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Spiral-lattice-site animals: An exact enumeration study
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Spiral-lattice-site animals are studied on a square lattice by exact enumeration methods. The
number of animals g„ their average perimeter (t, ), and the average radius of gyration R, are ob-
tained exactly for all s-sited animals up to s 11. We find as s ~, g, —k with
X=2.811+0.002, (t,)-As with A =1.157~0.020, and R, —s~ with p=0.499+ 0.030. These re-
sults are discussed and comparisons with ordinary and directed lattice animals are made.

Lattice animals are clusters of connected sites or bonds
embedded in a lattice. They are useful in explaining vari-
ous clustering phenomena, right from the formation of or-
ganisms to the problem of branched polymers in solution
in the dilute limit. Much work has been done on the statis-
tics of these animals (see, e.g. , Stauffer' and references
therein) which is mostly concerned with finding the ex-
ponents characterizing the asymptotic behavior of animals.
!t is also well known that if global directiona1 constraints
are put on the growth process of animals, the asymptotic
behavior changes. An example is the problem of directed
lattice animals which belongs to a universality class dif-
ferent from that of ordinary animals. The picture, howev-
er, is less clear and more complicated if one puts local con-
straints instead of global constraints on the growth of the
clusters. An example of local constraints is the spiraling
constraint for which the animal can grow either in the
same direction as that in its previous stage of growth or
clockwise with respect to it. In this Brief Report, we study
spiral-lattice-site animals on a square lattice in order to
understand how local constraints affect the asymptotic
behavior of ordinary animals.

We define spiral-lattice-site animals to be a subset of or-
dinary site animals with the proviso that there is a site of
the cluster, namely, the origin to which every other site of
the cluster is attached, through at least one spiral path.
Figure 1(a) shows one such animal of ten sites grown from
the origin X. The arrows have been drawn for the conveni-

ence of recognizing the spiral paths. Figure l(b) gives the
example of an ordinary-lattice-site animal which is not
spirally connected; none of the sites of the cluster can serve
as an origin for a spiral lattice animal.

Li and Zhou have recently studied labeled spiral bond
animals without loops, i.e., spiral trees. These animals
which are more numerous than ordinary animals, have no
relevance in the present study. We perform series-
expansion-type calculations in order to study various prop-
erties of the spiral animals we have defined. Exact
enumeration of the number of spiral site animals on a
square lattice has been performed on an Iris-80 computer
for cluster size up to s =11,where s is the number of sites
in the animal cluster. The computer algorithm that has
been used consists of two parts: The first part uses
Martin's algorithm to generate ordinary animals. In the
second part, the clusters are individually checked for spiral
connection. Table I gives the number of spiral site animals
for s =1 to 11. It also includes data for the average perim-
eter (t, ) of s-sited spiral animals and the corresponding
average radius of gyration R, =((g; t

rt2/s)'I ), where r;
is the distance of a cluster site i from the center of mass of
the cluster.

TABLE I. Results of exact determination of spiral animal
properties for animal size s up to 11. g, is the number of lattice
animals, (t, )/s is the average perimeter-to-size ratio, and R, is
the average radius of gyration for s-sited clusters.

gs

(a) (b)

FIG. l. (a) A spiral lattice animal of 10 sites on a square lat-
tice grown from the origin 4'. (b) An ordinary lattice animal on
a square lattice which is not spirally connected.

1

2
3
4
5
6
7
8
9

10
11

1

2
6

17
49

140
396

1114
3131
8794

24733

4.0000
3.0000
2.4443
2.1765
2.0082
1.8905
1.8037
1.7344
1.6766
1.6276
1.5848

0.5000
0.7166
0.9103
1.0780
1.2318
1.3743
1.5067
1.6300
1.7459
1.8546

35 2071 1987 The American Physical Society



2072 BRIEF REPORTS 35

The starting point for any lattice-animal theory is the
generating function G(x) defined as G(x) =g, g,x',
where g, is the number of lattice animals of size s and x' is
the weight associated with each of the clusters. G(x) is
expected to exhibit a power-law singularity of the form
G(x) —(x —x, ) ' as x x, . This would imply that in
the asymptotic limit s ~, g, has the form

g~ —Vs (1)
where k =1/x, . A, is known as the "growth parameter" be-
cause asymptotically g, /g, ~ A, . For spiral lattice an-
imals, the variation of this ratio g, /g, -~ with 1/s is shown
in Fig. 2. Extrapolation of the last few points to s
gives X =2.811 ~ 0.002 and 0 very close to zero. For ordi-
nary (see Ref. 1) lattice animals X=4.06, 8=1, and for
directed animals X =3, 0= —,'. We find that there is a sys-
tematic reduction in the values of X and 0 as one goes from
ordinary to directed to spiral lattice animals. The value of
8 is reminiscent of the growth processes (Eden process,
diffusion-limited aggregation, etc. ) for which it is exactly
zero. 0 is also exactly zero for one-dimensional lattice an-
imals. We find that for both spiral and directed animals
the generating function has a power-law type of singulari-
ty, in contrast to ordinary animals where the singularity is
of logarithmic type. However, for spiral animals, whether
0 is exactly zero or has a very small value can be decided
only with the help of a bigger series for animal numbers.

The average perimeter (t, ) for s-sited animals is
(t, ) =g, tg„/g„where g„ is the number of lattice animals
with perimeter t and g, =g, g„. The perimeter sites in-
clude both external and internal "hole" sites. Stauffer
has pointed out that with such a definition of the perime-
ter, the perimeter or surface in the case of sufficiently
large clusters will always be proportional to the size s of
the clusters. The limiting value, for large s, of the
perimeter-to-size ratio can be regarded as a measure of the
internal disorder of large clusters. For both ordinary' and
directed lattice animals, the average perimeter distribu-
tion law for large s is

B=A+-
s

Spiral animals also obey this distribution law, as shown in

Fig. 3. The average perimeter is linear in size with a
Bethe-type first-order correction. "A," the measure of
"internal disorder, "has values 1.157 ~ 0.020 for spiral an-
imals and 1.20, 0.75 for ordinary' and directed animals,
respectively. From the data for perimeter-to-size ratios,
one can also have an alternative estimate of the growth pa-
rameter X,. In fact, as in the case of ordinary animals, '
the leading s dependence of g„ for large s can be expressed
as g,&

-A'e', where

A=A(/I ) =lim,

a =(t, )/s for any s, and

(a+ 1)a+1
a'

g =g(A) =lim, —ln(g„A ')1

S

is the exponent for the leading exponential variation of the
ratio g„/A' with size s. As s ~ ee, a A, we get for the
growth parameter

(3)

2-5

Figure 4 shows the variation of g (a ) with "a" from which
we obtain g(a =A ) = —0.48 and using Eq. (3), k comes
out to be 2.8. This value of X is in complete agreement
with the value 2.811 obtained earlier from Eq. (1). This
provides a good consistency check of the relevant animal
theory in case of spiral lattice animals.

Finally, we study the variation of the average radius of
gyration R, with s. The values of R, for different s are
listed in Table I. We find that the spiral animals obey the
same scaling law R, -s as do the ordinary' and directed
animals. From successive values of animal radii R, ~ and
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FIG. 2. Plot of the ratios g, /g, —
~ vs 1/s for spiral animals on a

square lattice.
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FIG. 3. Variation of average perimeter-to-size ratio &t, )/s
with 1/s for spiral animals on a square lattice. Extrapolation to
s ~ gives (t, )/s 1.157 ~ 0.020.
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FIG. 4. Variation of g(a) with a. The extrapolation to a rt
gives g (A ) —0.48 for spiral lattice animals.

FIG. 5. p, vs I/s for both ordinary (using the results of Ref.
10) and spiral animals. Extrapolation to s~ ~ gives p(ordi-
nary) =0.635 and p(spiral) =0.499 ~ 0.030.

R„an estimate of p, for the exponent p is obtained from

[logio(R ) —logio(R —i) ~

ps =
[log~o(s ) —log~o(s —1)] (4)

In Fig. 5, we plot p, vs 1/s and extrapolate the plot to
1/s =0. The variation of the last few points is quite linear
but with a superimposed small-amplitude oscillation. Nu-
merical estimate of p=lim, p, is obtained as the aver-
age of the linear intercepts from the last few points and
comes out to be =0.499 ~0.030. In the same figure the
corresponding plot for the ordinary animals (obtained
from the results given in Ref. 10) is also exhibited for the
sake of comparison. The value of p for ordinary animals is
=0.635. This radius exponent p describes the geometry of
animals in terms of an effective dimensionality df =1/p,
the cluster mass M varying as M ~ (R, ) f. If df ( d, the
spatial dimension of the lattice, the animals are said to be
ramified, and if df =d, the animals are compact. For
spiral animals we find that df is very close to d, i.e., spiral
clusters are almost perfectly compact. We argue that this
is due to the nature of the constraint itself. Spiraling con-
straint is effective only in the presence of rotational force
fields. A cluster growing in such a field will tend to have a
compact structure because of the centripetal force acting
on it. Other lattice models which compact clusters are a
characteristic feature of include some growth models like
the Eden model

To sum up, we find that lattice animals with spiraling
local constraint belong to a new universality class. The
various distribution laws and scaling forms, however,
remain unaltered. This is true for global directional con-
straints also. The spiral animals have many interesting
features: The animal number exponent 0 is very close to

zero and the fractal dimensionality df is almost equal to
the Euclidean dimensionality d. Granting that enumera-
tion of animal properties for larger values of s is essential
for rigorous verification of these interesting estimates, one
does not, however, fail to notice the close agreement of
these results with the corresponding exact results for the
Eden growth model. The lattice-animal problem is a static
problem with clusters of a given size being assigned equal
weight, whereas the growth model describes a nonequi-
librium situation where the probability of obtaining a par-
ticular configuration depends on the history of growth. It
is an open problem to relate both these models by finding
growth rules that would generate lattice animals with the
correct statistical weight. The similarity of exponents for
the spiral-lattice-site animal problem and the Eden growth
model gives added justification for further studies in this
direction. Finally, we would like to point out the dominant
role played by loops in the formation of spiral animals.
For ordinary lattice animals, it is known' that loops are
irrelevant for the study of asymptotic properties. Havlin,
Trus, and Stanley' have considered a growth model for
which the clusters are chemically linear. Such clusters ex-
hibit the same asymptotic properties as do geometrically
linear chains; the loops are insignificant in this case also.
But, for spiral lattice animals, loops are absolutely essen-
tial for cluster connectivity and have an important contri-
bution to the cluster statistics. A detailed analysis of the
role played by loops in the geometry of spiral lattice an-
imals will be reported elsewhere.
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