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Calculations of the local orbital moment in Y2Cot7 using the recursion method
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The local orbital moments on different sites in YzCol7 have been calculated. The recently pro-
posed continued-fraction technique has been used in these calculations. The calculated local orbital
moments are in quantitative agreement with NMR experiments.

I. INTRODUCTION

RzCo~7 and Rq(Co~ „T„)~7 intermetallic compounds
have been studied recently using NMR technique. ' The
different sign of the stabilization energy on different sites
suggests that competitive basal and axial magnetocrystal-
line anisotropy are present in these compounds.

The measurements of the magnetocrystalline anisotro-

py of ternary intermetallic compounds R q ( Co ~ „T ) f7

support such conclusions. Because of the complexity of
the crystal structure (ThzZn, 7 or Th2Ni, 7) ab initio band-
structure calculations of the local orbital moment in these

compounds would be very difficult. We will use a method
based on a continued-fraction technique in the local orbi-
tal moment calculations. It has already been pointed out
by Streever' that a local magnetocrystalline anisotropy is
proportional to a difference between the local expectation
values of the orbital moments which are correspondingly
parallel and perpendicular to the c axis. A high com-
ponent of the orbital moment parallel to the c axis sug-
gests preference of the uniaxial anisotropy on this site.

In this paper we estimate a component of the orbital
moment parallel to the c axis. The complexity of Y2Col7
structure forces us to assume sirnplifications. A model
structure consists of a narrow band formed essentially
with 4d and 3d states from yttrium and cobalt metals. It
has been demonstrated already that the tight-binding
Hamiltonian describes well the magnetic properties of the
rare-earth —transition-metal intermetallic compounds.

II. THE CONTINUED-FRACTION METHOD

The continued-fraction method has been used recently
in calculating the local density of states. ' This technique
provides a convenient method for calculating the density
of states in any system described by a tight-binding Ham-
iltonian. For such Hamiltonians the most convenient
basic functions are those which form a set of the localized
atomic states for which the electron states of a type m, n
are such that (m, R; I

H
I
n, RJ &~0 if R; and Ri are

near-neighbor atomic sites.
Haydock et al. ' proposed an alternative set of ortho-

normal functions using the recurrence formula:

where
I pp& is a function describing the electron state on

site O. The Hamiltonian in this representation is a tridi-

agonal matrix, and this leads to an expression for the local
electronic density of states which is in the form of the
continued fraction. If we set pp& equal to

I
m, Rp& we

may calculate the density of states projected onto orbital
m. In practice the only limitation which exists is imposed
by a computer memory which limits the number of orbi-
tals and atoms considered in each single cluster. At first
sight this seems to be a serious limitation, especially as
particles are usually much larger in size than a model
cluster which might be used in the computer experiments.
Fortunately, however, Beer and Pettifor have shown' that
it is not necessary to consider a very large cluster. They
have proposed and demonstrated a technique for ter-
minating the continued fraction, yielding results that are
very close to the exact band calculations. In the Beer-
Pettifor approximation the Green's function, whose imag-
inary part describes the density of states, is a continued
fraction of the form

Gpp(e) = bp

b 2 (2)

and a tail of the fraction t(e) is given by

t (e) = —, I e —a —[(e a) 4b —]'— (3)

III. CALCULATION OF THE SPIN
AND THE ORBITAL MOMENT CONTRIBUTION

In our spin-polarized calculations we take into account
two effects: magnetic splitting and spin-orbit interaction.
First, using the Stoner model we assume a splitting of
spin-up and spin-down electrons which is proportional to
the magnetization

where a and b are calculated assuming that the 6 func-
tions must be situated at the band edges. In the presence
of gaps in the density of states, this terminator yields
spiky features; however, it does not influence the integrat-
ed values. ' The Beer-Pettifor terminator protects weights
in the band, and this is most essential for estimation of
the integrated quantities. We apply the continued-
fraction method in our calculation in order to determine
the local partial density of states on various sites.

Our calculations are limited to a cluster of 4167 atoms
and we use 16 levels of the continued fraction expansion.
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FIG. 2. (a)—(d) The decomposed local density of states on the Co(II), Co(IV), Co(I), and Co(III) sites in Y2Co». The solid line cor-
responds to the density of states with mi ——+2; dashed line corresponds to the density of states with mi ——+1.

sity of states for a real angular wave function (Table I).
To take into account spin-orbit effect, it is sufficient to
calculate the density of states with different j equal to
I+ —,. ' The proportion of electrons having specified j
and m values is calculated assuming the well-known rela-
tion, ' for j =l+ —,', for j =l ——,',

mj ——m + —,', —I (m (I—1, (12)

mt=', i2 (&I+m + ltt'1~+&1 —m Am+i) i
(21 +1)'i'

mj ——m+ —, , —(I+1)(m (l, (10)

TABLE II. A proportion of d electrons correspondingly for
spin up and down for different m values (j = l+1/2) (Ref. 18).

TABLE I. Real angular momentum wave functions for d
electrons ( I =2). Spin up
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TABLE III. The calculated spin contribution and the orbital moment on Y2Coi7, the measured
Amr ——m~~

~

—m~& value (Ref. 2) and the stabilization energy, E, (Ref. 1). For comparison, anisotropy
field calculated by use of screened charge point model (Ref. 3) is presented.

Presented value

Concentration

m,'"(units of p~)
mi'"(units of pg)
mi'"(units of p~)
m,'h'(units of p~)
m,'h'(units of p~)
m(units of p~)'
m(units of p~)'
E,(units of cm ')'
E&(units of K)
Am~(units of p~)'

12j
12Co(II)
(18f)

0.315 78

1.41
0.17

0.23

1.58

1.64

1.89
1.65

12

35.49
0.06

4f
4Co(IV)

(6c)

0.105 26

1.67

0.08

0.12

1.76

1.79
2.12
1.65

—18
—2.27

0.0

6g
6Co(I)
(9d)

0.157 89

1 ~ 55

0.01
0.03
1.56

1.58

1.87
1.65

—3.5
—64.59
—0.09

12k
12Co(III)

(186)

0.315 18

1.51

0.02

0.04

1.53

1.55

1.87
1.65

—5.2
—4.16

0.0

E(so) (Ry)

0.0034
0.005
0.0034
0.005

' Reference 20.
Reference 7.' Reference 1.
Reference 3.' Reference 2.

1 (v'I —m P( —v'1+m + i/I I) .
(2l +1)'~

(13)
The results for spin up and spin down are presented in
Table II.

The orbital moment can then be calculated using the
formula

2 F mmI =gpa g m f pl (~)d~
m = —2

where pi (co) is a partial density of states of d electrons
with an azimuthal quantum number m, see Fig. 2. There
is some uncertainty about what value should be taken as
E(so) for cobalt atoms in the compound. E(so) con-
stants are calculated by Herman and Skillman' for Fe:
E(so)=0.00265 Ry and for Ni: 0.00407 Ry. This gives
as the value E(so)=0.0034 Ry for pure cobalt. Follow-
ing suggestions from our preceding paper we performed
as well calculations for a higher value of E(so)=0.005
Ry, and the results are presented in Table III.

IV. RESULTS AND DISCUSSION

The calculated spin contribution and the orbital mo-
ments for different sites of cobalt are shown in Table III.
The magnetic moment on yttrium is on the 2d site equal
to —0.42pz and —0.40pz on the 2b site, and the abso-
lute value of the moment is very much dependent on the
chosen value of the atomic level for yttrium and cobalt
atoms.

The stability energies obtained by NMR by Streever'
are in disagreement with Figiel NMR measurements. It
has been shown experimentally' that in ternary alloys

the substitution of 4Co(IV) (4f, 6c) sites by a nonmagnetic
metal causes an increase in the anisotropy. Streever' con-
cluded that the 4Co(IV) atoms contribute mainly to the
basal anisotropy. However, more precise analysis of ter-
nary alloys Y2(Co& „Mn„)I& by Figiel et al. ' has shown
that while Co(IV) has some influence, the Co(I) (6g, 9d)
sites give the main contribution to the basal plane magne-
tocrystalline anisotropy. This conclusion agrees with our
calculation. The component of the orbital moment which
is parallel to the c axis is the smallest on Co(I) sites.

The highest orbital moment is on Co(II) (12j,18f) sites.
These sites contribute to uniaxial anisotropy. Such aniso-
tropy competes with the basal plane anisotropy of Co(I)
sites. This may explain the change in the total magneto-
crystalline anisotropy from the basal to the uniaxial aniso-
tropy in the studies of ternary substitutional alloys.

The correlation between calculated local magnetocrys-
talline anisotropy by the screened charge point model and
the calculated local-orbital moment is quite interesting
(Table III), especially in the light of recent calculations by
Horiuchi et al. ' The anisotropy constants obtained by
them using a tight binding approximation in band-
structure calculations are unreliable, as they depend
strongly on the number of d electrons. In their calcula-
tions, they do not distinguish between different cobalt
sites and this is the reason why they had to vary artificial-
ly the number of d electrons to get quantitative agreement
with experiment. For example, a change of the number of
d electrons on Co5 cluster by 0.01%%uo changes the anisotro-

py constant from —6.7 & 10 to 465 && 10 and 7.7 & 10
erg/crn .

The presented method of the calculation requires a
knowledge of spin-orbit interaction constant [E(s )]o. Al-
though the absolute values of the results depend on values
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of the parameters, the presented method gives important
information about the various contributions at the orbital
moment from different sites.

In Table II we have calculated as well the total magnet-
ic moment for different sites. The theoretical results are
in good agreement with experimental measurements of the
magnetic moment; however, the values given by Schweiz-

er and Tasset are much higher than the results of Per-
kins et al.
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