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Earlier theories of the quantum Hall effect depend on boundary conditions (cylindrical, toroidal,
etc.) which are very different from that of the experimental devices (essentially striplike). To remove
this discrepancy, we show that the Hall conductivity has an exponential locality property whenever
the Fermi energy lies between the levels of the bulk extended states, and that this is true in spite of
the edge states at the Fermi energy. We describe in detail how this locality property can be used to
adapt the gauge-symmetry argument of Laughlin and the topological-invariant approach of Niu,
Thouless, and Wu to conditions that are much closer to real experimental ones. The resulting con-
clusion is that the boundary correction to the quantization of the Hall conductance is exponentially
small when the system size is large compared with a microscopic length (typically the magnetic
length).

I. INTRODUCTION

SOURCE DRAIN

FIG. 1. Illustration of a typical device (strip geometry) used
to make a four-terminal measurement of the @HE. The mag-
netic field is in the normal direction. A current I is passed
through the strip. Between a and b the Hall voltage is mea-
sured and between a and c the longitudinal voltage is measured.

For the most part the theory of the integer quantum
Hall effect' (QHE) is well understood, and there is no
mystery about why the Hall conductance is a multiple of
e /h with such high accuracy. On the other hand there
seems to be a gap between the theoretical derivations of
the QHE and the experimental measurements, in that the
theories seem, for the most part, to rely on special forms
of boundary conditions which do not correspond to the
actual conditions used in experiments. In this paper we
examine these boundary conditions more closely and show
how the gaps between theory and experiment can be
closed.

Figure 1 illustrates a typical device used to make a
four-terminal measurement of the Hall voltage for an in-

version layer in a strong magnetic field. A strip of inver-
sion layer [essentially a two-dimensional (2D) electron
layer] is connected to a source and a drain (three dimen-
sional) at the two ends. A strong and nearly uniform
magnetic field is applied in the direction normal to the in-

version layer. A current I is passed through the strip. A
pair of voltage probes on opposite sides of the strip, also
part of the inversion layer, allow the voltage VH across
the strip to be measured with a voltmeter attached to the
probes. A second pair of probes further along the side en-
ables the longitudinal component of the resistance to be
measured simultaneously. The Hall conductance is

~a =I~V~ .

This is found to be quantized in multiples (integer for the
integer QHE, exact fractions with quite small denomina-
tors for the fractional QHE) of e /h whenever the longi-
tudinal component of the resistance vanishes. Energy dis-
sipation does occur near the ends of the strip, and, for the
plateaus of the QHE, the voltage drop measured in a
two-terminal measurement is very close to VH, as can be
seen from the arguments of Kawaji. It is, however, an
experimental fact that the disturbance of the two ends has
little influence on the high precision of the measured
quantization of o.H, so long as the strip is long enough.
This immediately suggests that the Hall conductivity has
a locality property.

Theoretical analyses are all agreed that there should be
a precise quantization of the Hall conductance at suffi-
ciently low temperatures whenever the Fermi energy lies
in a gap of the density of states, or in an energy region
where there are electron states, but these are all localized.
Such an energy gap or mobility gap will be signaled by the
vanishing of the longitudinal component of resistance (or,
equivalently, of the longitudinal component of conduc-
tance). Deri'vations of this quantization are, however,
based on geometries very different from typical experi-
mental situations. For example, the very important argu-
ment of Laughlin is based on a cylindrical geometry for
the device, with the current flowing round the cylinder.
Niu et al. assumed that the device was a torus. Halpe-
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rin gave a modified version of Laughlin's argument in
which an annulus was used, and particular attention was
paid to the currents flowing round the circles bounding
the annulus. There is also a set of arguments based on
perturbation theory which show that in the bulk two-
dimensional system the two-dimensional conductivity, the
ratio of the current per unit length to the transverse elec-
tric field, is quantized, and is undisturbed by perturba-
tions due to disorder or interactions; integration of this re-
lation leads to the conclusion that the Hall conductance is
indeed quantized away from the edges. All these argu-
ments use boundary conditions that are very different
from those used in real systems.

The key observation is that, when the Fermi energy is
in a mobility gap, the conductivity, which is purely trans-
verse, depends only on the local environment, up to ex-
ponentially small terms. The locality property of the
transverse conductivity o.„„can best be analyzed through
the Kubo formula expressed in terms of Green func-
tions. * The conductivity is expressed as an integral over
the energy parameter of the Green function taken round a
contour in the complex plane which cuts the real axis only
at the Fermi energy and at some energy below the spec-
trum of the system. If the Fermi energy is in a mobility
gap then the Green function is an exponentially decreas-
ing function of distance for all values of the energy on the
contour of integration. We have used this property in ear-
lier work both to show that there are no perturbative
corrections to the Hall conductance to any power of the
electric field, ' and to justify averaging over generalized
periodic boundary conditions.

On a strip geometry, there are states which damp ex-
ponentially away from the edges, but are extended along
the edges. The energies of these edge states fill the gap or
mobility gap between the levels of the extended states in
the bulk. We are thus forced to consider the effects of the
edge states on the long-distance behavior of the Green
function. Our main result is that the Green function
behaves in a semilocal manner when its two position vari-
ables are confined in a narrow region along an edge, that
is, it is only extended in one direction along the edge, but
is exponentially localized in the other direction. Since the
Kubo formula involves a product of two or three (depend-
ing on the specific expression) Green functions, a full ex-
ponential locality of the Hall conductivity is then ensured.

As we will show in the text, the locality of the Hall
conductivity, together with a current conservation law,
leads to an important conclusion about the finite-size
correction to the quantization of the Hall conductance.
Under quite general conditions, the correction will be ex-
ponentially small when the linear size of the system is
large compared with a microscopic length which is typi-
cally the magnetic length. This estimate gives a much
smaller bound to the correction than those given earlier. "

In Sec. II we present a detailed calculation of the Green
function for a free-electron system in a long strip bounded
by two edges. In Sec. III we derive a version of the Kubo
formula which is particularly suitable for the locality
analysis. At the end of this section, a primary argument
to justify the use of the cylinder geometry is also given.
In Sec. IV we use an argument of adiabatic charge trans-

port to justify the use of the torus geometry. In Sec. V,
we describe in detail how Laughlin's argument can be
adapted to conditions that are much closer to real experi-
mental conditions. In Sec. VI we examine the expression
for the Hall conductance as a topological invariant ' '
and show how this is also applicable under conditions
more realistic than those used in earlier discussions. For
the most part we restrict the discussion to the integer
QHE, but where the argument can be extended to cover
the fractional QHE we mention the fact.

II. THE SEMILOCALITY
OF THE GREEN FUNCTION

Consider a 2D free-electron gas on a strip under a uni-
form magnetic field B=Bz in the normal direction of the
surface. The strip is assumed to be infinitely long in the y
direction and to have edges along x =0 and x =L . It is
convenient to use the Landau gauge A=(O, Bx,O) so that
the Schrodinger equation has the separable form

2
B 1

2+2m Bx2 2m
B—iA +eBx

By
P(x,y)

= Eg(x,y), (2)

which is to be solved under the boundary conditions

P(x =0)=g(x =L„)=0 . (3)

The wave functions can be written in the product form
e '"«g„(x,k), where f„( kx) is an eigenstate of the one-
dimensional (1D) problem

d2
2

+v+ —, ——,(k —x) P(x, k)=0 .
dx

(4)

where g is the Green function of the homogeneous equa-
tion (4). In the rest of this section we will concentrate our
attention on the edge along x =0, and forget about the
other by formally taking L„~+oo. The reduced Green
function g then satisfies the following boundary condi-
tions:

g(O, x', v, k) =0, g(+ oo,x';v, k) =0 for x' & 0 .

As a 1D problem, we can write for ~v0, 1,2, 3. . . (away
from the bulk Landau levels)

g(x,x';v, k)= [D (x —k)f(x', k)0(x —x')
W

+f(x,k)D (x' —k)8(x' —x)], (7)

In the last equation we have used v'A/2eB as the length
scale in the x direction and V'2'/eB in the y direction,
and have expressed E as (v+ —, )(fieB/m ).

The Green function in the spectral representation is

P„(x,k)P„(x',k)
G(r, r', z) = e'" «

n=0 n

«'g(x, x', v, k ),dk
2'7T
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The function D„(x) is called the parabolic cylinder func-
tion in the literature of mathematical physics, and some
of its important properties are listed in the Appendix.

To be explicit, let us assume x & x' & 0, then we have

g(x, x', v, k)

D„(x —k)D, (k —x')

2D (0)D„'(0)

D (x k)D (x—' k)D„(k—)

2D (0)D'(0) D„(—k)
(9)

The first term on the right-hand side of the above equa-
tion is the reduced Green function in the absence of the
boundary, and when inserted in the expression (5), pro-
duces a Gaussian-like localized behavior of G(r, r', z) in
the separation (r—r ) in all directions. Thus, if there is an
extended behavior of G (r, r';t) it must come from the con-
tribution of the second term which is induced by the
boundary condition at x =0. It is therefore sufficient to
consider the following object:

,
D (x —k)D (x' —k)D (k)

(10)

First, consider the case that v is real negative or v is
away from the real axis of the energy plane. Then
D ( —k) has no zero in a finite strip, It„parallel to the
real axis in the complex k plane. Since D (k) is analytic
in the k plane (excluding oo), the integrand in Eq. (10) is
analytic in the strip II, . Within Ij„ the function D (k)
has the following asymptotic behavior:

k e " '" as Re(k)~+ ao,

k 'e" '" as Re(k) —+ —co,

so that the integrand in (10) behaves (in absolute value) as

—
~ & &2~1&

I
~&+&'& (12)

for fixed x and x' (which are positive). Thus, we can re-
place the contour of integration of (10) by a line below or
above the real axis to make b.(r, r', v) an apparent localized
function of y —y'. The localization of b, in (y —y') is
therefore exponential.

Now suppose v is real positive and is between two bulk
Landau levels n and n+1. In this case, the function
D ( —k) has n +1 zeros on the real axis of the k plane,
corresponding to the n+1 edge states at energy v. We
denote these zeros as kj, j=0, 1,2, . . . , n. If we add to v

an infinitesimal imaginary part ie, then these zeros be-
come

where D (x) is the solution of Eq. (4) (with k =0) that
vanishes as x~+ ao. The function 0(x) in Eq. (7) is just
the unit step function, while the other functions are given
in terms of D„(x) by

f (x,k) =D,(k)D (x —k) D( ——k)D„(k —x),
W= —2D, ( —k)D (0)D' (0) .

ak,
kj + lE (13)

Since the energy levels decrease as k increases [see Eq.
(4)], the derivative is real negative. Thus, when e is posi-
tive the zeros move just below the real axis. From the an-
alytic property of D ( —k) there is no other zero in a fi-
nite strip II, parallel to the real axis. The asymptotic
behavior of b(r, r', v+ie) as a function of (y —y') can be
readily found as follows.

Let us fix e&0. For y —y'&0 we replace the contour
of integration in (10) by a line which is a finite distance
above the real axis (but still within It, ). The new integral
equals the original one because there are no poles of the
integrand in the region between the new and the old con-
tour, and because the asymptotic behavior of the in-
tegrand still holds as in Eq. (12). It is therefore clear that
b, (r, r';v+ie) is exponentially small for y «y', for k has
a finite positive imaginary part along the new contour. In
the other case, y —y' &0, we replace the contour of in-
tegration in (10) by a line below the real axis. The integral
along the new contour gives an exponentially small contri-
bution to b(r, r'v+ie) for y »y'. In addition to this, we
must consider now the contributions from the poles of the
integrand [the zeros of D„(—k)]. The contributions from
the poles are plane waves in (y —y'), which make
b.(r, r';v+ie) extended for y »y'.

Thus, the retarded Green function G+(r, r';z) for z be-
tween two bulk Landau levels behaves quite differently
for y «y' and y »y'. In the former case it is exponen-
tially small, while in the latter case it is plane-wave-like.
This particular behavior of the Green function can in fact
be intuitively understood from the following classical pic-
ture. A classical electron circles around anticlockwise in
the x —y plane under a magnetic field in the z direction.
When its orbit hits the wall at x =0, the electron bounces
and travels to the positive y direction along the edge. It is
this one way traveling behavior of the electron that makes
the Green function a semilocalized function of y —y'.

The advanced Green function G also has the semilo-
cality property but in the opposite sense. It is localized
for y »y' and extended for y «y'. This is not surpris-
ing, for changing e from positive to negative effectively
reverses the time.

So far we have only considered the behavior of the
Green function in the y direction (along the edge). The
behavior in the x direction can also be studied through the
integral in Eq. (10), with the properties of the parabolic
cylinder function D (k). The results are quite simple.
For z between two bulk Landau levels, the Green function
(either retarded or advanced) is an exponentially localized
function of the separation

~

x —x '
~

.
Before closing this section, we would like to make some

remarks about the results obtained so far. First, the local-
ization lengths in the behavior of the Green functions
should be of order unity in the dimensionless variables, if
the energy z is not very close to the bulk Landau levels.
When we put the length scales back into the equations, we
should find that the localization lengths are of order of
the magnetic length VAleB. Second, we expect that the
general features of the Green functions should hold in the
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presence of a disordered potential. One primary reason
for this is that the nature of the spectrum for the extended
states including the extended edge states are quite the
same with or without disorder. ' With disorder, the lo-
calization length may however be different from the mag-
netic length.

III. LOCALITY OF THE HALL CONDUCTIVITY

The Kubo formula for the Hall conductivity has been
the basis for many theories of the quantum Hall effect.
In the following we give a brief derivation of this formula
in a form which is particularly suitable for the analysis of
its locality. The arguments used in the derivation can be
largely found from a paper of Streda and Smrcka. '

In the limit of linear response, a uniform electric field
E in the x direction produces a perturbation p& to the den-

sity matrix, given by

pi —— ieE —dt e "e ' '[x,pp]e' (14)
0

where pp is the unperturbed density matrix (namely the
Fermi-Dirac distribution operator), and e is a positive in-
finitesimal. The y component of the electric current den-

sity at r=ro is then given by

Jy(rp) =ie2E dt e "Tr(jye ' '[x,Pp]e' '), (15)
0

where j„ is the current density operator given in terms of
the velocity operator V~ by

j» = —,
'
[ V»5(r —rp)+5(r —rp) Vy] .

The Hall conductivity at ro is simply

oH(rp) =ie f dt e "Tr(j e 'H'[x, pp]e'H') .

(16)

(17)

Now we can expand the trace operation in the energy
eigenspace and carry out the time integration to yield

2 (Jy )mn+nm
oK(rp) e y pp(E ) . +c c.

Em —E.+~~

dgpo '9

X g5(g —E ) . +c.c.(Jy )mn+nm

g+i e —E„

G —(i))=
g+i e —H (19)

and the formal relation

5(g H) = (G—+ —G ),
2m

(20)

we can rewrite Eq. (18) as

(18)

where pp(g) is now the Fermi-Dirac distribution function.
Using the definition of the Green functions

oH(rp) = f driPp(g) Tr[(G+ —G )(jy G+x+xG jy)]

f dgpp(g) Tr(G+j»G+x —G xG jy)

—2

f dppp(p) f dry'Tr[G+(i)')j G+(g')x —G (71')j G (il')x] . (21)

The integral over g in the last expression can be turned into a contour integral in the complex energy plane with the re-
sult

oH(rp)= f di) pp(g) f dz Tr[G(z)j»G(z)x]

&e f dgpp(g) f dz f f drdr'G(r, r', z)j»G(r', r;z)x, (22)

where in the last step the double coordinate integration
represents the trace operation and the current density
operator j~ acts on the r' variable of the second Green
function. The contour C(i)) in the energy integration of
(22) is now in the complex energy plane surrounding the
energy spectrum below g, with the infinitesimal segment
(g i@,ran+i e)—being omitted.

Equation (22) is the Kubo formula that has the desired
form for the locality analysis. At low enough temperature
(k&T « fico, ), the quantity pp(7J) is highly peaked about
the chemical potential which we assume to lie between
two bulk Landau levels or the levels of extended states in
the bulk. In the absence of boundaries, the contour C(g)
is away from the spectrum of extended states, so that the

!

Green functions are exponentially localized in the separa-
tion

~

r —r'
~

. Because of the 5 function 5(r' —rp) con-
tained in the operator j», the contribution to a H ( rp) only
comes from a neighborhood of ro. This neighborhood has
a typical linear scale of a magnetic length, corresponding
to the localization length of the Green functions. Now,
suppose our system is in a strip bounded by two parallel
edges. In this case, the contour C(g) can come close to
the spectrum of the edge states near the Fermi energy.
These edge states are extended along the edges, which
make the Green functions also extended along the edges.
According to the analysis of the previous sections, the ex-
tendedness of the Green functions is, however, only in one
way near each edge. Together with the fact that the
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Green functions are still localized in the direction perpen-
dicular to the edges, it is now easy to see that the product
G(r, r', z)j&G(r', r,z) is in fact localized in all directions in
the separation (r —r'). Again, because of the 5 function
contained in the operator j„, the contribution to o.~(ro)
only comes from a small neighborhood of rp. This corn-
pletes our locality analysis of the Hall conductivity.

In the usual experiments of the quantum Hall effect,
the Hall voltage is measured across a section (say, at
y =yo) in the middle of the strip (see Fig. I). The Hall
conductance can thus be expressed by

L

o+(yo ) = dx0~~(ro)L
(23)

where L„ is the width of the strip at yp. All the compli-
cations due to the two ends, where the strip is connected
to the source and the drain, die out exponentially at yp if
the ends are sufficiently far away from the voltage probes.
This explains why the Hall conductance can be so accu-
rately determined in spite of the shorting effect at the two
ends.

Owing to the exponential locality of the Hall conduc-
tivity, we can use whatever boundary conditions at the
two ends which is convenient for a theoretical analysis.
In particular, we can use a periodic boundary condition
which joins the two ends making the strip into a cylinder.
If this is done, the Hall conductance can be related to the
coherent response of the extended states with respect to
the change of a magnetic flux through the center of the
cylinder as was done by Laughlin. The gauge symmetry
of the system then leads to the quantization of the Hall
conductance averaged over a flux quantum. At this step,
one can see very clearly the important role played by the
locality of the Hall conductivity in establishing the
relevance of Laughlin's theory to the experiments.

The average procedure over the flux quantum was not
justified in Laughlin's paper. In a paper of Niu et al. ,
an argument is given that explains why the Hall conduc-
tance can be replaced by its average. The theoretical basis
of this argument is again the locality of the Hall conduc-
tivity, although the effect of the edge states (which is now
shown to be harmless) was not taken into account by us.

In Sec. V we will give a more detailed analysis of
Laughlin's theory.

where P~(yo) is defined in Eq. (23), and xo may be taken
as L„/2. Later we will give an expression for C(xo),
from which we can show that C(xo) has exponentially
small contributions from the region

~

x —xo
~

&&1, where 1

is the magnetic length. Thus, if L ~~I, then we can
change the boundary conditions at x =0 and x =L with
exponentially small error introduced into C(xo) and hence
into o~(yo) by Eq. (24). In particular, we can use a
periodic boundary condition which joins the edges of the
cylinder together to form a torus. Thus, if we can prove
Eq. (24) and establish the exponential locality of C(xo),
then we can justify the use of the torus geometry.

Let us first derive a formula for C(xo) to show its lo-
cality. Through the dependence on the flux, the Hamil-
tonian varies adiabatically in time. To the first order in P,
the perturbation p~ to the density matrix is determined by
the equation of motion

l kpo+ [p),H] + 1 ep) =0, (25)

(m
~

n )po(E„)+ (m
~

ri )po(E )
(p)) „=i%

n
— m+&&

where we have used the identity

( m
~ p O~n ) = —(m

~

n )pp(E ) —(m
~

ri )pp( E ),

(26)

(27)

because pp is diagonal in the basis of the eigenstates. The
induced current through the circle at x =xp is given by
the trace of the product of p] and the current operator
i„:—( —e!2)[V„6(x —xo)+5(x —xo) V„], that is

i'[(m
~

n )po(E„)+(m jri )po(E~ )]I„(xo)= (i„)„E„—E +i@

=i A 1 dgpo(ri) +5(ri E„)((ri
~

6 i„~ n )—

—(n ~i„G+ ~ri )) .

where pp is the time derivative of the instantaneous densi-
ty matrix corresponding to the Fermi-Dirac distribution
at fixed flux, and e is an positive infinitesimal. Taking
the matrix element of Eq. (25) between two orthonormal
instantaneous eigenstates of the Hamiltonian, we obtain

IV. THE TORUS GEOMETRY

It is convenient to start with the cylinder geometry, the
use of which has primarily been justified in Sec. III. Let
us continue to use (x,y) as the coordinates for the cylinder
surface, where x is confined into the interval [O, L„]while

y and y +L~ are identified as the same. Suppose we have
a magnetic flux through the center of the cylinder. We
denote C(xo,g) as the induced charge transport through
the circle at x =xp when this flux is increased adiabati-
cally from zero to P. Following Laughlin's idea we equate
the Hall conductance with the flux derivative of the adia-
batic charge transport,

(24)

The adiabatic time derivative of an eigenstate can be writ-
ten as

P„~ri )= P„H ~n)E„—H

,
' [G+(E„)+G (E„—)]H

~

n ), (29)

where P„ is the operator that projects off the state
~

n ).
Using the above result and the formal relation (20), Eq.
(28) can be rewritten as
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I„(xo)= f dry po(q) Tr[i„G+(6++6 )H(6+ —6 )+c.c.]4~

dn p n Tr E 6+@+HO+ +6—~g —
Q

—+ 6+~G—
4~ an

where in the last step we have used the following identities:

a[G+,G ]=0, GHG=G, GG= — G .

(30)

(31)

The Hamiltonian depends on time through the y component of the canonical momentum which contains an additional
term of ep/L». As a result of this, we have H =epV»/L». The charge transport C(xo, p) is just the time integral of
I„(xo), so that the quantity C(xo) as defined in Eq. (24) is given by

r

C(xo)= f dripo(ri) Tr i„G+G+V»6++G V»6 6 + (G+ V 6 )4~I.y an
(32)

where everything is now evaluated at /=0. To reveal the locality of C(xo), we integrate the right-hand side of the above

equation by parts to get the result

C(xo) = f dqpo(ri) Tr(i G+ V»G )+ f dpi'Tr[i (G+6+ V»G++G V»G G )]
4~Ly 00

(33)

At low enough temperature (k~T &&fun, ), p'(q) is highly

peaked about the chemical potential which lies between
the levels of the extended states in the bulk. For each
term in the integral over n', the contour of integration can
be deformed into the complex energy plane, so that the
only place that n' is close to the spectrum is at the Fermi
energy. The Green functions are then exponentially local
functions of the separation in the x directions as were
shown in Sec. II. As a result of the locality of the Careen

functions and the 5 functions 5(x —xo) contained in the
operator i„, the quantity C(xo) has exponentially small
contributions from the region

~

x —xo
~

&&l, where l is
the magnetic length.

Having shown the locality of C(xo), we now proceed to
establish the identity

oH (yo ) =C(xo»

which was stated in Eq. (24) and is given here for conveni-
ence. Since the two sides of the above equation depend on
different variables, we must show that C(xo) is indepen-
dent of xo and that oH(yo) is independent of yo. The
reason for the constancy of C(xo) can be found from the
current conservation law. It is important to notice that
we only need the adiabatic current I„(xo) in a vanishingly
small neighborhood of the flux to evaluate the quantity
C(xq). In this neighborhood the effect of charge accumu-
lation or decumulation due to the edges can be neglected.
The reason for the constancy of oH(yo) can be found in a
similar way. We are thus left to show the identity (34)
when both sides are averaged over the position variables.

From a simple electrodynamic argument, the adiabatic
current I„(xo) is in fact the Hall current under the elec-
tromotive force generated by the changing flux. The aver-

aged quantity (C) —= (1/L„) f dxoC(xo) is just the Hall
conductivity o„» (with a minus sign) over the whole sur-
face. On the other hand, (oH ) =(1/L») f dyooH(yo) is
the average of the Hall conductivity o~„over the surface.
The Onsager relation ozy oy immediately leads to the

identity (oH ) = ( C ), which is what we wanted to prove.
To summarize, we started with a cylinder geometry for

the Hall system, and reexpressed the Hall conductance as
the flux derivative of the adiabatic charge transport from
one edge to the other. The new expression can be justified
by an electrodynamic argument originally used by Laugh-
lin, or by mathematical manipulations on the Kubo for-
mula. Since the charge transport can be evaluated from a
circle in the middle of the cylinder, we can use the locality
property of the Green function to show its insensitivity to
the boundary conditions at the two edges. The flux
derivative of the charge transport is calculated in a van-
ishing neighborhood of the flux, so it is a property of the
ground state of the system at zero flux. Then we can join
the two edges to turn the cylinder into a torus without
worrying about the inability of using a flux in the new
geometry. On the torus we can restore the new expression
for the Hall conductance back to the Kubo formula, from
which a topological invariant expression can be derived.

In Sec. VI we will study a Hall system which has a to-
pology of a torus with a hole in it. As will be pointed out
there, such a system could be realized in real experiments.
For such a system, a topological invariant expression for
the Hall conductance will be derived to show its quantiza-
tion.

V. LOCALITY AND LAUGHLIN'S ARGUMENT

Laughlin's argument involves consideration of a device
with the geometry of a finite cylinder, although it can
equally well be applied to an annulus or any other figure
with the same topology. A uniform magnetic field is ap-
plied normal to the cylindrical surface, and there is a
solenoid along the axis of the cylinder through which a
magnetic flux N passes. It is supposed that this flux N
can be varied without changing the magnetic field which
acts on the surface. This arrangement is shown in Fig. 2.
It is supposed, in the simplest form of this argument, that
the electrons are noninteracting and at zero temperature,
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FIG. 2. Cylinder geometry used in Laughlin's theory.

Through the center of the cylinder a magnetic flux is passed.

The flux derivative of the induced adiabatic charge transport

from one edge to the other determines the ratio of the Hall

current I flowing around the cylinder to the voltage drop be-

tween the two edges.

and that the Fermi energy is such that there are no bulk
extended states near that energy; there may be localized
states at that energy, of a size much less than the cir-
cumference of the system, and there will in general be ex-
tended states at the edges of the cylinder which are con-
fined to a region much smaller than the height of the
cylinder.

The effect of changing the flux 4& passing through the
solenoid by one quantum unit h /e is now considered. For
the localized states this merely maps each one into the
equivalent state related by a gauge transformation. For
each extended state in flux N there is an equivalent
gauge-transformed state for flux N+h /e, but the continu-
ous change of flux can map the set of occupied extended
states into a different set of states. Occupied bulk states
must remain occupied, since their energies are well away
from the Fermi energy, but it is possible for an integer
number n of electrons to be transferred from one edge to
the other. By Faraday's law the changing flux produces
an electromotive force (emf) round the cylinder, and so
the ratio of the integral over time of the current from one
edge to the other to the time integral of the emf in ne /h.
If this relation for the integrated current produced by a
discrete change in the flux can be changed to a differential
relation, the quantization of the ratio between the voltage
down the cylinder and the current round it follows. This
has the same topology as is usual in the Corbino disk ar-
rangement.

There are two very important conclusions that can be
drawn from this argument. The first is that it is only the
existence of a mobility gap between the regions of bulk ex-
tended states that is necessary to produce the integer
QHE, and the gap in which the Fermi energy lies does not
have to be obtained by perturbation from an ideal system

of electrons in a uniform potential. The second as pointed
out by Tao and Wu, ' is that a fractional QHE, with a
conductance pe /qh, where p and q are integers with no
common factors, implies that in flux 4 there are q
equivalent ground states, and the system is mapped
through all q of them when the flux is changed by q
quanta.

There are a number of points in this argument which
have been criticized. The first is that the replacement of
the ratio of a charge transfer to a flux change by the con-
ductance, which is its limiting value for an infinitesimal
change in flux, is not justified. The second is that a spe-.cial sort of geometry is assumed, and this is not obviously
related to the usual geometry of experimental devices. We
show how the locality properties of the Green functions
can be used to overcome both of these objections. There is
a further criticism of the theory, which is that it is as-
sumed that the rate of change of flux is so slow, or the
electric field so small, that adiabatic theory can be used
for the charge transfer. We have addressed this problem
in an earlier paper, ' but we had to use perturbative argu-
ments rather than the Laughlin argument to show that the
restriction to vanishingly weak electric fields is not essen-
tial.

Now it is possible to ask how the Laughlin argument
could be applied to the kind of experimental arrangement
sketched in Fig. 1. The quantity in which we are interest-
ed is the current flowing across a line such as the one
shown in the figure going from the end of one voltage
probe to the end of the opposite probe divided by the volt-

age difference between the two ends of the line. The
Kubo formula allows the current density at a point to be
expressed in terms of the integral of the two-particle
Green function of the many-electron system multiplied by
the electric field. In a mobility gap the relevant Green
function falls off exponentially when the separation be-
tween the two points (the point where the current density
is calculated, and the point in the integral where the elec-
tric field is measured) is increased. This is true despite
the existence of extended edge states, as is shown in Sec.
II. This exponential localization of the Green function is
the key property that allows us to estimate the effect of
modifying the boundary conditions. We can expect the
localization length to be the order of magnitude of the
magnetic length, which is about 10 nm under typical con-
ditions.

Two changes can be made to bring the experimental ar-
rangement shown in Fig. 1 into the correspondence with
the geometry of Laughlin's argument shown in Fig. 2, and
the locality of the Green function allows us to argue that
each of these changes will have a negligible effect on the
result. The first change is to replace the current driven
round a circuit connected to the source and drain by two
passive electron reservoirs at the source and drain. The
same current will still flow, but it is to be driven by an
emf applied to the voltage probes. Conditions are exactly
the same except in the neighborhood of the source and
drain, and these are very far from the line in which we are
interested, so only exponentially small changes in the ratio
of current to voltage occur.

The other change is to replace the emf supplied by the
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FIG. 4. A rectangle with its two ends connected by a strip
(the current lead) and its two sides by another strip (the voltage
lead). Through the holes are the magnetic flux solenoids.

FIGo 3. A pair of opposite voltage leads in Fig. 1 is connect-
ed by a ribbon. Through the hole between the ribbon and the
main part of the device passes a changing magnetic flux which
drives the Hall current.

voltmeter by a voltage source similar to that assumed in
Laughlin's argument. The two ends of the pair of op-
posed voltage probes are connected to one another by a
strip of two-dimensional material, and a solenoid is insert-
ed between this strip and the main part of the device as
shown in Fig. 3. The emf is produced by a uniform rate
of change of the flux through the solenoid. The nature of
the emf should be irrelevant to the physical effects, and
any changes in the local conditions in the voltage probes
due to replacement of the voltmeter leads by more two-
dimensional material can be compensated by imposing lo-
cal irrotational electrostatic fields. The Laughlin argu-
ment can be applied directly to his device shown in Fig. 3.
Change of flux by one quantum must drive an integer
number of electrons from one side of the system to the
other, unless there is a ground state with q-fold degenera-
cy, in which case the fractional QHE is obtained.

VI. QUANTUM HALL CONDUCTANCE
AS A TOPOLOGICAL INVARIANT

Niu et al. showed that the quantum Hall conductance
of a torus could be written as a topological invariant
which is stable against the presence of disorder in the sub-

strate, interactions between the electrons, etc. Although a
torus geometry can be mathematically transformed from a
strip geometry up to exponentially small errors in the Hall
conductance, such a geometry is nevertheless impossible

to be realized without using a magnetic monopole source
for a uniform magnetic field, so we are now constructing
a more realistic version of the theory.

We consider the system shown in Fig. 4 which consists
of a rectangle, with its two ends connected by a strip
which we call the "current lead, " and its two sides con-
nected by a strip which we call the "voltage lead. " All of
this, the rectangle and the two sets of leads, are made of
the same two-dimensional material and are in the same
approximately uniform magnetic field. This is evidently a
system that could be realized in practice. It has the topol-
ogy of a torus with a simple hole in it, and its edge is a
single simply connected curve. We also suppose that there
are two solenoids with flux jtji and P j which pass through
each of the two sets of leads. The boundary conditions
round each set of leads are periodic functions (up to a
gauge transformation) of j)jjq and p j, while an emf can be
induced around either set of leads by making a uniform
change in the appropriate flux.

Now we use the Kubo formula' ' ' to determine the to-
tal current I which flows round the current leads in
response to a weak electric field E~ induced by a steady
change of the flux j)jjj. We write the emf induced round
the voltage leads as Vz. It is convenient to introduce a
fictional electric field EI which is locally irrotational, has
equipotentials that go all the way round the voltage leads,
and has a line integral VI round the current leads; such a
field could be induced by a steady change of j)jul if the
solenoid were appropriately placed in relation to the volt-
age leads to make the equipotentials go all round the
leads. The current can be written as

I= X o (+o I f j.E i+.) +.
i f j Eo

I +o) —+ol f j.Eo I+ )(+ I f j Eo I+o)
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where +p is the many-body ground state of energy cp, the
are excited states of energy c . The operator j is the

sum over all electrons of

j=(elm )( i'—V e—A) . (36)

The integrals involving j.E&, which give the current that
flows in response to the perturbation j.Ev, are written as
integrals over the entire space and divided by Vz, but, be-
cause of the continuity of current flow, they could equally
well be written as integrals between two close equipoten-
tials of E~ and divided by the difference in potential 6. If
these equipotentials go round the system inside the volt-
age leads it can be argued that the Green functions im-

-E ——V
BH BH

jI I EI ~~ ~ ~I ~~ ~ V e

'ay, r a&,
' (37)

and a similar equation for j Ev. This enables us to
rewrite Eq. (35) as

plied by Eq. (35) are insensitive to the boundary condi-
tions applied round the current leads, and so the resulting
current I is independent of the flux Pr. This insensitivity
to boundary conditions will also be used at a later stage in
the argument.

The operators in Eq. (35) can be expressed in terms of
the partial derivatives of the Hamiltonian H with respect
to the flux through the solenoids. We have

ie Vv 9+p 0%'p B%'p B%'
(38)

Now it can be argued that the phase q v is averaged over
because its steady change with time provides the emf Vv,
and we have already argued that the current is indepen-
dent of qz, so we can certainly average over that to get the
Hall conductance as

I
Vv

2K

2~h v d
p anv anr

0%p

(39)

The double integral in this equation now has the form
of the topological invariant that defines the first Chem
class of the mapping of the torus onto the complex projec-
tive space of many-particle wave functions. ' ' Provided
that continuous changes in g v, gz by multiples of 2~ map
the ground state

~
+o) into itself, apart from phase fac-

tors, this integral is an integer multiple of 2m. , and we get
the integer QHE. Edge states are unimportant in this ar-
gument, as there is a single edge in the system, and so no
current can result from transfer of electrons from one
edge to the other. The detailed geometrical shape of the
sample, substrate disorder, slight inhomogeneity of the
magnetic field, and electron-electron interactions are
unimportant, provided that the ground state remains iso-
lated from other states, so that there is not a continuum of
other states into which the continuous gauge transforma-
tions can map the ground state.

The fractional QHE will occur if there is a discrete set
of q equivalent states into which

~
Vo) can be mapped. In

such a case gv must be changed by 2vrq before the state
returns to its initial form, so that the integral on the right
side of Eq. (39) must be replaced by an integral equal to
1/q times an integer multiple of 2m.

The relation between this system shown in Fig. 4 and

the experimental situation shown in Fig. 1 is very similar
to the relation described for the Laughlin geometry in Sec.
V. We argued in Sec. V that the voltmeter leads can be
replaced by a loop of two-dimensional material with an
emf applied around it, so we have already justified the
special form of the voltage leads in Fig. 4. The fact that
the current density depends only on the local environment
of the line across which it is measured allows us to replace
the source and drain by the current leads of Fig. 4, pro-
vided that we also apply some local electric fields (with
zero circulation) to maintain the pattern of current flow in
the system.
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APPENDIX: PROPERTIES OF D ( k )

In this Appendix we list some of the important proper-
ties of the function D„(k), following the reference book
by Bateman. ' The solutions of the equation

d'f +(v+ ———k )f=0,2 4

are called parabolic cylinder functions. For any value of v
there is a solution D (k), which damps to zero as
k~+ oo. From the reflectional symmetry of the equa-
tion, D ( —k) is also a valid solution. If v is zero or a
positive integer corresponding to the harmonic oscillator
levels, the two solutions D„(k) and D ( —k) become
linearly dependent, and

D (k) =2 " ' " H (k/&2)

under an appropriate normalization for D (0), where H
is the Hermite polynomial of degree v. In the following,
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we are interested in the case with energies off the bulk
Landau levels, so we will only consider those values of v
which are off the oscillator levels mentioned above.

(i) The functions D„(k) and D„(—k) are linearly in-
dependent of each other, and are analytical functions of k
in the whole complex plane excluding oo.

(ii) The function D (k) has the following asymptotic
expansions when

~

k
~

~+ oo.

v —( 1/4)kk e '' ' for ——,'m(argk ( 4~,

'k ——'e""'" for —,
'

m (argk ( 4 vr,r( — )

(iii) For v real and positive, D (k) has [v+1] real
zeros, where [v+1] denotes the largest integer less than
v+1. For v real and negative, there are no real zeros. In
the above cases, there may be zeros off the real axis, but
the smallest distance of these zeros to the real axis should

be at least of order 1. The complex zeros with large mag-
nitudes should lie about the lines of

~

argk = , r—r, follow-
ing from the asymptotic expansions of D„(k). For non-
real values of v, there are no zeros on the real axis. In any
case, the positions of the zeros should depend continuous-
ly on v (except at v=0, 1,2, . . . ), and the complex zeros
are not close to the real axis if v is not close to positive
portion of the real axis of the energy plane.

(iv) For v&0, 1,2, . . . , D (k) has infinite number of
zeros on the complex plane. This statement can be proved
easily by using the growth theory of entire functions. '

Suppose D (k) has n zeros (n & co ), then D (k) can be
written as P„(k)Q(k), where P„(k) is an nth degree poly-
nomial having the zeros of D (k), and Q(k) is an entire
function without zeros. From the asymptotic behavior of
D„(k) we know that D (k) and hence Q(k) has growth of
order 2. A simple theorem says that Q (k) must be of the
from exp(ak +bk +c ), where a, b, and c are constants.
B« t»s form of Q(k) cannot give the correct asymptotic
behavior of D (k) in all directions, unless v is zero or an
positive integer. This contradiction proves our statement.
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