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Correlation functions of order-parameter fluctuations in a Fermi system
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Inverse Fourier transforms of dynamic correlation functions of order-parameter fluctuations in

the singlet-spin-pairing and equal-spin-pairing states of an interacting Fermi system are calculated
in a mean-field approximation. The behavior of these functions in the corresponding critical re-
gions, i.e., in the neighborhood of a critical point for an anisotropic, singlet superfluid (and for a
superconductor) and for an equal-spin-pairing-type triplet superfluid, are examined. It is found
that these functions do not conform to certain generalized homogeneity assumptions. The static
counterparts of these functions are found to be nonsingular at corresponding critical points. A
comparison of these findings with corresponding findings for a Bose system, reported in a previous
work, highlights the role of Fermi statistics in the critical regions under consideration.

Static critical behavior of an interacting Bose system is
known' to be independent of the microscopic detail in
the Hamiltonian of the system. However, the same may
not be true for the dynamic behavior. An indication is the
oscillatory behavior in time of the inverse spatial Fourier
transform S(q,t) of the dynamic correlation function of
order-parameter fluctuations with time period 2tr6/E (q),
where E (q) is the single-particle excitation spectrum. The
origin of this behavior is the microscopic, quantum-
mechanical basis described in Ref. 4. It may be expected
that such a behavior can also be found in the correspond-
ing function for an interacting Fermi system. Moreover,
effects, if any, of the statistics of particles in the system at
criticality are likely to be more transparent in correlation
functions, such as those of order-parameter fluctuations,
rather than in thermodynamic functions, because while
definitions of the former involve sums over Matsubara fre-
quencies, definitions of the latter involve sums over these
frequencies and integrations over momenta. For these
reasons, the present report aims at deriving expressions for
correlation functions of order-parameter fluctuations in
the Fermi system. The functions will be calculated for two
states of the system, viz. , singlet-spin-pairing (SSP) and
equal-spin-pairing (ESP) states, to ascertain whether
states of the system influence their behavior in any signifi-
cant manner at criticality. The functions will be calculat-
ed in a mean-field approximation (MFA) which is essen-
tially the same as that in a theory based on Bardeen-

I

Cooper-Schrieffer wave functions for various types of spin
pairing. The approximation enables one to regard the sys-
tem as almost ideal in a critical region. Another reason for
studying the correlation functions, which explains the in-
terest in critical forms of these functions, is explained
below.

In Ref. 4 (hereafter referred to as I), the function
S(q, t ) was shown to comply with a dynamic scaling an-
satz [see Eq. (108) in I] in the neighborhood of a critical
point. It was possible to establish this because (i) the ex-
pressions for S(q,0) [see Eqs. (48) and (57) in I] are pro-
portional to terms coth[PE (q)/2] because of certain sums
over the Matsubara frequencies to„=2ntr/Ph, with
n =0, ~ 1, ~ 2, . . . , and (ii) the magnitudes of the mo-
menta q involved are small compared to the boson thermal
momentum. A corresponding function S(k,t), for the
present system, is expected to involve terms due to sums
over to„and those due to sums over v„=(2n+1)tr/Ph. It
will therefore be interesting to see whether a dynamic scal-
ing assumption [see Eq. (35)], similar to that in I, holds
for S(k,t).

In second-quantized notation, the mean-field Hamil-
tonians corresponding to SSP and ESP states, respectively,
read

0, =pe(k)akt~k +g [At(k)a klakt+h(k)akttat kl]

and

Ht g s(k)akWkcr+ 2 g [~11(k)a—ktakt +11(k)akla —kf +~f2(k)a —klaki +~22(k)akta —kl ]
k, a k

(2)

where

6 ks(k) = —p2m

a(k) = —,
' g Vkk(a ktakt),

I

Z»(k) =g Vkk(a ktakt),
I

A22(k) =g Vkk(a —khaki)
I

(3)

(4)

(5)

(6)

Here, p denotes the chemical potential of a fermion and
V~ an attractive interaction potential. Angular brackets

) in (4) denote the thermodynamic average calculated
with H, ; those in (5) and (6) the averages calculated with
0, . The usual considerations ' regarding attractions in
pure s and p-wave state-s imply that whereas A(k) is in-
dependent of magnitude of k, Att(k) and d,22(k) are odd
functions of k. Equations for these gap functions are well
known. '

As already stated, the aim is to examine behavior at cri-
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F (r, t ) =
&

d R yt (R+ ,' r, —t ) yt (R —,' r, t—), (7)

ticality of correlation functions of order-parameter fluc-
tuations in SSP and ESP states. One needs to define these
functions appropriately for the two states. To this end, one
may first consider the operator

where

y(x, t ) = exp(iH, t /h) y(x,O) exp( —iH, t/h), (8)

y(x, O) =V ' gag(0)exp(ik x)
k

and V denotes the volume enclosing the system. The ther-
modynamic average of F(r,O) defined with H, has the
physical significance of a sort of wave function for Cooper
pairs. It follows that

I",(r, r', t ) —=—,
' [&F t(r, t )F(r', 0) +F(r, t )Ft(r', 0)) —&Ft(r, t ))&F(r',0)) —&F (r, t ))&Ft(r',0))], (io)

where angular brackets denote thermodynamic average calculated with H„may be taken as a measure of the dynamic
correlation of order-parameter fluctuations in the SSP state. The corresponding function, for the ESP state, may be
given by

I",(r r't )—= ,' [&Ff —(rt )F 1
(r', 0)+F t (r t )F( (r',0) +F t (r t )F

~
(r',0) +F

~ (r t )F j~ (r',0) )
—&F((r,t ))&Fi(r',0)) —&Fi(r, t))&F((r',0)) —&F((r,t))&F~(r',0)) —&Fi(r, t))&Fit(r', 0))], (11)

where

Ft(r, t)—=
&

d R yi(R+ ,'r, t)yt(R ——2r,t), (i2) dze' "'Qt(kz, kO), I =1,2, . . . , 6 (23)Qt(k, co. ) =„
The Lehmann representations of Matsubara propagators

t ph

etc. , and angular brackets denote the thermodynamic aver-
age defined with H, . If the system is spatially homogene-
ous, then I (r,r') in (10) and (11) depend on (r —r') and it
is useful to introduce the Fourier transform

Q~(kz, kz') = —&T [bt, (z)bgt (z')]),
Q2(kz, kz') = —&T [by~ (z)bq(z')]),

93(kz,kz') = —&T[bgt(z)bgtt (z')]),
94(k,k ') = —

& T [b

jest

( )b pi ( ') ]),
S,(kz,k') = —&T [b„(z)b t, (z')]),
96(kz,kz') = —&T [bg( (z)bg/(z')]),

fO

S(k,co):— d rd r' dt e'i~' "'t' ' I (r —r', t) .2 g aJ (24)

(i4)

In what follows, first an expression for S(k,co) will be ob-
tained. This will lead to one for S(k, t ).

In view of (7)-(13) and equations for gap functions,
it is easy to see that

b (z) =exp(Hz/h)b(0) exp( —Hz/h) . (25)

Yt(x t ) =exp(tHgtlh)yt(x 0) exp( —iH t/h), (13) are useful to evaluate the averages in (16) and (18). Here,
co„=2ntc/Ph, with n =0, + 1, + 2, . . . , and

St(k, co) =St, (k, co)+Std(k, co), 1 =s, t

where

(is)

S„(k,~) =—,
' dt e'"[&bt(t)b„(0) +b,(t)b', (0))1,

(16)

S,~(k, co) =
2

tanh' b(c0),PE(k) (i7)
4E k

S„(k,co) = —,
' dt e' '[&bgtt(t)bgt(0)+b gt(t)bt gt(0))

+&bgt( (t)bg((0) b+g)(t)bt g) (0))],

(I e tjtico) —1—
S„(k,a)) =

4x
(1 e Phm) 1

S„(k,co) =

[A i (k,c0) +2 2(k, co)), (26)

[A 3(k,co) +A 4(k, co)

+&s(k,~)+&6(k,~)], (27)

Angular brackets in the expressions for (Q~, Q2) above
denote thermodynamic averages calculated with H, while
those in the expressions for (93, . . . , Q6) with H, . Using
the Lehmann representations of Qt(k, co„) and following a
procedure similar to that in Sec. IV of I, it is quite
straightforward to show that

S,d(k, co) = I ~„«)I', pE,, (k)
tanh

(18) where

At(k, co)—= iÃt(k, co. ) I; „- + o+

-gt(k, ~.) I; „- -o.] (28)

b), =a —ptas~, by~ =a —g~agt, bg~ =a g~ag)

E(k) =[e (k)+ I/I ]'t

E "(k) =[8 (k)+ Idl "(k) I
]'

(20)

(2i)

(22)

The propagators in (28).can be calculated by solving the
equations of motion for the temperature functions in (24).
The equations of motion for the operators bg(z), bgt(z),
etc. , are required for this purpose. From (1), (2), and (25)
one gets these equations. On solving equations of motion
for the temperature functions one finds
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'2
Q((k, to„) =—1+ [ic0„—2E(k)h '1 'xtanh

4 E(k) 2
'2 r

1 — [ito„+2E (k) 6 '] ' x tanh
4 E(k) 2

'2
92(k, to„)=—1—s(k), , PE (k)

4 E(k) [ito„—2E(k)6 ] xtanh
2

(29)

(1 e
—Phm) —1

S„(k,to) =

r '2
1+ [ito„+2E(k)h '] 'xtanh (3o)

4 E(k) 2

The propagators 93(k, to„) and 94(k, co„), respectively, are obtained replacing E (k) by E~&(k) in (29) and (30), whereas
95(k, to„) and 96(k,co„), respectively, are obtained replacing E (k) by E22(k). In view of (28), one then gets

2
1+ tanh [8(co —2E(k)6 ') —8(co+2E(k)6 ')] (31)

(1 e Phrs) 1

S„(k,tp) =

I

1+ tanh [8(to —2EJJ.(k) 6 ') —8(to+ 2E~J (k) h ')] . (32)g2(k) pEJ~ (k)
EJ2J (k) 2

From (31) and (32), one finds

S kt =—'1+ "'"'
4 E'(k) 2

—2iE(k)h 't 2iE(k)h
x +

e
—2PE (k) e 2PE (k) (33)

S„(k,t) =—g 1+1 e'(k)
8 J, 2 E)~j(k)

JJ
—2iE (k) h 't

X +—
2pEJJ (k)—e

pE,, (k)
tanh

2iE»(k) h 't
e

e 2pEJJ(z)
(34)

S,(i"~(k),i"
~
~ ~,i't ) =is, (s(k),

~
~ ),t ), (35)

These expressions are not similar to the expressions for
S(q,t) in I [see Eqs. (104) and (105) in I] inasmuch as
the coefficient of the term in the large parentheses in (33)
involves [tanh[pE(k)/2]], and that in (34) a similar term,
arising due to sums over the Matsubara frequencies
v„=(2n+1)tt/Ph, with n =0, + I, + 2, . . . , i.e. , due to
Fermi statistics. As will be seen, this dissimilarity has a
significant effect on the critical forms of S(k,t) and
S (k,o) for the present system.

A dynamic scaling ansatz, similar to that in Eq. (108) of
I, for an anisotropic, spin-singlet superfluid (and for a su-
perconductor) may be stated as follows: In the neighbor-
hood of a critical temperature T, of the singlet superfluid,
the correlation function S,(k,t) satisfies the generalized
homogeneity relation

In the neighborhood of T„one may assume
—

~
s(k) ~, for ~k~ —kF (Fermi momentum), and

small compared to
~
s(k)

~
otherwise. A similar assump-

tion may be made for
~

A~ ~ (k)
~

and
~ 522(k)

~
in the

neighborhood of T, . The quantities P, ~
e(k)

~
and

p, ~
s(k) ~, on the other hand, may be regarded as small

compared to unity, for
~ k~ —kF, and large otherwise. It

follows that, for
~ k~ —kF, S„(k,t) and S„(k,t) (in a uni-

tary ESP state ), respectively, may show oscillatory
behavior in time in the critical regions corresponding to T,
and T, . Furthermore, for a nonunitary ESP state, beats
may occur. For a superconductor, taking (bp/k~T, ) of
O(1), where d,p is the gap edge, and T, of O(1 K), one
finds that the oscillatory behavior is expected to occur at
microwave frequencies. These are quantum-mechanical
effects which have no counterpart in classical systems.
Similar oscillatory behavior has also been observed for the
effective Bose system (EBS), described by a mean-field
Hamiltonian, in I. It may be noted that such a behavior is
not special to the MFA. In a non-mean-field-theoretic
description of the EBS (see, e.g. , Ref. 7) this behavior can
also be observed when suitable approximations are made.

The assumptions above, regarding the order of smallness
of 5 ~, ~

e(k) ~, etc. , imply that (35) will hold near T„ for
~
k —kF, provided that S„(k,o) is a generalized homo-

geneous function (GHF) in this case. These assumptions
also imply that a hypothesis similar to (35) will hold near
T„ if S„(k,o) is a GHF. Since, for ~k~ -kF, P, ~

s(k)
~

and P, ~
s(k)

~ may be regarded small compared to unity,
in view of (17), (19), (33), and (34) one may write in the
critical regions corresponding to T, and T„respectively,

where I denotes an arbitrary positive number while the ex-
ponents bk, b&, etc. , are unknown quantities, the inputs of
the theory. In the neighborhood of a critical temperature
Tt of an ESP-type, triplet superfluid also, a similar rela-
tion can be written down. We will now examine whether
expressions for S(k,t) calculated above satisfy these as-
sumptions.

S, (k,O) =—1+
~'(k)+ ~~~'

r

S, (k,o) =—1+ 2["(k)+
~
~„(k)~']

s'(k)
2[s'(k)+

~
~»(k)

~

']

(36)

(37)
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S,(k,O) =
2 tanh coth [P,s(k) ] .

P, s(k)
(38)

when ~k~ -kF. Evidently these are not GHF's. There-
fore, the dynamic scaling assumptions do not hold, for

( k
~

—kF. Similarly, when
~
k

~
is not of the same order as

kF, it can be seen that S, (k,O) and S, (k,O) are not GHF's.
The same conclusions as above may be expected to be valid
for corresponding function of a non-ESP state. It follows
that for a Fermi system, capable of exhibiting momentum
condensation, the microscopic exponents v and z cannot
be defined. The results above are contrary to correspond-
ing results for EBS, the reason for which can be traced to
[tanh[PE(k)/2]j in (33), and the similar terms in (34),
arising due to Fermi statistics.

At a critical point for an anisotropic, singlet superfluid
(and for a superconductor),

For an ESP-type, triplet superfluid, S, (k,O) at correspond-
ing critical point is obtained replacing P, by P, in (38).
This concurrence was expected, for at a critical point the
system reduces to an ideal Fermi gas in the present MFA.
The right-hand side of (38) is nonsingular. For an in-
teracting Bose system, however, the corresponding func-
tion S(q,O) exhibits singular behavior: At a critical point,
S(q,O) depends on momenta q as S (q,O) —

~ q ~, and in
the neighborhood, as S(q,O) —(

~ q ~ +qo ) ', where qo
'

is the correlation length of order-parameter fluctuations.
This singular behavior corroborates the fact that an in-
teracting Bose system behaves like a classical spin system
at criticality. As is clear from above, this fact does not
hold for the Fermi system. The role of the statistics in an
interacting Fermi system at criticality is thus reem-
phasized.
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