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Scaling and deep inelastic neutron scattering from quantum liquids and solids
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A new scaling variable is proposed for investigation of deep inelastic neutron scattering from
quantum liquids and solids. The method improves the usual impulse approximation, accounting
for a shift of the quasielastic peak with respect to the free recoil energy ft q2/2m and for an
asymmetric behavior of the wings in the dynamic structure function. The approach is successfully
employed to investigate the experimental data in liquid He at q =10 A
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The occurrence of scaling phenomena in deep-inelastic
scattering has been pointed out in several domains of phys-
ics as, for example, in neutron scattering from liquids and
in elecron scattering from nucleons and nuclei. Though
not explicitly mentioned, the concept of scaling has also
been employed in the investigation of Compton scatter-
ing from atoms, molecules, and metals, and of neutron
scattering from quantum liquids " and solids' ' where
extensive use of the impulse approximation (IA) has been
made. In fact, the IA'" provides the following expression
for the dynamic structure function:

metric and antisymmetric parts with respect to m —co~,

S(')(q, co) =—,' [S(q,co)+S(q,2con —co)]

S ' (q, co) =z[S(q,co) —S(q,2con —co)],
(4)

the antisymmetric part has then the typical oscillatory be-
havior of Fig. 1 where the experimental data for liquid
He at T 1.2 K are reported. The oscillations close to

co~ are a consequence of the shift of the peak, the other
two are associated with the asymmetric behavior of the
wings. In order to extract the momentum distribution
from experiments a symmetrization procedure is common-
ly employed. ' The method essentially makes use of the
symmetric part Sl')(q, co) of the measured structure func-
tion in order to determine n(p) via Eq. (1). In this way
one expects to remove first-order corrections in 1/q due to
the interaction, corrections which are instead present in
the antisymmetric part S ' (q, co).

The systematic occurrence of the above deviations with
respect to the IA and their independence of the nature of

qS (q, co) =2nm J
~

~pn(p)dp . (3)

In Eqs. (I)- (3), n (p ) is the momentum distribution of the
system, and q and m are the momentum and energy
transfers, respectively (h =1). In deriving Eq. (3) we
have neglected, for the sake of simplicity, possible anisot-
ropies in the momentum distribution. Though the IA can
be shown to yield the exact dynamic structure function in
the asymptotic limit q ~ and for sufficiently soft poten-
tials, ' ' it has been pointed out' ' "' that at finite
momentum transfer it provides only a semiquantitative
description of deep-inelastic neutron scattering in interact-
ing many-body systems, the effects of the interaction being
taken into account only through the momentum distribu-
tion. Microscopic calculations of S(q,co) which take into
explicit account the role of the interaction, are now becom-
ing available for liquid' ' and solid' helium systems at
zero temperature. One of the limits of the IA is that it
predicts the dynamic structure function S(q, co) to be sym-
metric in the variable co —con [con =(1/2m)q is the free
recoil energy] for any value of q. This behavior is contra-
dicted by experiments' ' "which show that the peak en-
ergy is shifted to the left with respect to co~ and that the
wing at the right of the peak is higher than the one at the
left. If one divides the response function into its sym-
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FIG. 1. Experimental values (Ref. 7) for S~'1(q, co) and
S~'1(q, co) [Eq. (4)] in liquid 4He at T =1.2 K and q 10 A.

The full lines are obtained by inserting the momentum n (p ) dis-
tribution of Ref. 7 into Eq. (7) and taking (K) 14 K.
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the system (liquid, solid), as well as on statistics ( He,
He), suggest that the shift of the peak and the asymmetry

of the tails are a general feature of condensed systems at
low temperatures.

The purpose of this paper is to suggest a possible mecha-
nism responsible for such effects, emphasizing the con-
densed nature of the target. A similar method has been al-
ready employed for investigating deep-inelastic electron
scattering from nuclei. ' The IA treats the motion of the
atom colliding with the neutron as completely free. In par-
ticular, it ignores the fact that in condensed systems at
zero temperature the atom occupies a bound state before
collision, and also that in the final state the scattered atom
interacts with the rest of the system. The drawback of the
IA is expected to be particularly significant when large
values of p are involved in the integral (1), i.e., in the
wings of the structure function. In fact, in this case the IA
gives an unphysica11y large energy to the atom before col-
lision. The simplest way to improve the IA is to replace
the energy p /2m of the atom before collision with an
average binding energy s and to add an average potentia1
energy V to the kinetic energy (p+q)2/2m of the scattered
atom. The structure function then becomes

fO (p+q)'S (q, co ) =J n (p )8 co — —V+ s
2m

If one requires the counting sum rule fS (q, co) co dco
=q /2m to be satisfied, the quantity s —V is found to
coincide with the average kinetic energy per particle
(K) = ,' m f n(—p)p dp of the system. The structure func-
tion then takes the following form free of adjustable pa-
rameters:

r (p+q)'S(q,co) = n(p)h co — P q +(K) dp .
2m

(5)

qS (q, co) =21rm
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where

y) = [2m (co+(K))]' 2 —
q

Though the two-body force does not appear explicitly in

Eq. (5), the effects of the interaction (in particular the
binding of the system) play a crucial role in its derivation.
In particular, Eq. (5) exhibits significant differences with
respect to the structure function of a free gas. Of course
only some average effects of the interaction are taken into
account in Eq. (5). Explicit final-state interaction effects
should be considered for a more detailed description, as re-
quired, for example, in the study of the broadening of the
momentum condensate in the dynamic structure function
of superfluid He.

Integration over p in Eq. (5) yields (an isotropic
momentum distribution is also assumed here)

t'P+
qS (q, co) =21rm g

~ ~

pn (p )dp (6)

where p ~ =[2m (co+(k))] '~ ~ 1. Equation (6) shows
that the quantity qS(q, co) scales in a single variable only
for large values of q and co such that p+ »

~ p —
~

(such a
condition is usually well satisfied in deep-inelastic reac-
tions). In this case one can write

is the new scaling variable. One should notice that the
scaling function (7) is the same as in the usual IA [Eq.
(3)]. It is the scaling variable which differs in the two
cases. Some interesting properties of the structure func-
tion emerge in the new approach. First of all the peak en-
ergy is given by

co~,k = q' —(K),1

2m

i.e., is shifted to the left with respect to the recoil frequen-
cy co~ by an amount given by the kinetic energy. The ob-
served shifts in liquid He (Refs. 6 and 7) ( —10 K) as
well as in liquid He (Ref. 11) (—10-20 K) and in solid
He (Ref. 12) (—20-30 K) are consistent with the ex-

pected values for the kinetic energy of such systems. One
should, however, consider Eq. (9) as an estimate of the
average peak energy, the present method being unable to
predict the observed oscillatory behavior of the shift as a
function of q. That the shift of the peak is negative and of
the same order of magnitude as the kinetic energy is also
confirmed by the theoretical calculations of Ref. 19 for
solid He and He. Another important effect predicted by
Eqs. (7) and (8) is the asymmetry of the wings. This ef-
fect is entirely due to the fact that the quantity

~ y ~ ~, dif-
ferently from ~yo~, is not symmetric with respect to
m —m~. The symmetric and antisymmetric parts of
S (q, co) can be more explicitly evaluated by expanding the
scaling variable y& in powers of 1/q for a fixed value of
yo. Retaining terms up to 1/q one finds

y ) =yp+ —(m (K) ——2ypz ),1 (10)
q

qSC'~(q, co) =2mm
g

~ ~

pn (p)dp, (11)

qS ' (q, co) =2+m n(y )o(m(K) —2yo ) . (12)
q

Equation (12) exhibits the correct q dependence as expect-
ed from general arguments. ' In particular, y~ yo and
qs~'~(q, co) 0 when q ~ in agreement with the fact
that the IA is expected to be as(mptotically exact. Equa-
tion (12) predicts the zeros of S ' (q, co) to be given by

co —co~ = + (2m(K))'q

independently of the form of n (p ) [co =co~ is also, by defi-
nition, a zero of St'~(q, co)]. Equations (12) and (13) sug-
gest the possibility of extracting the value of the kinetic
energy of the system by looking at the shift between the
zeros of S~'~(q, co) and the free recoil energy. From the
experimental data of Fig. 1 one can extract such a shift
with a reasonably good precision, the resulting value for
(K) being —14 K, which is a reasonable value for liquid
He at low temperatures. The present model predicts the

above shift to increase linearly with the momentum
transfer q. The explicit experimental confirmation of such
behavior would be desirable. The correctness of Eq. (13)
for giving the zeros of S in the high q limit can be for-
mally proved in the model of Ref. 19 for solid He and
4He"

In order to evaluate the dynamic structure function
S(q, co) through Eqs. (7) and (8) one needs the momen-
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turn distribution of the system. By taking the results of
Ref. 7 for n (p) and assuming (K) =14 K [the above re-
sults for n (p ) do not allow for an accurate direct estimate
of (K)], we obtain the results of Fig. 1 (full curve). It is
worth noticing that the antisymmetric part is well repro-
duced in the present approach based on the scaling vari-
able y&. The good agreement for the symmetric part is not
surprising. It simply indicates that higher-order correc-
tions in I/q in S ' (q, co) [Eq. (11)] are negligible, i.e.,
that the symmetrization procedure used in Ref. 7 to ex-
tract n (p ) is highly accurate in this case.

The importance of the antisymmetric part can be more
generally discussed using a Gaussian model for the
momentum distribution:

2

n (p) =(—', zm(K&) ttzexp
4 (K)m

One then finds that the ratio between the maximum
heights of S and S ' is given by

S"( a) =—(2m(K))' b' exp( —b), (14)S(') (max) q

with b =—,' (3+J6). Prediction (14) agrees with the
theoretical results of Ref. 19 for solid He and "He in a
very accurate way. In particular, it explains why the IA
limit (S ' =0) is reached more rapidly in solid He at
lower density than at higher density, and more rapidly in
He than in He.

In conclusion I have proposed a new scaling variable for
investigating the dynamic structure function in condensed
systems at low temperatures. The new approach, which is
expected to improve the usual impulse approximation at fi-
nite values of momentum transfer, accounts for a sym-
metric as well as for an antisymmetric component in

S(q, co) with respect to co —coR. Clearly the explicit and
systematic experimental verification of the new scaling
behavior would be highly desirable. In particular, it would
allow for a safer determinaton of the momentum distribu-
tion in quantum liquids and solids.
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