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Correlations of a one-dimensional doubly degenerate Hubbard model are studied for the one-
quarter-filled case. Exact calculations on a four-site lattice show that a ferromagnetic state exists in
the strong-coupling regime. For a one-dimensional chain, a strong-coupling effective Hamiltonian
was studied using a self-consistent calculation, a high-temperature expansion, and quantum Monte
Carlo simulations. The results provide information on the parameters needed for ferromagnetic
correlations, and the temperature dependence of the spin and orbital correlations.

In an early study of itinerate ferromagnetism, Slater,
Slatz, and Koster' investigated the problem of two elec-
trons on a one-dimensional lattice with nearest-neighbor
hopping and onsite Coulomb interactions. For a nonde-
generate band, they found that the ground state for the
two particles was a singlet. However, for a narrow degen-
erate band in the strong coupling regime where the ratio
for the Coulomb interaction strength to bandwidth is
large, they showed that the ground state of the two-
particle system was a triplet. This was in agreement with
Van Vleck’s suggestion® that the intra-atomic exchange
interaction between electrons in degenerate orbitals,
Hund’s rule, was an important mechanism for itinerate
ferromagnetism. However, the relationship of the two-
electron problem to the many electron problem remained
an open question and has subsequently been investigated
using a variety of approximate techniques. Roth’ exam-
ined the doubly degenerate, three-dimensional one-
quarter-filled case in which there is one electron per site.
In the narrow-band limit Roth assumed that the ground-
state spins line up ferromagnetically as suggested by Van
Vleck? and used the random-phase approximation (RPA)
to investigate the spin-wave spectrum and the stability of
the ferromagnetic state. She also found that the system
formed an orbital superlattice structure in which the lat-
tice orders into two sublattices distinguished by the occu-
pation of different orbital states. Kugel and Khomskii*
and Cyrot and Lyon-Caen® constructed a strong-coupling
effective Hamiltonian and discussed the orbital superlat-
tice and ferromagnetic transition using a Hartree-Fock
approximation. Torrance® has suggested that a quasi-
one-dimensional ferromagnetic system could be obtained
from homogeneous stacks of double degenerate molecules
in the strong-coupling limit. These results show that a
natural generalization of ordinary superexchange’ in the
case of orbital degeneracy leads not only to magnetic or-
dering, but also to orbital ordering. With the current ef-
fort to synthesize quasi-one-dimensional ferromagnetic
materials,’® it is of interest to return to the orbitally degen-
erate quasi-one-dimensional model originally studied in
Ref. 1 and examine its properties when many electrons are
present.9

The model has the following form!°
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where the operator d; ; is an annihilation operator for a
Wannier electron at the site i, in the A orbital (A=1,2)
with spin s. The parameter 7 is a hopping integral be-
tween nearest-neighbor sites, and we assumed that the two
A orbitals are not mixed by the hopping. The second
term, proportional to U, represents the intraorbital
Coulomb repulsion. The third term, proportional to V,
describes the interorbital Coulomb repulsion and the final
term containing J represents the exchange interaction, or,
Hund’s rule coupling. From now on, we will consider the
one-quarter-filled case such that the average electron den-
sity per site is one.

For small lattices, H can be directly diagonalized. The
phase diagram of the four site system with four electrons
is shown in Fig. 1. Here we set the intraorbital Coulomb
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FIG. 1. Ground-state phase diagram of the four-site system
with U=V +J. Since J is smaller than the Coulomb repulsion
V, the physical regime lays below the diagonally shaded area.
In the cross hatched region the ground state is fully spin aligned
with §=2. Approximate lower J =(V2—1)V and upper
(J =V —4t) phase boundaries are shown by the short and long
dashed lines, respectively.
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repulsion U equal to V +J preserving the rotational sym-
metry. One clearly sees that the ferromagnetic regime
occurs when Coulomb repulsions and the exchange in-
teraction are large compared with the bandwidth. Some
physical insight regarding the phase boundaries can be ob-
tained by examining various competing effects in the
strong-coupling limit. The lower boundary of the fer-
romagnetic (S =2) regime arises from the competition be-
tween the usual antiferromagnetic superexchange’ ~t2/U
and the ferromagnetic direct exchange’ ~t2J/(VZ—VJ).
Equating these energies for U=V +J gives the short
dashed line J =(V'2—1)V in Fig. 1, which forms an ap-
proximate lower ferromagnetic phase boundary. The
upper boundary arises from the competition between the
hopping ¢ and the energy ¥ —J which favors the orbital
superlattice. When V —J <4t the orbital superlattice
structure breaks down. The electrons lose their localized
character, and a coherent singlet state becomes lower in
energy than the magnetic (S =2) state. In Fig. 1, the long
dashed line J=V —4r gives the approximate upper
bound.

From this four-site study, we clearly see that the phase
boundary is in the strong-coupling regime. Therefore, it
is useful for the one-dimensional problem to make a
strong-coupling expansion leading to an effective Hamil-
tonian,*>

812
Hp= E__U_(Si'si-fvl_%)(LizLiz+l +%)

1

4t2 3 1
+ V_J(Si'si+1+7)(Li‘Li+1—T)
4t2 1 zZr z 1 1
—‘—_V+J(Si'si+1—7)[Li it1—7T—7

X(LAL; 1 +L7 L] .
(2)
Here S is the usual spin-3 operator and L is a “pseudo”
spin-5 operator which describes the orbital state with
L,=~+ and — 3 corresponding to A=1 and 2, respective-
ly. We are interested in the zero-frequency g-dependent
spin and orbital susceptibilities
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At low temperatures, in the (J,¥,U) parameter regime
where ferromagnetic correlations are present, it is useful
to approximate S;-S;,; by (S;-S; ;) leading to a quan-
tum spin-+ Hamiltonian for the orbital degrees of free-
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with J; and A depending on (S;S; ;) according to Eq.
(2). Similarly, replacing the L;-L;, operators in Eq. (2)
by (L;-L;, ), one obtains

Hs= EUSS,"S,'+1 (4b)

with J; depending on the various (L;-L; ) expectation
values of Eq. (2). It is straightforward to carry out Monte
Carlo simulations'"''? of the XXZ models described by
Eqgs. (4) and to self-consistently solve them obtaining
Ji(T), MT), and J(T) as well as the correlation func-
tions X,(q,7T) and X (q,T). Note that while H; is isotro-
pic, A in H; depends on U, V, and J. As T decreases, the
self-consistent solution for A approaches'® the isotropic
limit 2. Figure 2 shows X;(g =0) in the ferromagnetic re-
gime verses [ for various J/V and U/V values.
Throughout this work we measure T in units of rt/V
and have multiplied the susceptibilities by this same fac-
tor to make them dimensionless. As seen in Fig. 2,
X;(q =0) is enhanced when J is increased, but is relatively
independent of U when U is large. For U= o0, X(g =0)
and X (g =) are shown as the solid lines in Figs. 3(a)
and 3(b). The dashed lines are obtained from the U—
limit of the high-temperature series expansions,'*
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As first discussed by Roth,’ the staggered orbital suscepti-
bility X; (g =m) shows a clear indication of the formation
of superlattice correlations in which alternate degenerate
orbitals A=1, A=1 are occupied as T decreases. In such
a system there will be a natural tendency to dimerize. In
this work we have focused on the electronic correlations
on a rigid lattice. Extensions of this approach to a
dynamic lattice will be interesting.

In order to further test the high- and low-temperature
approximations, a Monte Carlo simulation of H., Eq.
(2), with U= was carried out. The world line
method!! we used treats a restricted ensemble in which all
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FIG. 2. X,(g =0), obtained from the low-temperature self-
consistent approximation versus the inverse temperature
B=1/T. The upper two and lower two curves correspond to
J/V =0.75 and J/V =0.5, respectively. The solid and dashed
lines correspond to U/V =« and U/V =1+J/V, respectively.
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FIG. 3. (a) X,(g =0) and (b) X, (g =) versus B3, with T for
U= and J/V =0.5. The solid curves are the self-consistent
approximation, the dashed curves are the high-temperature ex-
pansion, Eq. (5), and the points are Monte Carlo data for a 20-
site lattice.

configurations have a total z component of spin equal to
zero. In the thermodynamic limit, the physical results ob-
tained from such a restricted ensemble will be the same as
those from a nonrestricted ensemble. For finite systems,
however, care must be taken to calculate appropriate
physical quantities. For example, the ¢ =0 susceptibili-
ties are obtained by extrapolating the finite g-dependence
of X(q). Results for the g-dependent spin and orbital sus-
ceptibilities on a 20-site lattice are shown in Fig. 4. The
low-momentum peak in X clearly indicates the formation
of ferromagnetic spin correlations. Similarly, the peak in
the orbital susceptibility at ¢ == implies that the system
has a tendency for alternate orbitals to be occupied.® The
peak values X (g =0,8) and X,(q =m,B) obtained from

q/m

FIG. 4. X,(g) and X (q) versus g for the same parameters as
Fig. 3 and B=4.5. Circles are Monte Carlo results on a 20-site
lattice, and the solid lines are a guide to the eye.

Monte Carlo simulations of H 4 at different temperatures
are shown as points with error bars in Figs. 3(a) and (b).

This analysis has provided detailed information on the
many-electron (one-quarter-filled) one-dimensional doubly
degenerate Hubbard model. In the strong coupling re-
gime, the intra-atomic exchange interaction leads to long
wavelength ferromagnetic and “staggered” orbital correla-
tions. The Monte Carlo calculations along with the high-
and low-temperature approximations provide a descrip-
tion of the temperature dependence of these spin and orbi-
tal correlations. From the full Monte Carlo calculation of
the strong coupling Hamiltonian, Eq. (2), it appears that
the simpler self-consistent solution, which involves only
the simulation of the XXZ model, Egs. (4), provides a use-
ful approximation when ferromagnetic correlations are
present.
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