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Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems
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It is demonstrated that electronic structure calculations using the local-density approximation
with density-functional theory accounts for the distinctly different behaviors in the equilibrium
phase diagrams among Cu-Ag, Cu-Au, and Ag-Au alloy systems. A detailed microscopic analysis is

made based on the prescription proposed by Connolly and Williams.

I. INTRODUCTION

The alloy systems Cu-Ag, Cu-Au, and Ag-Au form an
interesting group with regard to the equilibrium phase dia-
grams. ' Among these, Cu-Au has occupied a special po-
sition, being regarded as a prototype system which under-
goes an order-disorder phase transition, and many works
have been done to analyze the phase diagram of this sys-
tem. However, from the view point of the electronic
theory, more interesting is the fact that the phase dia-
grams of the three systems are distinctly different among
them, although the constituents are all noble metals: Cu-
Ag has a tendency of segregation, Cu-Au has some or-
dered phases, and Ag-Au forms a homogeneous solid
solution. Kittler and Falicov ' carried out an analysis by
using a simple tight-binding model and partly succeeded
in reproducing the difference between Cu-Au and Cu-Ag.
However, their approach was not successful in detecting a
meaningful difference between Cu-Au and Ag-Au. To
our knowledge, no unified electronic theory is available
which can cover all three cases. Therefore, development
of such a theory based on ab initio electronic structure
calculations is the main purpose of our work.

We first estimate heats of formation of some ordered
compounds for these systems from the total-energy calcu-
lations with the local-density approximation to the
density-functional theory. The calculated heat of forma-
tion is positive for Cu-Ag and negative for Cu-Au and
Ag-Au, being consistent with experimental results. (A
positive sign of heat of formation corresponds to a ten-
dency of segregation in this work. ) Besides, the heat of
formation for Cu3Au turns out to be almost twice that for
CuAu3, again being consistent with the well-known asym-
metry with respect to the concentration in the phase dia-
gram of the Cu-Au system.

We then follow the analysis proposed by Connolly and
Williams. ' This enables us to estimate the many-body
interaction potentials v„which are defined as

where the subscript i stands for a specific atomic configu-
ration of a system, AE; is the total energy of the system
with respect to the reference defined below, and g„; are
the multisite correlation functions associated with a clus-
ter specified by n.

Once v„ is obtained, the ordering energy of a system
Eo, i.e., the energy of an ordered phase minus that of a
disordered phase, can be estimated. It turns out that Eo
takes a fairly large negative value for the Cu-Au system,
leading to strong stabilization of an ordered phase. This
is in contrast to the case of the Ag-Au system where Eo
takes a very small negative value. This aspect is again
very consistent with the experimental results. Our
analysis clearly indicates that the qualitative difference
between the Cu-Au and Ag-Au systems in the phase dia-
grams comes not only from the difference in the detailed
electronic structures but also from the atomic-size differ-
ence of constituent atoms.

The electronic structure calculations seem to be fairly
satisfactory in explaining the overall aspect of the phase
diagrams of Cu-Ag, Cu-Au, and Ag-Au systems.
Nevertheless, there are still some subtle problems concern-
ing the accuracy in order to reproduce phase diagrams
quantitatively. This will be argued in a subsequent pa-
per, "where thermodynamic properties of the Cu-Au sys-
tem will be discussed based on the statistical numerical
calculations via the cluster-variation method. ' '

Some comments will be made in Sec. II on the band-
structure calculations. Calculated results of heat of for-
mation and interatomic potentials will be presented in Sec.
III. We present our conclusions in Sec. IV.

II. SOME REMARKS ON THE
BAND-STRUCTURE CALCULATION

We use the augmented-spherical-wave (ASW) method'
to perform the band-structure calculations for pure metals
A and B as well as for ordered compounds, A3B and AB3
with the L lz structure and AB with the L lo structure.
The basic lattice is assumed to be fcc and 3 (or B) may be
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III. RESULTS AND DISCUSSIONS

A. Cu-Au system

The total energy per cubic unit cell in reference to the
segregation limit is written as

bE[a;Cu Au4 ] =E[a;Cu Au4 I
—mE[ac„,Cu]

—(4— m)E [aA„,A ]u, (2)

where m takes 0, 1, 2, 3, and 4, E[a;C uAuq I is the
total energy of ordered Cu Au4 systems with the lat-
tice constant a, and E[a „c,'C u] and E[a~„;Au] are those
for Cu and Au at their calculated equilibrium lattice con-
stants, ac„and aA„. The calculated total energies of Eq.
(2) are fitted with a form

bE[a;i ] =(p;!a) "—(q;/a)"+r;, (3)

one of Cu, Ag, and Au. The relativistic effect, except the
spin-orbit interaction, is included. ' Neglect of the spin-
orbit interaction may be allowed even for Au, because the
d band is filled. For all the three elements, Cu, Ag, and
Au, the ASW's of up to l =3 are taken into account as
basis functions. As a local-density approximation to the
density-functional method, we adopt the interpolation
scheme proposed by Moruzzi et al. '

+6 b E [a;(CuAu)2] +4 bE [a;Cu3AuI

+ bE [a;Cu4] ], (4)

for (CuAu)q may be partly due to the neglect of the
tetragonal lattice distortion in our calculation.

We then estimate the many-body interaction potentials
U„(a) by using Eq. (1) combined with g„; listed in Table I
of Ref. 10. The fundamental assumption in the process of
obtaining v„ is that the clusters consisting entirely of
nearest neighbors contribute to the total energies; there-
fore, the largest cluster in the present case is a tetrahedron
formed by nearest-neighbor sites. Although the assump-
tion seems to be too simple, very small values of v3 and v4

for noble-metal alloys (see Ref. 10 and discussions below)
may be regarded as fulfillment of, at least, the necessary
condition for expanding the total energy in terms of such
small clusters. Leaving the study of the convergence
problem of such an expansion as a future work, we regard
our v„'s as renormalized ones in the sense that the
farther-neighbor interactions are effectively included.

The results are shown in Fig. 1(a). In order to have
deeper insights into v„s, their explicit expressions in the
present approximation are given below [note that we
adopt a convention such that 3 (8) in Table I of Ref. 10
corresponds to Au (Cu)]:

Uo(a) = —,6 [bE [a;Au&I +4bE [a;CuAu3I

where i stands for one of Cu Au4 . Very accurate
overall fit can be achieved with n =3.5. The fitting pa-
rameters, p, q and r, the calculated equilibrium lattice
constants, and heats of formation (the minimum values of
bE[a;Cu Au4 J with respect to a) are listed in Table
I.

The most important aspect in our total-energy calcula-
tions is that the heat of formation is negative for all ofI =1, 2, and 3. This implies stabilization of ordered
compounds, Cu3Au, CuAu, and CuAu3, against segrega-
tion. The calculated heats of formation agree semiquanti-
tatively with the corresponding observed low-temperature
values —0.022 Ry (Cu3Au), —0.027 Ry [(CuAu)2], and
—0.012 Ry (CuAu3). ' The relatively large discrepancy

u, (a) =
4 (b E [a;Au&] +2 bE [a;CuAu3I

—2 bE [a;Cu3Au I
—bE [a;Cuq] ),

Uq(a) = , [bE [a;Au—4]—2 b E [a;(CuAu)q I

+ b,E [ a; Cu4] ],
v3(a)= ~ (bE[a;Au&I —2bE[a;CuAu3]

+2 b,E [a;Cu3Au] —bE [a;Cu~j ),
U4(a) = —,', [bE [a;AuqI —4 bE [a;CuAu3]

+6 bE [a;(CuAu)2] —4 bE [a;Cu3Au]

+bE[a;Cu4]] .

(6)

TABLE I. Fitting parameters, p, q, and r, of the calculated total energies [Eq. (3)], and the corre-
sponding equilibrium lattice constants and heats of formation for ordered CuAu, CuAg, and AgAu sys-
tems (in rydberg atomic units).

System

AU4

CuAu3
(CuAu)z
Cu3Au
CU4

Ag4
CuAg3
(CuAg)2
Cu3Ag
AgAu3
(AgAu)2
Ag3Au

8.584
8.217
7.877
7.474
7.055
8.075
7.819
7.588
7.322
8.447
8.331
8.207

11.677
11.013
10.450
9.749
9.033

10.444
10.076
9.787
9.406

11.347
11.073
10.769

2. 155
1.932
1.788
1.586
1.410
1.513
1.502
1.519
1.469
1.960
1.815
1.662

ap

7.692
7.474
7.237
6.986
6.717
7.611
7.396
7.171
6.948
7.665
7.640
7.624

AE(ap)

0.0
—0.0100
—0.0205
—0.0191

0.0
0.0
0.0268
0.0348
0.0253

—0.0134
—0.0178
—0.0130



35 ELECTRONIC THEORY OF THE ALLOY PHASE STABILITY. . . 2171

In the present sign convention, the positive value of pair-
potential parameter U2 favors compound formation. As
one can see from Fig. 1(a), u3 and U4 are an order of mag-
nitude smaller than other U„'s and do not play any signifi-
cant role. A fairly strong lattice-constant dependence of
U~ in Fig. 1(a) can be understood from Eq. (5). More in-
tuitively, U& in a simple pair-potential model' is given by
6p A

—e'c c, where e&„&„(ec„c„)is the effective pair po-
tential between Au (Cu) atoms. If we take into account a
lattice-constant dependence of e&„A„and ec„c„,it is natur-

4

bED(a;(Cu Au, „)4J= g (1—2x)"U„(a) .
n=0

(9)

al to expect that e«z„(ec„c„)will take a minimum value
at the equilibrium lattice constant of Au (Cu). Therefore
the sign of UI changes from positive to negative as the lat-
tice constant increases.

For a disordered alloy, g's are given by g„=(1—2x)"
with x the concentration of copper' and the total energy
difference defined similarly to Eq. (2) is given by

300 30

The heats of disordered-alloy formation for a given x,
which are defined as the minimum values of Eq. (9) with
respect to a, are shown in Fig. 2(a) together with the heats
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FICx. 1. The many-body interaction potentials given by Eqs.
(4)—(8) for (a) Cu-Au, (b) Cu-Ag, and (c) Ag-Au systems. Note
the enlarged scale for v 3 and v4.

FIG. 2. Calculated heats of formation for (a) Cu-Au, (b) Cu-
Ag, and (c) Ag-Au systems in the ordered (dots) and disordered
(solid lines) phases.



2172 K. TERAKURA, T. OGUCHI, T. MOHRI, AND K. WATANABE 35

of formations for ordered alloys. It is now clear from Eq.
(9) that Uo(a) is nothing but the energy of the disordered
alloy with the 50-50 concentration. ' It is therefore
reasonable that Uo(a) takes a minimum at aD(CuAu)
which is approximately equal to the equilibrium lattice
constant of the ordered CuAu, ao(CuAu). Nevertheless a
slightly larger value of aD(CuAu) (by about 0.03 A) corn-
pared with ao(CuAu) is observed. This result is interpret-
ed in the following way. The probability of having Cu-Cu
and Au-Au pairs is larger in the disordered phase than in
the ordered phase. Apparently the Au-Au pair favors a
larger lattice constant compared to ao(CuAu) while the
Cu-Cu pair favors a smaller one. Therefore the two ten-
dencies nearly cancel out but not perfectly, because an en-

ergy increase due to compression of the lattice constant is
steeper than that due to expansion. This asymmetry of
the total-energy curve produces a slight increase of lattice
constant in the disordered phase. The ordering energy for
the CuAu alloy with the 50-50 concentration,
Eo{ (CuAu)2] is obtained by

Eo {(CuAu)q] = b E {ao(CuAu);(CuAu)qI

—b ED {aD(CuAu); (CuAu)2 {, (10)

which amounts to —0.029 Ry [see Fig. 2(a)]. Note again
that the second term on the right-hand side of Eq. (10) is
equal to vo(a) with a =aD(CuAu). The origin of this
large negative value, which implies the stabilization of the
ordered phase with respect to the disordered phase, can be
traced by using Eq. (4). The crucial ingredient is the large
difference in the atomic radius between Cu and Au.
bE {a;i I

's other than for i equal to (CuAu)2 contribute
also to Uo(a) and take fairly large values at the equilibri-
um lattice constant of CuAu.

Similar analyses for Cu3Au and CuAu3 lead us to quali-
tatively the same conclusions with regard to the stability
of the ordered phase and the change in the equilibrium
lattice constant between the ordered and disordered
phases. The ordering energies Eo for Cu3Au and
CuAu3 are —0.027 and —0.016 Ry, respectively [see Fig.
2(a)]. The ordering energy is closely related to the critical
temperature T, of the order-disorder phase transition and
actually the trend in T, 's for Cu3Au (663 K), CuAu (683
K), and CuAu3 ( —500 K) parallels that in Eo's. '

B. Cu-Ag system

The fitting parameters, p, q, and r in Eq. (3) for
bE{a;Cu Ag4 ] for m =0, 1, 2, and 3 are listed in
Table I together with the calculated equilibrium lattice
constants and heats of formation. In contrast to the Cu-
Au system, the heats of formation for Cu3Ag, (CuAg)z,
and CuAg3 take fairly large positive values. This is con-
sistent with the experimental fact that the Cu-Ag system
has a tendency of segregation.

U„'s for the Cu-Ag system are shown in Fig. 1(b).
Qualitatively, they behave similarly to those of the Cu-Au
system. It is interesting to note that the present vz is also
positive except at a region of relatively large a values.
The positive vz favors ordering and it is consistent with
the fact that vo, which corresponds to an energy of a com-

pletely random alloy with 50-50 concentration, is larger
than that of the ordered (CuAg)q compound. At the same
time, however, the positive sign of v2 is in conflict with
the tendency of segregation in a usual pair-potential
model. If we try to interpret the phase stability of the
Cu-Ag system in terms of v„'s, the crucial factor causing
the tendency of segregation is the large positive value of
vo even at its minimum point, and v2 is not strong enough
to make an ordered compound stable.

The heats of formation for the disordered Cu-Ag sys-
tern, AED, are calculated along the same line as in the
Cu-Au system [see Eq.(9)] and shown in Fig. 2(b). One
may note in Fig. 2(b) that the slope of bED at the Cu-rich
side is much steeper than that at the Ag-rich side. This
aspect corresponds to the asymmetry of the solubility ob-
served in the dilute-alloy regions of the Cu-Ag system.

C. Ag-Au system

The fitting parameters in Eq. (3) for
bE{a;Ag Au4 I for m =1, 2, and 3 are listed in
Table I together with the calculated equilibrium lattice
constants and heats of formation. From our calculations,
the equilibrium lattice constant of Ag is smaller than that
of Au, while the reverse is true experimentally. ' Howev-
er, the error is fairly small and will not affect the qualita-
tively important aspects of the present theory. As in the
case of the Cu-Au system, AE's for the ordered com-
pounds of the Ag-Au system are negative at their equili-
brium lattice constant. It is interesting to compare v„s
for the Ag-Au system shown in Fig. 1(c) with those for
the Cu-Au system. In the Ag-Au system, the ordering en-
ergy for the case of 50-50 concentration Eo{(AgAu)2I,
which is defined similarly to Eq. (10) and shown in Fig.
2(c), is only —0.005 Ry. This value should be compared
with the corresponding value —0.029 Ry for CuAu [see
Fig. 2(a)]. As we stated in Sec. III A, one of the origins of
large E {(0C Au) uI2is the large difference in the atomic
size between Cu and Au. Therefore it is rather natural to
expect a very much reduced value of Eo{(AgAu)qI, be-
cause there is only a minute difference in the lattice con-
stant between Ag and Au. In relation to this, v2 of the
Ag-Au system is also fairly small compared with that of
the Cu-Au system. The results are consistent with the
fact that the Ag-Au system forms a homogeneous solid
solution.

IV. CONCLUDING REMARKS

We performed the density-functional calculations of to-
tal energy for some binary ordered compounds with Cu,
Ag, and Au as constituents. We then calculated the
many-body interaction potentials v„, following Connolly
and Williams's prescription. ' Heats of formation and or-
dering energies obtained by these calculations account
well for the different behaviors in the phase stability
among Cu-Ag, Cu-Au, and Ag-Au systems. We pointed
out the importance of the atomic-size difference between
the constituent atoms with regard to the ordering energy.
In all three systems studied here, the three-body and
four-body potentials are an order of magnitude smaller
than others. A physical context of the lattice-constant
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dependence of U& was discussed. We believe this must
play a significant role in the surface segregation prob-
lem, ' ' where U& is a crucial factor.

It may be instructive to make brief comments here on
the role of detailed structure in the density of states (DOS)
at the Fermi energy on the phase stability. It is widely ac-
cepted that the presence of a dip in DOS at the Fermi en-

ergy stabilizes the corresponding phase. In the present
systems, we found an appreciable dip in CuAu and a rela-
tively weak one in Cu3Au, but no meaningful structures in
CuAg and AgAu. Therefore, we conclude that there is no
close correlation between the structure in DOS and the
phase stability in noble-metal alloys.

Similar analyses to the present one will be made for
other systems and the convergence problem in the cluster
expansion of the total energy, Eq. (1), will be studied by
enlarging a cluster size. Finally, a theoretical study of the

thermodynamic properties of the Cu-Au system based on
the cluster-variation method will be presented in a forth-
coming paper. "

ACKNOWLEDGMENTS

The original version of the ASW program package was
coded by Dr. A. R. Williams, Dr. V. Moruzzi, and Pro-
fessor J. Kiibler, to whom we would like to express our
sincere thanks for their permission to use the program
package. This work was supported in part by a Grant-in-
Aid for Cooperative Research from the Japanese Ministry
of Education, Science and Culture. Numerical computa-
tions were carried out at the Computer Centers of the In-
stitute for Molecular Science (Okazaki, Japan) and the In-
stitute for Solid State Physics (Tokyo, Japan).

~M. Hansen and K. Anderko, Constitution of Binary Alloys
(McGraw-Hill, New York, 1958).

~Y. Y. Li, J. Chem. Phys. 17, 447 (1949).
C. M. van Baal, Physica (Utrecht) 64, 571 (1973).

4R. Kikuchi and D. de Fontaine, Natl. Bur. Stand. (U.S.) Spec.
Publ. No. 496, (U.S. GPO, Washington, D.C., 1978), p. 967.

5D. de Fontaine and R. Kikuchi, Natl. Bur. Stand. (U.S.) Spec.
Publ. No. 496, {U.S. GPO, Washington, D.C., 1978), p. 999.

J. M. Sanchez, D. de Fontaine, and W. Teitler, Phys. Rev. B
26, 1465 (1982).

7K. Binder, W. Kinzel, and W. Selke, J. Magn. Magn. Mater.
31-34, 1445 (1983).

R. C. Kittler and L. M. Falicov, Phys. Rev. B 18, 2506 (1976).
9L. M. Falicov and R. C. Kittler, Theory of Alloy Phase Forma

tion, edited by L. H. Bennett (TMS-AIME, Warrendale, Pa. ,
1980), p. 303.

J. W. D. Connolly and A. R. Williams, Phys. Rev. B 27, 5169
{1983).

'T. Mohri, K. Terakura, T. Oguchi, and K. Watanabe (unpub-
lished).
R. Kikuchi, Phys. Rev. 81, 988 (1951).

' T. Mohri, J. M. Sanchez, and D. de Fontaine, Acta Metall. 33,
1171 (1985), and references therein.

A. R. Williams, J. Kiibler, and C. D. Gelatt, Jr., Phys. Rev. B
19, 6094 (1979).

D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).

V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated
Properties ofMetals (Pergamon, New York, 1978).

' R. L. Orr, Acta Metall. 8, 489 (1960).
V. Kumar, Phys. Rev. B 23, 3756 (1981).
The positive value of Up(a) in Fig. 2 even at its minimum is
due to accumulation of some errors in the present calculation.
The dominant one in this context is the underestimation of
heats of formation particularly for (CuAu)2. Our underes-
timation of equilibrium lattice constants, the maximum
discrepancy being about 1.5%%uo for Cu, tends to make Uo(a)
more positive also, because a smaller lattice constant results in
a larger bulk modulus, i.e., the curvature of EE(a;i). Howev-
er, we would like to point out that EoI(CuAu)2I is affected
only slightly by this inconvenience: The dominant error men-
tioned above cancels out to some extent between the two
terms on the right-hand side of Eq. (10).
For Cu3Au, a sudden increase of the lattice constant by about
0.005 A was observed when temperature crosses the critical
temperature form below (see Ref. 21). This is related to our
result that the lattice constant is larger in the disordered
phase than in the ordered one. More-detailed quantitative ar-
gument will be given in the forthcoming paper (Ref. 11).

W. B. Pearson, A Handbook of Lattice Spacings and Struc
tures of Metals and Alloys (Pergamon, Oxford, 1967).
T. Sakurai, T. Hashizume, A. Jimbo, and A. Sakai, Phys. Rev.
Lett. 55, 514 (1985).


