
PHYSICAL REVIEW B VOLUME 35, NUMBER 5 15 FEBRUARY 1987-I

Extra contribution of transition-metal solutes to the solid-solution hardening of nickel
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Experimental results on the solid-solution hardening of nickel alloys show that there is an
anomalous hardening induced by transition-metal elements compared to the hardening induced by
the B subgroup (sp valence) elements, which cannot be understood within the framework of the clas-
sical linear elasticity theory. It is demonstrated that this extra solution hardening by the transition-
metal solute atoms can be correlated with the "chemical interaction" between the solutes and edge
dislocations (band-structure-energy contribution to the solute-dislocation interaction). For this pur-
pose, calculations of the chemical interaction energies, 5E,h, have been carried out for fifteen kinds
of transition metals and eight kinds of B-subgroup solute atoms using a tight-binding-type electronic
theory of s-, p-, and d-basis orbitals.

I. INTRODUCTION

There have been many experimental efforts on the
solid-solution hardening on various solvents, such as Fe
and Nb with bcc crystal structure and Cu, Ag, Au, Al,
and Pb with fcc crystal structures. ' It is generally ac-
cepted that the solid-solution hardening can be described
well in terms of the "elastic" interactions between solute
atoms and dislocations, which has been proposed by
Fleischer. ' In the solid solution of nickel, however, it
has often been observed that the linear and single-valued
relationship does not hold between the increase in yield
stress and an elastic interaction parameter. ' Recently,
two of the present authors and their co-workers have
demonstrated quite clearly such an extra solution harden-
ing in binary nickel alloys. The results are reproduced in
Fig. 1. Obviously, the plots of the increase in 0.2% flow
stress per 1 at. % of the solute, do. /dc, versus the size
misfit parameter, e, ~, are split into two correlation
curves, one for transition-metal elements and the other for
B-subgroup elements. The values of do. /dc for
transition-metal elements are anomalously larger than
those for B-subgroup elements. The similar anomaly of
the solution hardening by transition-metal elements has
also been observed in a nickel-based L 12 intermetallic
compound Ni3A1. '

These results indicate that the solution hardening of
these systems can not be interpreted solely within the
framework of the Fleischer-type elasticity theory. In or-
der to understand the anomalous solution hardening of
nickel as well as Ni3A1, it is felt that a more fundamental
theoretical approach, such as the microscopic electronic
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. The size-misfit parameter is defined by the absolute
value of (1/a)(da /dc), where a is the lattice parameter of nickel
and da /dc the change in lattice parameter per 1 at. % of solute.

theories, are required. The semiclassical Thomas-Fermi
approach, ' ' however, is unsatisfactory for the deter-
mination of the interaction energy between two kinds of
defects, i.e., a solute and a dislocation, in transition-
metal-based alloys, where d-band energy plays a central
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role. The estimation of such electronic interaction energy,
hereafter referred to as "chemical" interaction energy,
should be achieved by more appropriate electronic theory.
However, the first-principles electronic theory' is too
complicated to be applied to the interpretation of the ener-

gy associated with such lattice defects.
In the present paper, the "chemical" interaction energy

between a solute (both transition-metal and B-subgroup
elements) and an edge dislocation in mckel is derived for
use in tight-binding-type electronic theory. ' ' It is well
known that in fcc metals the solution hardening is con-
trolled by the motion of edge dislocations. This is true
even in nickel. In accord with the experimental observa-
tion, the calculated result shows that the contribution of
the chemical interaction to the solid-solution hardening in
nickel is quite strong for transition-metal solutes and is al-
most absent for B-subgroup solutes. It will be presented
that the chemical interaction energy is attributed to the
characteristic d-electron hopping interactions, i.e., the d-d
two-center integrals, between host nickel and a transition-
metal solute.

II. PRINCIPLE OF CALCULATION

The chemical interaction energy 6E,h, between a sub-
stitutional solute atom and an edge dislocation is defined
by

6Echem =6Edjsl-so] 6Edjsl 6Esol

where 6E8,l 6Egj8] and 6E&j» „l are the changes in the
band-structure energies due to introduction of an isolated
solute atom, an edge dislocation, and both a solute atom
and an edge dislocation simultaneously into a pure and
perfect crystal, respectively.

The change in the band-structure energies, 6E„l, 6E&;»,
and 6E~;,] „l, can be calculated quite efficiently by using
the second-moment approximation and Gaussian local
density of states. ' ' It is known that this type of tight-
binding scheme leads to the essentially correct results for
the interpretation of a wide variety of lattice defects in
transition metals. ' Within the self-consistent Hartree
approximation, ' ' the change in the band-structure en-
ergy due to any kind of lattice defect 6E can be written as

E EF E
6E =2 g g f E [p (E)—po(E)]dE —a; f po(E)dE —(a /2) f [p (E)—po(E)]dE (2a)

=2 g g (2/v 2ir)exp( —(E~)'/2p. , ) I [(p,„)']' ' —(p, )' 'I, (2b)

where po(E) and p; (E) are the local density of states for
the perfect lattice and for the imperfect lattice having a
certain kind of defect at atomic site i. The superscript A,

stands for nine valence orbitals, i.e., s, p„, p~, p, xy, yz,
zx, x -y, and 3z ratomic wave fu-nctions. a; denotes
the diagonal matrix elements of the defect perturbing po-
tential for a A, orbital at atomic site i, and EF is the Fermi
energy of the system. The factor of 2 and the last two
terms in the square brackets of Eq. (2a) are for the spin
degeneracy and for the criterion of double counting of the
electron-electron interaction energy.

In Eq. (2b), iLcz is the second moment in the perfect lat-
tice and (pz;)' is the reduced second moment for the A. or-
bital at atomic site i in the imperfect lattice. This equa-
tion is derived under the condition that each atom is elec-
trically neutral. ' ' Noteworthy is that the present theory
allows us to treat both transition-metal and B-subgroup
impurities on the same basis. Summing up all the s-, p-,
and d-electron hopping processes among atoms within the
cutoff distance of 1.3 times the nearest-neighbor distance
of the perfect fcc crystal, the reduced second moment
(p2; )' is given by

(V2)'=C~ —(Vi )'= X XI'i I'J (3)
i (&j)

where VJ- denotes the hopping integral between the X or-
bital at atomic site i and the A.

' orbital at atomic site j.
p» is the first moment for the imperfect lattice equal to
a; in Eq. (2a), and is determined by using the assumption
of local charge neutrality.

=( —16.2, 8.75, —1.62)iri (r~r~) /mR, &, (4)

where m and fi are the electron mass and Planck's con-
stant. r~ and r~ are the d-state radius of each atom at
atomic sites i and j, and A,z is the distance between the
atomic sites i and j. In the present calculation, the coeffi-
cient (dd5) is assumed to be one tenth of (ddcr). In Table
I the d-state radius r~ for transition-metal solutes taken
from Ref. 26 is summarized. The s- d —and p- d-
coupling two-center integrals are given by

((sdo ), (pdrr), (pdcr))

=( —3.16, 1.36, —2.95)A rq /R;~, (5)

and the s-s —,p-p —,and p-p —coupling two-center in-
tegrals are given by

((sso ), (spcr), (pp~), (ppcr))

=(—1.40, 1.84, —0.81, 3.24)fi /mR, J . (6)

For the perfect crystal, s-, p-, and d-atomic levels, E„

The explicit expressions of the second moment pz; are
given for the perfect fcc crystal, in terms of the two-
center integrals among s, p, and d orbitals; that is, sscr,
spcr, pd~, sdo. , dd6, etc. The magnitude and the dis-
tance dependence of the two-center integrals, derived in
Harrison's universal tight-binding theory, are employed.

The d-d —coupling two-center integrals are given by

((ddcr), (ddrr), (dd5))
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TABLE I. Number of s, p, and d electrons, N,' ", N~™,and Nd ", and the d-state radius rd (in nm).
Also given are s-, p-, and d-band contributions to 5E,h, . 6E„5E~, and 6Ed (in eV). (N,', etc. are
taken from Ref. 27 and rd is from Ref. 26.)

Solute

TI
Zl
Hf

V
Nb
Ta

Cr
Mo
W

Fe
Ru

Co
Rh

(Ni)

CU

Ntmp
S

0.685
0.715
0.818

0.637
0.657
0.770

0.624
0.649
0.760

0.646

0.633
0.641

0.644
0.631

0.651

0.699

Nimp
P

0.722
0.659
0.768

0.393
0.649
0.776

0.776
0.795
0.937

0.785

0.751
0.788

0.740
0.746

0.721

0.733

N lmP
d

2.539
2.536
2.324

3.650
3.579
3.332

4.518
4.407
4.138

5.489

6.528
6.400

7.533
7.464

8.551

9.505

10.8
14.1

14.4

9.8
12.8
13.4

9.0
10.4
12.7

8.6

8.0
10.5

7.6
9.9

7. 1

6.7

5E,

—0.066
—0.131
—0.162

—0.034
—0.089
—0.133

—0.017
—0.047
—0.119

—0.019

—0.006
—0.046

—0.005
—0.033

0.000

0.004

5Ep

—0.040
—0.024
—0.123

—0.003
0.001

—0.117

—0.065
—0.095
—0.234

—0.067

—0.034
—0.091

—0.021
—0.050

0.000

0.002

—1.375
—2.714
—2.763

—1.224
—2.422
—2.640

—1.018
—1.666
—2.450

—0.883

—0.613
—1.481

—0.349
—1.143

0.000

—0.219

Ez, and Ed are determined so as to fit the numbers of s-,
p-, and d-band electrons, N„N~, and Nd, taken from
linear muffin-tin orbital —atomic-spheres-approximation
(LMTO-ASA) band-structure calculations. For a
transition-metal impurity, the numbers of s, p, and d elec-
trons, N,', Nz, and Nd, are simply taken to be equal
to those for the corresponding pure and perfect crystals
composed of each impurity element. These values are
summarized in the first three columns of Table I. This
assumption seems to be reasonable in view of the fact that
the numbers of subband electrons do not depend strongly
on the local atomic environment. Furthermore, the
values of N,' ", Nz, and Nd are quite similar to those
determined from the atomic energy levels E,', Ez
and Ed " of the atomic-structure calculations by Herman
and Skillman.

For a B-subgroup solute impurity, the numbers of s
and p electrons, N,' ~ and N' ", are determined by using
the atomic energy levels E,' ~ and Ez™taken from Ref.
30 and by assuming that Ed "~+~, i.e., Nd ——0. The
calculated values are presented in Table II, together with
the values of Ez "—E,' and the electronic state of free
atoms.

For the calculations of 5Ed;,i and 5Ed;,& „&, we only take
into account the interaction between an impurity atom
and one of partial edge dislocations, since an edge disloca-
tion is usually split into two partials in nickel. The atom-
ic configuration around the partial edge dislocation is
determined, for simplicity, from the analytical solution
based on the isotropic linear elasticity theory. ' The dis-
sociation of the edge dislocation in this case is of the
Schockley type according to (a /2) [110]~(a/6) [211]
+ (a/6)[121] on the (111) slip plane, where a is the lat-

tice constant in nickel, 35.238 nm. The width of the
Schockley partial dislocation is taken to be 8

i
b ~, where

~

b is the Burgers vector of the edge dislocation, defined
as b

~

=(a/2)[110]. The factor of 8 is taken based on
the fact that the stacking-fault energy for nickel is —160
mJ/m .

The values of 5E,h, vary with the distance of the im-
purity atom from the line of the partial dislocation of in-
terest, since the magnitude of 5Ed;, i „& itself does so in Eq.
(1). In the present study, only the maximum absolute
values of 6E,h, are presented.

III. RESULTS AND DISCUSSIONS

TABLE II. Number of s and p electrons, N,' " and N~, the
difference in p and s energy levels, E~ —E,' (in eV), and
free-atom state of B-subgroup elements. The values of
Ep E with and without asteI Isks aI e taken fI om Refs 26
and 30, respectively.

Solute

Zn

Al
Ga
In

Si
Ge
Sn

Sb

Ntmp
S

0.7699

1.0641
1.1348
1.0749

1.4080
1.4600
1.3822

1.6425

N lmP
P

1.2301

1.9359
1.8652
1.9252

2.5920
2.5400
2.6178

3.3675

gimp gimp
p s

5.02

5.254
6.47
5.439

7.035
8.02*
6.558

7.563

Free-atom
state

(4s')

(3s) (3p)
(4&) (4p)'
(5s) (5p)'

(3s) (3p)
(4s)'(4p)'
(5s) (5p)

(5s) (5p)

A. General trend of 5E,h,

In Fig. 2 are shown the calculated values of 6E,h, , as
a function of the size-misfit parameter

~
E,

~

obtained by
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the experiment. It can be seen that 6E,h, for
transition-metal solutes increases roughly in proportion to

In contrast, 5E,h, for B-subgroup solutes changes
very slightly irrespective of the magnitude of

~

c,, ~

.
These are rather expected results, since the size-misfit ef-
fect of the solute atom is not taken into account in the
present calculation of 6E,h,

The last three columns in Table I summarize the values
of 6E„6E~, and 6Ed, i.e., the contributions of s, p, and d
bands to 6E,h, for transition-metal solutes. It can be
seen that 6E,h, comes mostly from the d-band contribu-
tion, 6Ed. Table I also shows that the solute atom with a
larger d-state radius rd, and hence with larger d-d hop-
ping matrix elements, has stronger binding energy with
edge dislocations. This can be naturally understood be-
cause the stronger impurity potential leads to the larger
difference in rd between host atom and impurity atom
and vice versa. The effect of the d-d hopping interactions
can be seen more clearly by assuming a fixed value of rd
equal to that of nickel. The calculated values of
5E,„, (rd ——7. 1) are presented in Fig. 3. It is seen that
5E,h, (rd =7.1) shows the maximum, where the number

FIG. 2. Calculated chemical interaction energy 6E,h, as a
function of the size-misfit parameter

~

e, , experimentally
determined.

of d electrons is about five. This trend is often observed
in the relation between the cohesive energy of transition
metals and the number of d electrons. Notable is that
5E,h,m(rd =7.1) is strongly reduced in magnitude, com-
pared to the value of 6E,h, , shown in Fig. 2.

Furthermore, for transition-metal solutes it is found
that the d-state radius rd depends sensitively on the size-
misfit parameter

~
e, ~, as shown in Fig. 4. Now, the re-

markable correlation between 5E,h, and e, ~, found in
Fig. 2, could be interpreted through the strong dependence
of 6E,h, on rd. On the other hand, for B-subgroup
solute elements the values of 6E,h, are much smaller and
insensitive to the

~
E,

~

shown in Fig. 2. This trend can be
also interpreted by the fact that there is no effective d-d
hopping interactions between the host nickel and B-
subgroup solute atoms. This is because the d-state radius
is effectively zero and hence the d-atomic level is suffi-
ciently high for B-subgroup solutes.

Summarizing the general trends of 6E,h, for
transition-metal and B-subgroup elements, it is concluded
that an extra interaction of edge dislocation exists only for
transition-metal solutes. It is obvious that the extra in-
teraction energy for transition-metal solutes arises from
the characteristic d-d hopping matrix elements, which are
proportional to the product of the d-state radius,
(rdrd) ~ . Also obvious is that this effect is effectively
absent for B-subgroup elements.

B. Comparison with experiments

In order to make more direct comparison, the experi-
mental value of do. /dc is plotted against the calculated
value for transition metals, 6E,h, for transition-metal
solutes, in Fig. 5. A rather good correlation between them
indicates that the chemical interaction energy 6E,h,
plays a central role in the solution hardening of nickel
with transition-metal solutes. Note that the data for W,
Zr, and Hf deviate significantly from the correlation, the
reasons for which are unknown at present. However, it is
suggested by Chen et al. that Zr and Hf atoms tend to
form a pairwise cluster in the nickel crystal. As for W,
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hardening of nickel alloys, as has been pointed out previ-
ously. 9

At present, the theory for the solid-solution hardening
is not complete and is controversial. As a first approxi-
mation, however, it can be assumed that the experimental
value of d o /dc is proportional to the whole solute-
dislocation interaction energy, represented by 6E,~+6E„.
Here, the extra interaction energy 5E,„ is defined as
6Eex =6Echem 6Echem where 6Echem is taken as an aver-
age value. This definition of the extra interaction energy
is based on the fact that the solution hardening for B-
subgroup elements can be described mainly by the size-
misfit interaction and the contribution of 6E,h, is abso-
lutely small. Therefore, the solution hardening of nickel
can be expressed as

AK, ~ ~
e,

~

for B-subgroup solutes,

Cu C
~ ~

—2
nEchem (eV)

l

-3

dO
A (K,~+K,„)

~
E,

~

for transition-metal
solutes,

(9)

FICz. 5. Relation between the observed value, do. /dc, and the
calculated value of the chemical interaction energy for
transition-metal solutes, 6E,h, , in nickel.

the deviation would be responsible for the relatively larger
value of rd, which is possibly overestimated by Harrison
et al. , as evidenced by the relation in Fig. 4.

C. Relative importance of chemical
and elastic interaction energies

The present calculations of the solute-dislocation in-
teraction energies are incomplete in a sense that the lattice
relaxations around the solute atoms are not taken into ac-
count. According to the isotropic linear elasticity theory,
the size-misfit (SM) elastic interaction energy 5EsM be-
tween a substitutional solute and an edge dislocation is
given by

where 2, K,~, and K„are proportional coefficients;
AK, ~ ~

e,
~

and AK,„~ c., ~

dettote the elastic interaction
energy and the extra interaction energy, respectively.

Using Eq. (9) and the experimental data of do/dc, the
best-fitted ratio of the proportional coefficients
~ =E„/K,~

—0.8 can be obtained, and the excellent corre-
lation between the value of do. /dc and the properly scaled
size-misfit parameter (1+a)

~
E,

~

is shown in Fig. 6.
The result indicates that the size-misfit interaction energy
and the chemical interaction energy are of the same order
of magnitude and have equal importance for transition-
metal solutes.

From the values of 6E,h, in Fig. 2, a linear relation-
ship is obtained between 5E,„and

~
E, ~, as

5E,„-=—9.83 e,
~

eV for transition-metal solutes in
nickel. Thus, by comparing the magnitudes of the size-
misfit and chemical interaction energies, the theoretical

80

pb 1+v
6EsM ———0 ~a

harp 1 —v
(7)

a = 0.8 for Transition metals

a = 0 for B-subgroup elements

Ta

Nb/

b 1 —2v dE
rr ro (1—v)(1 —v )

(8)

where 0 is the atomic volume, rp the atomic radius, p the
shear modulus, and v Poisson's ratio of nickel. Using Eq.
(7) with typical values of r 1o2.46 nm, b=24 92 nm, .
p =79.96 GPa (Ref. 36), and v=0.31 (Ref. 36) for nickel,
we can obtain 5EsM -= —4. 89

~
E,

~

eV.
The modulus-misfit (MM) interaction energy between a

substitutional solute and an edge dislocation, 6EMM, can
be estimated by using the equivalent inclusion theory by
Eshelby. This leads to

60—
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where dE/dc represents the change in the Young's
modulus of the host metal due to the addition of a solute
element. From Eq. (8), 5EMM is estimated to be of the or-
der of ( —,

' ——,'0 )5EsM. Among the elastic interaction ener-

gies 6E,~, therefore, the modulus-misfit interaction is less

important than the size-misfit interaction for the solution

0-~
0 Co 0.1 0.2

(1+a) I C, I

i

0.3 0.4

FIG. 6. Relation between the increase in yield stress of nickel

per 1 at. %, d o /dc, and modified size-misfit parameter
(1+a)

~
e, ~, where a is chosen to be 0.8 for transition-metal

and zero for B-subgroup elements.
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ratio of K,„ to K,~
is obtained as a,h

——K„/E,~-=2.0.
This theoretical value of n, h can be favorably compared to
the experimental value of 0.8. Here, it can be emphasized
that a part of the chemical interaction energy derived here
certainly corresponds to the extra solution hardening of
nickel with transition-metal solutes.

IV. CONCLUSIONS

To understand the physical origin of the anomalous
solid-solution hardening of nickel alloys, the chemical in-
teraction energies between a solute atom and an edge
dislocation, 5E,h, are calculated using a tight-binding-
type electronic theory. It is demonstrated that in nickel
there exists an essential difference in the solute-dislocation
interaction energy between transition-metal and B-
subgroup solutes, in agreement with the experimental re-
sults on the solution hardening. The chemical interaction
energy 6E,h, arises mainly from the characteristic d-d
hopping interactions between the host nickel and
transition-metal solutes, which are essentially absent for
the B-subgroup elements having only sp valence.

Though the present calculations of 6E,h, are based on
a number of assumptions for simplicity, i.e., the lowest-
order moment approximation as well as neglect of lattice
relaxation and charge transfer around the solute atoms,
they are essentially acceptable and significant for the
understanding of the solid solution hardening of nickel.
In this respect, the extra solid-solution hardening may
also be expected in other transition-metal solvents. The
procedure presented here would be applicable to account
for the similar anomaly in solution hardening of the
nickel-based interrnetallic compound Ni3A1 having or-
dered fcc crystal structure, and the study is now going on.
Finally, it should be recognized that the anomalous, extra
solution hardening has not been observed clearly until
very recently. The reasons are the following: (1) The ex-
periments on solid-solution hardening have focused main-
ly on the noble-metal solvents or B-subgroup solvents, in
which a limited number of solutes are soluble. (2) The
systematic experimental study on the solution hardening
for transition-metal solvents with both transition-metal
and B-subgroup solutes has not been performed.

*On leave from Hitachi Research Laboratory, Hitachi Ltd. ,
Saiwai-Cho, Hitachi, Ibaraki 317, Japan.
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