or the correction term originates from the screening
of the electrical potential across the insulating layer and from the matching of the distribution func-
tions on the opposite sides of the barrier. In the linear voltage regime for well-conducting contacts
the tunneling current density is given by the ordinary Landauer result, but for semiconducting con-
tacts the second contribution may become comparable to the first one. Moreover, it is shown that in

the correction term the matching of the distribution functions is always negligible when compared to
the screening effect. Finally, the limits of validity of our results are discussed.

I. INTRODUCTION IE. THEORY

Today it is generally accepted that the electrical con-
ductance of the tunneling current obeys the Landauer con-
ductance formula. Since its first publication in 1957 (Ref.
1) the formula has gained widespread applications in the
studies of localization and the scaling of electrical resis-
tance in disorder systems, but, in addition, it has also been
used in the calculations of the current-voltage characteris-
tics of realistic structures in the field of the semiconduc-
tor device physics. Moreover, the initial form of the Lan-
dauer formula has later been generalized to account for
energy-dependent transmission coefficients, finite tem-
peratures, and, finally, the electron-electron interaction.
Also the validity of the formula has been the topic of
several sophisticated treatments based on the quantum
transport theory, the outcome of which generally agree
with the original result. '

From the various derivations of the Landauer formula
it is evident that the result can be exactly correct in the
linear current-voltage regime, only. In addition, Landauer
himself has on several occasions emphasized the existence
of inhomogeneities in the electron density of the contacts
near the reflecting boundary. ' The authors feel that the
exact nature and consequences of these inhomogeneities
are not entirely explored. These facts serve as the motiva-
tion for the present article, which is an attempt to give a
self-consistent description of the linear and nonlinear tun-
neling characteristics in one-dimensional electronic sys-
tems.

Figure 1 gives a qualitative picture of the nonequilibri-
um energy-band diagram of our model system in a case,
where the tunneling region is sandwiched between two
metallic contacts. Here the tunneling region extends from
z =0 to z=I., and the contacts are assumed to be suffi-
ciently long on both sides of the tunneling junction.
Moreover, the contacts are chosen to be of the same ma-
terial, which implies, that in equilibrium the charge car-
rier concentrations no and the chemical potentials po are
equal in both contacts. In Fig. 1 the electrical current
flows from the high electrical potential on the left-hand
side of the junction to the low potential on the right. Evi-
dently, even in a nonequilibrium state the electronic sys-
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FIG. 1. A qualitative energy-band diagram of the nonequili-
brium tunneling junction. 6EF (E, ) and 5EF (E, ) denote the
quasi-Fermi-level (conduction-band edge) on the left- and right-
hand side of the tunneling barrier.
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tems of the contacts are uniform far from the junction,
where the changes of the electrical potential are exactly
balanced by the variations of the quasi-Fermi-level (elec-
trochemical potential). However, near the junction our
treatment will allow for the depletion or accumulation of
electrons, although these effects have not been included in
Fig. 1. It should be noted that due to the possible changes
of the charge density near the junction the voltage drop
UT( e Uz 5E——F (L ) —5EF (0) ) across the tunneling region
is not necessarily equal to the difference of the electrostat-
ic potential b,@=4(0)—4(L ).

Consider now the distribution function of the electrons
in the contact regions, where the velocity space of the
charge carriers is treated as one-dimensional. In the
relaxation-time approximation the solution of the
Boltzmann equation for the distribution function of an in-
homogeneous electron system may be written in the path
integral form as

dtf( t) =f(to)exp —f 0 7(t' )

'"(t') & dt"
+ f dt', exp —f

Here r is the relaxation time, and f' ' stands for the local
equilibrium distribution function. ' In Eq. (1) the time
integrals are taken along the phase-space trajectories, and

to denotes the point where the initial condition for the
distribution function is specified. In order to continue the
analysis we choose the relaxation time to be of the form
r = l /

I

U I, where l is the scattering mean free path of the
electrons. Also, we use the linearized version of the trans-
port theory, which implies, that the integrals in Eq. (1) are
taken along the free-particle trajectories. ' Now, we may
express the distribution function on the left-hand side for
the electrons with positive velocities as

fL(UL)= fO—L afo
[5EF(z) +e @L(z) ]

r

af d5E

(2)

where fo stands for the uniform equilibrium distribution
and e for the unit step function. Equation (2) originates
entirely (by partial integration) from the last term of Eq.
(1) because the initial condition for the particles moving
to the right is specified at z= —oo, and thus the first
term yields no contribution to this part of the distribution
function. On the other hand, for the particles moving to
the left the initial condition is given at the boundary of
the tunneling region (z =0), whence the distribution func-
tion for the electrons with negative velocities becomes

fL( —UL)= fo—L
Lafo z/1

aE [5EF(z)+e@L(z)]+f~e'

1

af 0 0 d5EF
BE dz'

(3)

where f, is an as yet undetermined function, which depends on the velocity, only. By using the same kind of reasoning
as above, we obtain the distribution function of the electronic system on the right-hand side contact. Compared to Eqs.
(2) and (3) the only difference is that now the initial condition for the electrons with positive velocities is given at the
boundary of the tunneling junction (z=L) and for the electrons moving to the left at z= ce. Consequently the distribu-
tion function reads

fR(UR)= fO— [5E (z)+e+ (z)]+f e ' '~'+ dz' e (' ''~t e(U )dE L dz' (4)

fR( —UR)= fo— af,'
aE [5EF(z) +e 4&R (z ) ]— af," d 5''dz', e

—"' '"' e( —U ),
(3E z dz'

where f &
is again an undetermined function of the velocity, only. For the further analysis it is noted that the velocities

on the left and right contacts are related as —,
'

muL ———,
'

mud +eUT.
It is obvious that the electrons on the left-hand side at z =0 with negative velocities have just reflected from the boun-

dary of the junction or have traversed the barrier by tunneling from the right-hand side. Similarly, the electrons at z =I
with positive velocities have just been repelled by the barrier or have tunneled from the left-hand side. Now, because the
transmission probability T is a function of energy, only, and the reflection probability R = 1 —T, we may write the above
statements as

fL( —&L)
I
z=o=fL(UL)

I
z=o+ T[fR( —UR )

I z=L fL(UL)
I z=o] ~

fR(UR ) I.=L =fR( —UR )
I
z=L+ T[fL(UL )

I z=o fR( —UR )
I i=L] . —

(6a)

(6b)

Equations (6) connect the distribution functions of the electrons on the opposite sides of the tunneling region, and they
essentially express the requirement of the particle conservation in the tunneling. These relations supply the conditions
for the determination of the functions f, and f ~

. It should be noted that the relations in Eqs. (6) involve numbers in dif-
ferent parts of the distributions, and thus they do not include the step functions anymore.
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Now the electrical current density j in our system may be written in several different forms

em +~ em +~
~A%

dUL UL [fI(UL. ) fL—( UI.—) l =— dUR UR[fR(UR ) fR( UR )l

em +~
dUL, R UI. , R T[fI.(UI. )

I z=o fR( ——UR )
l z=I-] (7)

where

Ld 6EF (z, z)/
o dz

I
0

I

d I

~ 2 ~z
t

z dz' (8)

L
em +-„ufo

Jo —
A~ o

VL VL

R
em +" dfo

dVR UR

Because j must be constant throughout the system (in-
dependent of z), Eq. (8) is an integral equation for the gra-
dient of the quasi-Fermi-level in the left contact. It is
easily seen that the solution of this equation is

where A is the cross-sectional area of the tunneling junc-
tion. The last form of Eq. (7) follows from the fact that
T(E)=0, whenever E (E, (z=0)+eUT. We consider
first the electrical current density in the left-hand side
contact. By solving f &

from Eq. (6a) and substituting the
distribution functions from Eqs. (2) and (3) into the first
form of Eq. (7) we obtain

d5EFdz', e
—'-'""

00 dz'

o d5EFz/1 d I z'/I+ - z/I
OO dz'

J
2jpl

It is no surprise that the gradients of the quasi-Fermi-
levels are equal on both sides of the tunneling region, be-
cause the contacts were chosen to be made of the same
material. The surprising thing might be that the current
density equation [like Eq. (8)] does really have such a sim-
ple solution.

After the substitution of Eqs. (10) and (11) into the dis-
tribution functions, we may apply the last form Eq. (7) in
order to calculate the tunneling current density, which be-
comes

d6EF
(10)

dz 2j pl

which implies that 6EF is a linear function of z as already
anticipated in Fig. 1. Of course Fig. 1 exaggerates the
magnitude of the gradient, which at normal current densi-
ties is a small positive quantity, because jp is large and
negative. It is easily checked that the solution in Eq. (10)
also satisfies the requirement of the density conservation
in scattering f dUI (fL fL ')/r—=0. This guarantees the
consistency of our treatment with the continuity equation.
On the right-hand side we may proceed with the current
density in the same fashion. It is evident that the solution
for the gradient of the quasi-Fermi-level is now

d6EF
(11)

j=[1—,'(&TL)+&TR))] ' —— f dUR URT(fo fo)—
p

+j p ( TL ) [5EF(0 ) +e @L(0)]—jo ( TR ) [5EF(L ) +e@R(L ) ] (12)

where
L,R

1 em +~
( TI R ) = dUI R UI R T

jo +AD o ' ' BE

In Eq. (12) the last two terms include the values of the electrostatic potential energy at both boundaries of the tunneling
region, and thus the contribution of these terms to the tunneling resistance must be determined via the Poisson equation.

Since the distribution functions are known, we may directly calculate the electronic densities on the both sides of the
tunneling region

m +&
nI. ,R =

o
dUI. , R [f( UL, R ) +f( UL, R ) ] (14)

which become

nL =np+5nL np —2(fp——) 5EF(0)— z+ed&L(z) qLe'—
2jo~

nR np+5nR ——np —2(fp)——5EF(L)— (z L)+el&R(z) +—qRe
2jol

(16)
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m +- ~fo
dvg

BE

Here n p is the equilibrium carrier concentration and

L
m +- ~fo

md' o BE
dUL

m +~ L
qi. „=+(fo)+ f dvt, ~ T fo-

jp

Kgb'

p

ufol. t ~foL
5EF(0)+e@1(0)

BE 2jp BE

J ~fofo+— 5EF (L)+e@g(L)BE 2jp BE
(18)

Now the solutions of the Poisson equation for the carrier concentrations in Eqs. (15) and (16) are relatively simple, and
after little algebra we obtain

2 2leq
4L ——ALe '— e + z

e+2e2I2(fo ) 2jole
5EF (0)

(19)

—A.(z L)+ — ~ —(z L)/l+ J —
( L )

elq
e+2e'I'( fo ) 2jole

5'(L)

where e is the permittivity of the contact lattice, A, =2e
~
(fo )

~
Ie, and Ar and 8~ are constants, which must be deter-

mined from the boundary conditions. Of course, the requirement that the carrier concentrations must be uniform far
from the tunneling junction excludes the second, linearly independent solution of the homogeneous equation from @L
and N~. Further, the solution of the Poisson equation within the barrier, which is here assumed to be electrically neu-
tral, is simply NT ——ATz+BT, where again AT and BT are constants. The boundary conditions for the electrostatic po-
tential state that the potential and the electric displacement vector must be continuous across the boundaries at z =0 and
z =L." These conditions lead to the expressions for the constants AL, AT, BT, and Bz, namely,

1
AL ——

eA.L +2eT
eLj

2jple
—~T UT+

(1 —kl )(1+A, l )

ET l+L+
E kE

~T Al —1
(21)

1 ej
&

ei q~+qi.T=
eAL+2eT jple 1+El

—eA, Ur—

1
BT——

eAL+2eT
eLj 5EF (0)—eA,L

2jple e [5EF (0)+5EF(L)]+ ql. L +
e 1+El eA,

ET—qz (23)

1B
ekL +2m T

Lej le &T 1 —A l
2joel (1—A, l )(1+A, l ) e

&T &T—q~ L+ l+
E 6A,

(24)

(25a)

(25b)

where

where eT denotes the permittivity of the tunneling region.
Now, when the potential functions are known, we may proceed to calculate the quantities X=5EF(0)+e@l(0) and

Y=5EF(L)+e@z(L). Since qL, and q~ depend on X and Y, we finally end up with a pair of equations

X=X(b ( TR ) —a ( TL ) ) + Y(a ( TL ) b( T~ ) ) +aa —13b —c, —
Y=X(a(Tz ) b(TL ) )+ Y(b(TL )——a(T+ ))+ab f3a+c, —

1 le

eAL+2ez- (1+A, ,l)ek

1 le eTb=
eAL+2ez- (1+XI)ek

e eLjC= ~T UT+6L+2eT 2jple

(26a)

(26b)

(26c)

[(fo)——,((T )+(T ))]+ f d T(fo fo"), —
Jo ~HA

P=+[(fo)——,'((TR )+(T„))]+ f dv~T(fo fo ), —
jo

(26d)

(26e)
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m +~ afo
dvk T, k,p =L,R .

~A% aE
(26f)

In Eq. (26f) both k and p can independently take the values R and L. With these notations the solutions of Eqs. (25)
read

aa bP—c+—(a —b )(a(Tz ) —P(TL ))+c(a+b)((T~ ) —(Tz))
5EF(0)+e@L(0)=

1+a ( ( TL ) + ( T~ ) ) b( (—T~ ) + ( TL ) ) + (a b)—( ( T~ ) ( T~ ) —( TR ) ( TL ) )

ah f3a +—c + (a b)(—a ( Tz ) —/3( TL ) ) c(a—+b ) ( ( TL ) —( Tz ) )
5EF(L)+e@~(L)=

1+a ( ( TL ) + ( T~ ) ) b( ( —Tz ) + ( TL ) ) + (a —b )( ( Tz ) ( TL ) —( Tz ) ( TL ) )

(27a)

(27b)

and, in order to obtain the exact current voltage charac-
teristics of the tunneling junction, we must substitute Eqs.
(27) into Eq. (12), which then gives our final result for the
tunneling current density.

III. DISCUSSION

In our treatment of the current density in the tunneling

junction we have closely followed the idea that in the
resistivity problem the current flow is the causal agent
and the voltage drop and the inhomogeneities of the car-
rier density develop from the continuous flow against ob-

stacles. In the transport theory this approach was origi-
nally established by Landauer. The viewpoint clearly em-

phasizes the duality of the electric field and current,
which is well known in the circuit theory, but it also lays
stress on the operational realization of the four-point
resistivity measurement, where the outer contacts are used
to drive the current through the sample and the inner

probes measure the voltage drop between any two points
within the sample.

By looking at the result for the tunneling current densi-

ty in Eq. (12) it is noted that the first term on the right-
hand side is the direct generalization of the celebrated
Landauer conductance formula into the regime of non-

linear current-voltage characteristics. This fact is easily
seen by taking the linear term in the voltage across the
barrier from our result and comparing it with the linear
formula as expressed for instance in Ref. 2. The addition-
al correction terms on the right-hand side of Eq. (12) give
the contribution of the charge inhomogeneities of the con-
tact regions to the tunneling current density. Clearly, if
the electronic systems of the contacts were homogeneous,
the contribution of these terms would be exactly zero, be-
cause 5EF+e@ equals the change of the chemical poten-
tial 5p. Also in the homogeneous case the voltage across
the tunneling barrier would be the same as the difference
of the electrostatic potential &b(0) —C&(L). By Eqs. (19)
and (20) it is evident that the charge accumulation or de-
pletion near the tunneling region originates from the
screening of the electric field inside the barrier and from
the need to match the parts of the electronic distribution
functions on the opposite sides of the tunneling barrier.
The latter process requires a spatial distance of a few
mean free paths, and this is also in principle the space oc-
cupied by the charge inhomogeneities, because the screen-

ing length is generally much shorter than the mean free
path.

In order to obtain a more transparent view of the
correction term in Eq. (12), we must consider the relative
magnitudes of the various terms in Eqs. (27). Although
our result is exactly correct in the one-dimensional veloci-
ty space only, it is obvious that the physics of the problem
will remain essentially unchanged if the calculation is car-
ried out in the three-dimensional velocity space. ' Con-
sequently, when considering the magnitudes in our results,
we will use for the corresponding quantities the typical
values of the three-dimensional velocity space, namely:
L =SO A, I= SOO A, @=co, . . . , 10eo, eT ——2eo and
no-10 ' cm, which implies that X '=LD-1 A and
po-4 eV. Then the denominator in Eqs. (27) is to a very
good approximation equal to unity. Moreover, it is found
that in the numerators of Eqs. (27) c is always the dom-
inant term. Thus, we have 5EF(0) + e@L(0)= 5EF(L)—
—e N~ ( L ) = —c, which is exactly the result that we would
have obtained if we had set qL ——qR ——0 in Eqs. (15) and
(16). This is to indicate that the charge inhomogenities
are essentially created by the screening effect, and the
matching of the distribution functions gives a negligible
contribution.

In order to continue the analysis we note that the mag-
nitude of c is, in general, determined by em T UT/
(eAL+2eT), which is a positive quantity. Then

5pL (0)=5EF(0) + e@L (0) is negative, whereas 5@~(L) is
positive, which implies that on the right-hand side we
have the accumulation of the electrons and the
conduction-band edge E, bends downwards near the tun-
neling barrier. On the other hand, on the left we have the
depletion of the charge carriers and the conduction-band
edge bends upwards near the point z =0. Consequently,
there is a narrow sheet of positive charge near z =0 and of
negative charge near z =L, which serve as the source and
the sink of the high electric field within the tunneling re-
gion. Now, it is evident, that the general picture of the
charge inhomogeneities and the band diagram in our re-
sult is in accord with the earlier discussion by Lan-
dauer. '

If we keep the approximation, that qL ——qz ——0, the
correction terms in Eq. (12) may simply be written as
—joc((Tz)+(TL)). Now, because jo is negative and
the expectation values of the transmission coefficient are
positive, it is evident that the correction terms tend to in-
crease the tunneling current and, even in the linear voltage
regime, the correction is nonvanishing. Clearly, in the
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linear theory the energy integrals of the first term and the
correction become identical, and the only difference be-
tween the terms is that the first term is multiplied by eUT
and the correction by 2c. For well-conducting contact
materials (metals and degenerate semiconductors) the
screening length is nearly always much shorter than the
tunneling barrier, whence the first term in Eq. (12) gives
the dominant contribution to the tunneling current densi-
ty, which is the original result by Landauer. Also in this
case 5+ and UT are almost equal. On the other hand, in
nondegenerate semiconductors the screening lengths may
be quite large. For instance no-10' cm implies that
at the room temperature LD-400 A, which certainly
exceeds the width of any tunneling barrier. Thus, if
LD &&L, in the linear theory the correction becomes also
proportional to eUT, and the tunneling current density is
twice the original Landauer result. Then also AN is much
smaller than UT, and the charge inhomogeneities on both
sides of the barrier extend deep into the contact regions.
In passing it should be noted that our expression on the
division of the change of the electrostatic potential across
the tunneling barrier and the depletion and accumulation
layers is a slight generalization of the old result by Ku
and Ullman, who studied the capacitance of thin, noncon-
ducting dielectric films. '

It is obvious, that the linearized treatment of the
Boltzmann equation in the contract regions prevents our
expressions from being completely general semiclassical
results, because the linear theory requires small inhomo-
geneities and weak electric fields to give a correct picture
about the transport processes. In our case this means that
the accumulation and depletion of charge near the tunnel-
ing barrier and the electric fields within the contacts must
remain small, but it does not exclude the possibility that

the voltage across the barrier UT may be large enough to
cause nonlinear current-voltage characteristics. Usually,
the major part of the applied voltage drops across the tun-
neling region, and thus, at normal voltages, the electric
fields in the contact tend to be moderate. Then the actual
requirement for the validity of our results is that charge
inhomogeneities near the tunneling junction do not grow
large, i.e., the screening effect inside the contacts must be
sufficiently strong. Of course, this is equivalent to the
statement that UT-AN or that the capacitance of the
system is determined by the properties of the insulating
layer. However, in the case, that the results are linear in
UT, the strength of screening does not effect the validity,
and the expressions remain as explained in the previous
paragraph.

Finally, as to the resistance of the total system (contacts
and tunneling barrier), it is evident by Eqs. (10) and (11),
that the charge inhomogeneities do not affect the resistivi-
ty of the contact materials, but the voltage drop across the
contacts is directly proportional to the thickness of the
contact layers. Consequently, the total resistance is equal
to the conventional resistance of the contacts plus the tun-
neling resistance given by the generalized Landauer for-
mula in Eq. (12).

In conclusion we have self-consistently derived the non-
linear current voltage characteristics for an arbitrary tun-
neling barrier. A particular emphasis has been put on the
appropriate treatment of the electric transport and the
charge inhomogeneities within the contact materials. The
outcome of our theory shows that the charge carrier accu-
mulation and depletion near the barrier is an essential
feature of tunneling systems, and on certain occasions the
charge inhomogeneities really have a relevant impact on
the magnitude of the tunneling current density.
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