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Automorphic properties of local height probabilities for integrable solid-on-solid models
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The local height probabilities of a class of integrable solid-on-solid models are obtained in terms
of the modular forms describing irreducible decompositions of tensor products of Ai' modules.
Their critical exponents agree with those of a coset construction of Goddard-Kent-Olive with c not
necessarily less than 1.

The local height probabilities (LHP's) of two-
dimensional integrable lattice models exhibit an auto-
morphic property which enables us to compute the critical
behavior of various order parameters. ' Although Baxter's
corner transfer-matrix method ' gives one an effective way
to compute the LHP's, the origin of the automorphic prop-
erty is yet unknown. We report here a case such that the
character formula of an affine Lie algebra explains it.

In another paper, we presented a class of integrable
solid-on-solid (SOS) models which contains those studied
by Andrews, Baxter, and Forrester (ABF). As in the
ABF case, there are four regimes to consider. In this Rap-
id Communication the LHP's in one of the regimes (re-
gime III in ABF's notation) are computed. The remark-
able fact is that they are expressed in terms of the modular
forms describing irreducible decompositions of tensor
products of A~' modules.

It was pointed out by Huse that the multicritical ex-
ponents of ABF in regime III coincide with those in the
discrete series of unitary representations of the Virasoro
algebra. The significance of the latter is known in the
conformal field theory (CFT) by Belavin, Polyakov, and
Zamolodchikov. This is the case 0 &c &1. The coset
construction of Goddard, Kent, and Olive (GKO) has
shown its power in this case. It suggests further the ex-
istence of a variety of integrable CFT's with c ) 1. Fateev
and Zamolodchikov ' have constructed some of this sort.
It is notable that the exponents of our lattice models agree
with those of the coset pair A ~' Eb A ~' &A ~' .

Let us consider a two-dimensional square lattice. Fix
two positive integers N, L such that L ~ N+3. With each
site i, we associate a "height" l; subject to the following
conditions:

l; =1,2, . . . , L —1, (l; —1 +N)/2=0, 1, . . . , N,

(l; + IJ
—N )/2 = 1,2, . . . , L —N —1

where i and j are adjacent sites. The second condition im-
plies in particular that if N is even the parity of I s are all
the same, while if N is odd, it alternates from site to site.
We consider an interaction-round-a-face model' by as-
signing a Boltzmann weight W(a, b,c,d) to each height
configuration a,b,c,d (ordered counterclockwise from the

southwest corner) round a face. A model is known to be
integrable if the Boltzmann weights satisfy the star-
triangle relation. ' In Ref. 3, we constructed a solution ex-
pressed in terms of the elliptic 8 function,

e(u) -2p'"sin
L

I —2p" cos +p 2" (1 —p z") z .
n 1 L

The weights enjoy the following symmetries:

W(L —a,L —b,L —c,L —d
~

u ) = W(a, d,c,b ~
u )

= W(c,b,a,d
~

u )

=W(a, b,c,d ~u),
W(a, b,c,d ~

u) =(g,g, /gbgd)W(b, c,d, a
~

—1 —u),
where gk =ck J8(k), sg =1, skek+t =(—) . The case
N =1 was studied by ABF.

In the rest of this paper we shall deal exclusively with
the case 0 (p & 1 and —1 & u & 0, which corresponds to
regime III of ABF. The model becomes critical as p 0.
It is straightforward to compute the free energy per site f.
We find that f is regular at the criticality except when N is
odd and L is even, in which case the dominant singularity
is f„.„s-p I lnp. We have, thus,

2 —a =L/2 .

A ground-state configuration has the same height, say b,
on the center site 1 and those sites separated from 1 by
even steps, while all other heights assume another fixed
value, say c. By definition the LHP P (a

~ b,c ) is the prob-
ability of finding the height I

&
=a at the center site 1 under

the condition that the boundary heights are fixed to those
of the ground state specified by b and e, as above. Baxter's
corner transfer-matrix method provides the following ex-
pression in the thermodynamic limit:

P (a
~ b,c ) =x '~G~ L, (x )X(a

~ b,c )/Mb, ,

L —1

Mb, - g x '~G, t. (x)A'(a
~ b,c ) .

a 1
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Here Xa L = (2a L—) /(8L ),

G (x) —g ( ) vx (2Lv+2a L)2/—(sL)

v6g
and X(a

~
b,c ) is the one-dimensional partition sum

X(a ~jb,c) = lim gx'-"'" '-"

Vm(l( lm+2) g j I lj lj +21/2
j 1

In (4) we fix i)=a, l +1=lj, lm~2=c if m is even, and
I~ =a, I +~ =c, I +2=b if m is odd. The sum is over
l2, . . . , Im such that l; and l;+1(i =1, . . . , m) satisfy the
condition (1). The parameter x is related to the nome p
through p -exp( —e), x exp( —4)r2/eL). It turns out
that P(a ~b,c) can be neatly described in terms of the
characters of the affine Lie algebra A ~

' as shown below in
(6) and (10).

Let Vk,m(0~ k ~ m) denote the irreducible highest
weight A (') module of level m and spin k/2, namely, the
one generated from the "vacuum" vector v such that
e;v =0(i =0, 1), hov =(m —k)v, and hjv =kv (the nota-
tions here follow those of Ref 2). .Consider the coset pair
A 1(') (E) A 1(') D h(A 1(') ), where d, signifies the diagonal
embedding. Irreducible decomposition of tensor modules
with respect to L))(A 1(') ) (analogous to the Clebsch-Gordan
rule) reads

Here [L„] are the Virasoro operators in the Sugawara
form, and the superscripts refer to the components in
A~' SA ~' . Our main result is

P(a ~Ib, c) =trn, (xH)/g try, (xH) .
k 0

(6)

y6 Z+ j/2I

Following GKO, we introduce the Virasoro operators EC„
=L„' +L„)—d, (L„)(n E Z) commuting with A(A(' ).
They act on the space of vacuum vectors

Qk [v 6 Wk ~sl(et)v =0, i =0,1],
with the central charge

3m I 3m2 3m+
m )+2 m2+2 m+2

Using the character formula of A~', we re~rite the right-
hand side of (6) in terms of modular forms.

Define the character of Vk by

Zk (z q) =q "tr(q 'z "' '),

with j(( =m/[8(m +2)]. Explicitly, it is given by a ratio of
0 functions

Zk (z,q ) =Fk+1 m+2(z, q )/F1 2(z, q )
(7)

Vk, , (g) Vk, , = S Wk, m =m1+m2 .
k 0

(5) )jj)/e define the character of Ak by

Here 8'k is isomorphic to a direct sum of copies of Vk
and vanishes if k~+k2&k mod2.

In order to relate the LHP P (a
~ b,c ) to this setting, we

make the following identification:

&k, k, k(q) =q 'trn, q '=q '+""(1+ ),
& =m 1/[8 (m)+ 2 )]+m 2/[8 (m 2+ 2 ) ] —m/[8 (m +2 )].
The spectrum of I(:0 on Ak takes the form [hk, hk
+ 1, hk+ 2, . . . ]. The lowest eigenvalue hk is given by

m( =N, kj =d —1, m2=L —N —2,
k2=e —1, m =L —2, k =a —1,

k1(k1+2) k2(k2+2)hk= +
4(m, +2) 4(m, +2)

k(k+2)
4(m+2)

where d =1+(b —c+ /V)/2, e =(b+c —/V)/2. Note
that the conditions (1) mean precisely 0~ k; ~ m; for
i =0,1,2(mo=m, ko=k). Put

a=2(L ' +L ) —(h, ' +h, )/2 .

with a nonnegative integer RI, defined as follows. In view
of the symmetries (i) k1 k2, m1 m2, (ii) k1 m1 —k1,
k2 m2 —k2, k m —k, we may assume that k~ ~ k2
and k ~ k~+k2. We then have

Rk -0 (k =k1+k2),

-t(k —k —tm ) (k —k —2tm1~ k ( k1+k2 2tml)

=t [k2 —k —(t +1)m1]+ (k2 —k1 —k )/2 (k1+k2 —2(t+1)m)~ k ( k2 —k1 —2tm1),

where t =0,1,2, . . . .
In terms of the characters, (5) implies the identity

+k, , (z q )~k, (z q ) g ~k, ,k;k (q )~k,
k 0

The coefficients Bk, k, .k(q) are uniquely characterized by
this 0 function identity. The significance of the 8's is that
by the substitution r —I/z [q =exp(22riz)l they under-
go a linear transformation. This is a direct consequence of
(9) and the transformation properties of the characters

I

(7). Since

L ()) yL (2) (k ()) yk (2) )/2tr q
() () z ) )

reduces to tr(x ) by the specialization q =x and z =x,
(6) is rephrased as

G, L(x)G)2(x)P(a ~b,c) = ', , ', ~d —1,,—1;a —1(x ),
Gd N+2&x jGe,L N—

(10)
where Gj t(x) =x / Fj. t(x,x ) is given by (3) and
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&i, , k,.k(q) is the modular form defined by (7) and (9).
The result agrees with the regime III result of ABF
(1V =1) and with Ref. 11 (N =2, L =7).

Let us examine the critical behavior of the LHP's
by using the formula (10). At p =0 the dependence
on the boundary heights drops off altogether, giving
P, =(4/L)sin (an/L). The deviation P(a t b,c) —P, is
expressed as a sum of the series of the form
p~(const+. . . ). According to the scaling hypothesis, ' the
critical scale dimensions are given by ri =2P/(2 —a)
=4P/L, where we have used (2). We find that the ex-
ponents P of the LHP give precisely the values ri =2hk in
(8).

In conclusion, we have shown that the SOS models of
Ref. 3 are the inte~rab]e lattice models corresponding to
the coset pair A~' SA~' OA~' . This means that the
LHP's of the former are coded in the character formulas
of the latter. We boldly propose the following principle of
correspondence: (i) an integrable lattice model a coset
pair, an affine Lie algebra g and its subalgebra [), (ii)
ground states irreducible representations of g, (iii)
heights of the central site irreducible representations of
[), and (iv) the LHP's the decomposition of the special-
ized characters.

Another realization of this principle is given in Ref. 12.

The lattice model is an ¹ tate Ising-type model' and the
coset pair is A~') and 0(5: the homogeneous Heisenberg
subalgebra). Precisely speaking, the decomposition of the
character of the A ~' module is carried out with respect to
Wx 5(W: the affine Weyl group). It is quite interesting to
add further examples of this sort, especially ones with g of
higher rank.

The above principle is to be supplemented by the third
ingredient to form a triplet consisting of a coset pair, an in-
tegrable lattice model, and an integrable CFT. The con-
tinuum limit of the second at criticality should lead to the
third, and its conformal structure should be governed by
the first. This point of view is important especially for the
case c & 1, where the unitarity argument alone does not
single out integrable CFT's. The cases % =1,2,4 of our
SOS model correspond to the known integrable CFT's:
the minimal theory, its supersymmetric extension, ' and
the Z3-symmetric self-dual theory, ' respectively. For the
¹tate Ising-type model mentioned in the last paragraph,
the corresponding CFT has been found by Fateev and Za-
molodchikov.
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