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Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-
averaged resistance (p) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the
presence of a finite electric field F. The mean resistance shows a crossover from the exponential to
the power-law length dependence with increasing field strength in agreement with known numerical
results. More importantly, unlike the zero-field case the resistance distribution saturates to a
Poissonian-limiting form proportional to 4 | F |exp(— 4 | F | p) for large sample lengths, where 4

is constant.

It is now well established both numerically and analyti-
cally that almost all the electronic eigenstates of a one-
dimensional (1D) disordered system are exponentially lo-
calized for arbitrarily weak static disorder.! This local-
ized nature of the eigenstates manifests as an exponential
increase of ensemble-averaged resistance {(p) with the
sample length (L).> Experiments on quasi-one-
dimensional wires confirm this length-scale dependence of
resistance, with the Thouless length L;=1/Dr;, effec-
tively replacing the sample length.®~> In addition to thus
being nonadditive, the quantum Ohmic resistance is also
known to be non-self-averaging®~!? in that the resistance
fluctuations over the ensemble of macroscopically identi-
cal samples dominate the ensemble average, i.e., there is
no typical resistance. In point of fact the relative fluctua-
tion of resistance is much larger than the relative fluctua-
tion of the underlying random “impurity” concentration
for large sample lengths. We call these generically Sinai’s
fluctuations.!> These “Sinai” fluctuations, reflecting the
sensitivity of the residual resistance to the microscopic de-
tails of the sample-dependent random potential, are due
ultimately to the quantum-coherence effects of elastic
scattering for L << L. Their most striking manifestation
is the universal conductance fluctuation ~e?/h in the me-
tallic regime as function of chemical potential obtained
recently by Lee and Stone.'? Closely related to this is the
magnitude of the flux-periodic conductance fluctuation.'?
(The ensemble fluctuation and the fluctuation for a given
sample as function of chemical potential are expected to
be related by some sort of ergodicity.) Our recent work!*
suggests that these fluctuations persist right up to the mo-
bility edge on the insulating side in higher dimensions
(D> 1) and are suspected to have important bearing on
the physics at the mobility edge.

In the present work we have examined the influence of
a finite electric field on these fluctuations for the case
D =1, where analytical treatment turned out to be tract-
able. Our main result is that the fluctuations get har-
nessed by the field and the probability distribution of
resistance saturates to a limiting Poissonian form for large
L. The mean resistance shows a crossover from the ex-
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ponential to the power-law length-scale (L) dependence.
The crossover is in agreement with the numerical results
on disordered (one-dimensional) 1D Kronig-Penney model
giving weakly (algebraically) localized eigenstates in the
presence of a strong electric field."> While there are a few
recent studies on the influence of a finite electric field on
the nature of the eigenstates and average resistance!®!7
and the spectrum,'® there is none to our knowledge on its
influence on the resistance fluctuation.

Our approach is based on “invariant imbedding” as
used recently by one of us® and by Heinrichs,!® but, in
fact, can be traced to a much earlier work of Landauer.?
This enables us to directly address the emergent quantity,
namely, the reflection coefficient without having recourse
to the wave function. The reflection coefficient is in turn
related to the extrinsic resistance (conductance) via the
Landauer formula.?

The model Hamiltonian for the 1D disordered system is

H=————+4+V(x), (1)

where V(x) for 0 <x <L is the random potential assumed
to be a delta-correlated Gaussian variable with

(V(x))=—]e | Fx,
and (2)
([Vx)— VO]V (x)—(V(x))]) =V*(x —x') ,

and F ( > 0) is the external electric field directed along the
—ve x axis. The disordered sample extends from x =0 to
x =L, the two ends being connected Ohmically to perfect
leads maintained at a potential difference |e | FL. Con-
sider an electron of wave number k(L) incident at x =L
from the right. It is partially reflected with the complex
amplitude reflection coefficient R(L) and partially
transmitted with wave number ky#%k{(L). Now, we must
employ an imbedding procedure appropriate to this situa-
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tion, namely of unequal incident and transmitted wave 2kq k(L)—kq
numbers.'*?! The complex amplitude reflection coeffi- R(L)=7——"——r(L)+ 57— (2a)
. N X R R ko+ky (L) ki{(L)Y+kq
cient R(L) then obeys the stochastic Riccati equation
which is conveniently represented as with
|
drl 1 k‘(L) 2 ko 2
— = k§—kXL)]—2[k*L)+kok, (L ——[kI(L)—kXL)]r (2b)
dL " ilkg k(D] | ko RO RADI=2ARAL) HRok (Ll 45 Tk Fi

along with the boundary condition

k(L =0)—kq o

k(L =0)+k

Here we have defined the local wave numbers as k(z,:(Zm/ﬁz)Ep, k%(L):(Zm/ﬁz)(EF+|e|FL), and

kX L)=(2m /#*)[Er—V(L)] with Er=#°k}/2m. Differentiating Eq. (2a) with respect to L and substituting for
dr,/dL from Eq. (2b), we get the equation for R(L)=R (L)+iR,(L):

ri(L=0)=0, R(L =0)

dR, 2m V(L) k*(L)+k7i(L) m (1—R,)|e |F )
dL ~ # kL) ' k(L) 2T R k(L)ko+k (L))’
R kK3L)+ k3L FR

T8 k(L) (ko + k(L)

These nonlinear stochastic differential equations of the Riccati type generate the “Fokker-Planck” equation for the prob-
ability density Wg(R,,R,;L) via the well-known van Kampen lemma.® We are, however, interested in less detailed in-
formation contained in the reduced probability density W,(r;L) for the reflection coefficient r=R?+R3. After a

dL ~ 72 ky(L) k(L)

straightforward but tedious algebra we get

aWr 1 82Wr a r ZmJe LF aWr
== 1—r)? 1—5r)(1— 22r —1)W, + W,
3L ~ €+ e |FL/Ep | T g TN Tam i 2Qr = DW D e kL) | o
4)
with (L)
pLI=T"0 (5)

E=(#/m)Ep/V} .

This is our central equation. It is exact. One readily veri-
fies that it correctly reduces to the zero-field limit as
treated earlier by one of us.® We should note that by
choice of direction of current flow, F in these expressions
is positive.

At this stage it is convenient to introduce a change of
variable,

Equation (5) is just the Landauer? expression for the resis-
tance (extrinsic) in units of (27#/e?) in the limit of zero
field. For a nonzero field the exact relation of p(L) to
r(L) is somewhat complicated by the appearance of
kinematic factors involving ky and k;(L), but these give
only subdominant L dependence. We will, therefore, con-
tinue to identify p(L) with the resistance of the 1D disor-
dered conductor. The associated probability density
W,(p;L) then obeys the equation

AW, W oW le | FE k)4
£ — 1 £ +2p+1)—2 (2p+ DW,+plp+1)—~ (6)

ol PPt e D e T T expl—(|e | FED2E,]) | P HDWetplet =)

I

with reduces to the zero-field case except for replacement of L

by /. Thus, one gets for the mean resistance

Er e |FL

= In [1+ . 2Ep/|e | F§

[|9|F§ [ Ep pr=(p)=1 {HJLE@ ~1|, @
F

For |e |EF/Er <<1, that is in the weak-field limit, we
can ignore the last term in the right-hand side (RHS) of
Eq. (6). In this limit the equation for W, formally

which crosses over smoothly from the exponential L
dependence for F—0 to a power-law (L*%’) dependence
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for (| e |FL)/Er>>1, with a field-dependent exponent
a(F)=2Er/(|e |EF). Equation (7) gives a power-series
expansion for p;(F) for L /§<<1and F |e |L/Er <<1 as
_le|FL | |e|*FL’
2EF 3EFE

pi(F)=p;(0) |1 +- ], (8)

whichlsis in agreement with the predictions of Soukoulis
et al.

Now we turn to the fluctuations. Equation (6) with the
last term on the RHS neglected will give the well-known
log-normal distribution for resistance, but with the length
L replaced by [ and, therefore, of diminished variance.
The full “equation,” however has the interesting feature
of giving a limiting distribution as L -— « obtained by
setting (W ,/0L)=0. The limiting solution is a Pois-
sonian form

W (e — ‘J_ejié exp | — L 1F& | | ©)
Er Er

Thus the fluctuations get harnessed by the delocalizing in-
fluence of the electric field.

Equation (8) is of direct experimental interest and with
the accessibility of length-dependent conductance mea-
surement* on a submicrometer length-scale it should be
possible and is desirable to probe this. Equation (9) is, on
the other hand, at present best explored numerically by
considering the dispersion of reflection coefficient and of
related physical quantities.??

Finally, we would like to comment on these fluctua-
tions in terms of the microscopic expression for the di-
mensionless resistance p(L) (Thouless ratio) on any length
scale given by**

P="5E ’ (10)
where AE is a suitably defined level spacing (granularity)
and SE the level shift (coupling) due to change of boun-
dary conditions, for example, from periodic to antiperiod-
ic. If one takes AE, which is essentially the reciprocal of
density of states, to be a self-averaging quantity, then the

distribution of p(L) is directly related to the distribution
of the reciprocal of 8E, which measures the extent of
delocalization. Thus, the zero-field log-normal distribu-
tion of p(L) for large L reflects the normal distribution of
the inverse localization length. Similarly, for the finite-
field case, the Poissonian distribution of p(L) should give
a distribution for the exponent of the algebraic decay of
the weakly localized states. We should, of course, recall
that in this large length limit, p(L) defined by Eq. (5) no
longer represents the resistance accurately due to the
neglect of the kinematic factors. However, the reflection
coefficient r(L)=p/(1+p) continues to have the opera-
tionally well-defined meaning, and from Eq. (4) given by

W,(r,oo)=~—|i|£%exp _lelFE | _r (11)
Ep(l—r) EF 1—r

These results apply to any scalar wave propagation in a
random nondissipative 1D medium.

Given the rapidly developing submicrometer fabrication
(microlitographic) techniques, it is clear that one is fast
approaching the mesoscopic length scales where these
consequences of the break down of “ensemble-averaging”
are beginning to show. Of particular experimental in-
terest will be the indirect observation of these Sinai’s fluc-
tuations in a single sample as an excess low-frequency,
low-temperature noise when L <L, and the diffusion
time is less than the period of dominant thermal phonons.
Then the electron will become affected by the thermal
phonon modulation of the random potential adiabatically,
leading to a scintillation noise, i.e., a time translation of
the Sinai’s fluctuations.?*?°
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