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We present the results of studies of transport properties of several classes of continuum disor-

dered systems near the percolation threshold. We find that the problem can be mapped onto a per-

colation network with randomly occupied bonds, whose strengths of transport have a wide distribu-

tion. We show, using both the variational method and the scaling approaches, that these wide distri-

butions of bond strengths can considerably increase the values of the various transport percolation
exponents. We are able to place bounds, which are rather narrow, to these new transport percolation
exponents.

I. INTRODUCTION

The purpose of this paper is to detail and extend a
study by the same authors reported recently in Physical
Review Letters. ' In that note, it was shown that the criti-
cal exponents governing the behaviors of electrical con-
ductivity, elastic constants, and viscous-fluid permeability
near the percolation threshold of random-void continuum
systems specialized to spherical voids ("Swiss-cheese"
model) can differ considerably from their counterparts in
the conventional discrete-lattice models. This is a sharp
contrast to the critical exponents for the geometrical per-
colation properties, such as the correlation-length ex-
ponent v, which have been shown to be the same for both
continuum and discrete-lattice models. ' Two other
classes of continuum models, the "inverted Swiss-cheese"
and "potential models, " which were discussed by the au-
thors in a second communication, will also be discussed
more fully below.

The transport properties of perco1ation systems have
been the subject of many recent theoretical and experi-
menta1 studies. These studies, apart from their theoretical
interest, may serve as guidance for understanding the
transport properties of many types of inhomogeneous ma-
terials, such as polymer gels near the so1-gel transition
and low-porosity sedimentary rocks.

Let us first review the percolation transport properties
of the "standard" discrete lattice percolation model, in
which the bonds (or sites) of the lattice are randomly oc-
cupied with a probability p, and all occupied bonds have
the same strength. If the occupied bonds in the network
are taken to be electrical conductors of unit strength, we
can define the percolation conductivity exponent t as
X-(p —p, )', for p &p„where X is the network conduc-
tivity, and p, is the percolation threshold. The values of t
are relatively we11 established, e.g. , t=1.3 in two, t =1.9
in three, and t=3 in six dimensions.

When the occupied bonds in the network represent elas-
tic interactions among the neighboring sites (masses), we

can define the percolation elasticity exponent f as
Y- (p —p, ), where I' is the Young's modulus of the sys-
tem. The value of f had long been thought to be the same
as t, based on the similarities of the elasticity problem to
that of the electrical conductivity. Recently however, it
has been demonstrated through both theoretical ' and
experimental' ' means, that because of the higher ten-
sorial order of the elastic problem as compared with the
electrical conduction one, f can be actually quite different
from t. Below we will summarize three classes of elastic
network models that have been studied in the past which
seem to introduce different universality classes.

(i) The non rotational-ly invariant -Born model. If the
change in energy is given as a sum over the occupied
bonds of the squares of the relative displacements in a
random network one arrives at the Born model. It is easy
to show that this model falls into the same class as the
conductivity problem, thus f= t in this case. This model,
however, violates the physical requirement of rotational
invariance. Alexander has argued that for networks
under internal (or external) stress which may be relevant
to systems like rubbers and gels, there are terms in the
Hamiltonian similar to those in the Born model. Because
these systems differ from the Born model in other impor-
tant ways, however, such as the presence of nonlinear
terms in their Hamiltonians and the occurrence of nega-
tive as well as positive Born coefficients, it is not clear
that the result f= t should apply to such systems.

(ii) The rotationally invariant bond-bending class of
elastic percolation networks. In the bond-bending model,
one considers a percolation network where the occupied
bonds are elastic upon stretching the bond lengths and
upon changing the angles of given pairs of bonds. Anoth-
er model that is in the same class as the bond-bending
model is the granular model, where sites on a network
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represent approximately rigid grains which have both
translational degrees of freedom of the centers of mass
and angles of rotation of the grains, and the randomly oc-
cupied bonds represent nearest neighbor elastic forces. '

For models of the above type, one has the property that
p, =p„where p, denotes the threshold for the vanishing
of elastic moduli. This model is a natural description of
disordered elastic systems which do obey rotational in-
variance, and is relevant to, for example, the sintered
materials studied by Deptuck et al. ' Recent
works ' ' ' suggest strongly that for these models

f—t=2v, where v is the exponent for the percolation
correlation length g, defined through g-(P —p, ) ". Nu-

merically, ' f=4 in all dimensions larger than two.
There is even indication that f= r +2v may be an exact
relation. ' '

(iii) The central-force model. Suppose in a random net-
work we only retain the nearest neighbor central forces,
i.e., bonds are taken as pure Hooke springs. ' Here one
finds that p, is much higher than p, . For instance, for a-
two-dimensional triangular lattice, p, =0.6, whereas

p, =0.34. This is because many connected clusters near
percolation contain quasi-one-dimensional chains which
do not resist deformation through changes in bond angles
on the chains. It appears that the elastic "backbone" for
this model differs very much from that of electrical con-
duction, and it appears that there exist distinct exponents
such as v„„and P„„which describe the geometry of this
central force backbone. ' Because of this peculiarity, the
central force model is said to be underconstrained. Here,
one can again define an elasticity percolation exponent

f„„through F-(P —p, ) "". In Ref. 13, Tremblay and
co-workers have found that f„„=1.4+0.2, which is dif-
ferent from the value for f in the bond-bending-type
models, but close to the value of t. (The value of f„„is

smaller than the estimate given earlier in Ref. 8 by Feng
and Sen. ) In any case, since the geometrical exponents of
the central-force model are different from the usual

models, we believe that the percolation elasticity models
in which p, &p, belong to a universality class that is dis-

tinct from both the bond-bending type models and that of
the electrical conduction (or Born model).

If the occupied bonds on a random network are inter-

preted as pipes containing a viscous fluid, then one can
define the network permeability ~ as the ratio between the
macroscopic fluid current density and the applied pressure
gradient. A permeability critical exponent e is defined

through the relation z-(p —p, )'. Since in the standard
discrete model all the occupied bonds are identical, one
can map this problem exactly onto that of the electrical
conduction problem, with the electrical current density re-

placing the fluid current density, and electrical field re-

placing the fluid pressure gradient. Thus one has e =t.
We will see later that this trivial relation no longer holds
for many continuum systems.

Now let us consider the continuum percolation systems
and their transport properties. As an illustration, let us

consider the so-called "Swiss-cheese" model' in three di-
mensions, where uniformly-sized spherical holes are
placed at random in a uniform transport medium. The
spherical holes are allowed to overlap with one another.

It is quite obvious that there exists a critical hole-volume
fraction q, such that when q & q, the system ceases to
support any transport. For q (q„one can again define
all the transport percolation exponents through:
X-(q, —q)', Y-(q, —q)~, and ~-(q, —q)'.

Near the percolation threshold q„ the transport proper-
ties of the Swiss-cheese model are limited by many narrow
"necks, " each of which is bounded by three interpenetrat-
ing holes. A pictorial illustration of the shape of a neck is
shown in Fig. 1. These narrow necks are just barely con-
nected to support transport through the system. Thus it
is plausible that the Swiss-cheese model can be mapped
onto a random network problem, with the narrow necks
playing the role of occupied bonds. Unlike in the stan-
dard discrete percolation models where all the occupied
bonds are identical, however, the necks in the Swiss-cheese
model have a wide distribution in widths. We shall see
below, that if one denotes the neck width to be 5, then the
probability density function of neck width P(5) is finite
in the limit 5~0. Because the transport "strength" (e.g. ,

conductance) of a given neck of width 6 has a power-law
dependence on 5, this distribution of neck widths results
in a singular distribution of the transport strengths of the
necks.

It has been known for some time that percolation ran-
dom networks with a singular distribution of transport
strengths can have a transport percolation exponent that
differs significantly from that of the standard network
models in which all occupied bonds are identical. '

Thus combining the above reasoning, one concludes that
the critical exponents governing the transport properties
of continuum percolation systems can differ significantly
from their counterparts in the standard discrete models.

It should be emphasized that, as noted by Elam et al. ,
the geometrical percolation exponents such as v for the
Swiss-cheese-type systems do not differ from their coun-
terparts in the discrete models. This is because the
geometrical exponents depend only on the connectivity of
the necks, but not on the widths of individual necks; thus
all the narrow necks in the Swiss-cheese system can be re-
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FIG. 1. Narrow portion of a bond (neck), passing between

three overlapping spherical holes, in the three-dimensional

Swiss-cheese model.
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garded identical in the context, and the problem is essen-
tially equivalent to that of the connectivity properties of a
standard discrete percolating network model.

The organization of the rest of the paper is as follows.
In Sec. II, we will analyze in detail the transport ex-
ponents of lattice percolation models where the bond
strengths follow a singular power-law distribution. In
particular, we will derive both upper and lower bounds of
these exponents. We also consider the problem of a mix-
ture of superconducting and normal bonds, where the nor-
mal bonds have a singular distribution near zero resis-
tance. In Sec. III we consider the mapping of a few dif-
ferent continuum models onto equivalent discrete net-
works and compute the transport bond-strength distribu-
tions. From these distributions we then determine the
values of transport exponents. Concluding remarks are
contained in Sec. IV.

II. TRANSPORT PROPERTIES OF RANDOM
NETWORKS WITH A DISTRIBUTION

OF BOND STRENGTHS

In this section we discuss the percolation-transport crit-
ical exponents of random networks in which fraction 1 —p
of the bonds are unoccupied, and fraction p of the bonds
are occupied. The occupied bonds are not of the same
kind, but rather follow a singular distribution of transport
strengths. ' Let g be the generic transport strength of
a given bond, which is the conductance of the bond when
one is addressing the electrical conduction problem, or is
the bond-bending force constant for the elasticity prob-
lem, or is the viscous fluid flow conductance for the per-
rneability problem. The distribution of transport
strengths for the occupied bonds is assumed to have the
following limiting behavior for g~0:

p(g)-g as g

where a is understood to be in the physically accessible
range 0&a; & 1. For most of this section we assume that
there are no correlations among the occupation probabili-
ties and the bond strengths on different sites and that the
underlying lattice is regular. We shall discuss in Sec. II D
the situation when these restrictions are removed.

To facilitate contact with the continuum models later,
let us introduce another representation of the bond-
strength distribution. Let 5 be a "width" parameter such
that g depends on 6 in the form

(2)

where y is related to a in Eq. (1) by the relation

or n=
y+ 1

Then the probability distribution for 5 has a finite limit
for 5~0, i.e.,

1P(5)~const= as 5~0.
6p

[This follows immediately from the condition
P (5)d5=p (g)dg. ]

We will also assume that the range of g is bounded

above, i.e., there is a maximum value of bond transport
strength g,„. This in turn implies that there exists a
maximum value of 6, which we denote by 6,„.

We define the transport percolation exponents t, f, and
e as X-(p —p, )', Y-(p —p, )f, and ~-(p —p, )', for
p &p, . It turns out that we are able to obtain nonrigorous
lower bounds on the values of these exponents based on
the linear chain analysis in the "nodes-links-blobs" picture
of the conducting backbone as well as a set of
rigorous lower and upper bounds based on a variational
principle. The combined results can be summarized in the
following form.

(i) When y & 0 or a & 0, the distribution of bond
strengths does not result in any change in transport ex-
ponents, i.e., t =t, f=f, and e=e =t.

(ii) When y )0 or 0 & a & 1, the transport exponents are
bounded by

max( t, +y, t) & t & t +y,

max(f, +y,f) &f &f+y,

max(t, +y, t) &e & t +y
where t and f are the exact values of the standard lattice
percolation electrical conductivity and elasticity ex-
ponents, respectively, and t

&

—=1+(d —2)v & t, f ~

= 1

+ dv &f are the lower bounds of these exponents derived
within the linear chain analysis. Since the bounds in Eq.
(5) are quite close to each other, one is able to obtain good
estimates of these transport exponents. It is to be noted
that the inequalities involving t are rigorous, but those in-
volving t& and f, are nonrigorous. The inequalities in-
volving f are rigorous for one variant of the elastic per-
colation problem, but the upper bound is not rigorous in
the case of greatest interest to us here. (See discussion at
the end of subsection II B, below).

The conductivity problem described above was studied
originally by Kogut and Straley in 1979.' They em-
ployed an effective medium theory and a Cayley tree
model, as well as the variational method discussed in Sec.
II B, below. Their proposed form of the exponent t coin-
cided with the upper bound t +y, for y &0. Subsequently
Ben-Mizrahi and Bergman applied an approximate re-
norrnalization group method to this problem, in two di-
mensions. This analysis led them to propose a form
t =At +By, for y & 0, where A and 8 are constants slight-
ly different from unity.

A later paper by Straley ' reexamined the conductivity
problem by means of a "nodes-links-blobs" picture
analysis, which was then combined with the renormaliza-
tion group and the results of the previous analyses.
Straley concluded that the correct value for t is given by
the lower bound in Eq. (5), i.e., t =max(t, t&+y). Since t
is slightly larger than t1, this implies that the necessary
condition for t to differ from t is then y & (t t, ), rather—
than simply y&0. We refer the reader to Straley's paper
for details, ' ' ' which will not be repeated here.

Since permeability and conductivity are mathematically
equivalent in the lattice model under consideration,
Straley's analysis implies that e =max(t, t, +y). An ex-
tension of Straley's analysis would also suggest that the
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for purpose of clarity. A similar argument for this case
was previously given by Straley, in Ref. 21.

In the nodes-links-blobs picture" of the percolation
cluster near p„ the "backbone" which supports electrical
conductivity through the system is imagined to consist of
quasi-one-dimensional string segments ("links" ), tying to-
gether a set of "nodes" whose typical linear separation is
the percolation correlation length g. Each string is sup-
posed to consist of several sequences of singly-connected
bonds, in series with thicker regions, "blobs, " where there
are two or more conducting bonds in parallel.

A lower bound to the conductivity exponent is obtained
if one ignores the resistance of the blobs i.e., the blobs are
taken to be perfectly conducting. It is apparent that this
assumption leads to an overestimate of the true conduc-
tivity of the system. To be specific, the conductance of a
string (link) is given by

FICx. 2. Behavior of exponent t as a function of the distribu-
tion parameter y. The straight solid lines indicate the lower and
upper bounds to t discussed in the text, while the curved heavy
solid line shows the conjectured deviation of t from its lower
bound. [For y& 0 and y &yo, t is given by its lower bound (see
Ref. 23).]

correct value for f is the lower bound given in Eq. (5),
f=max(f, f&+y).

Recently, Lubensky and Tremblay have studied this
problem in 6—e dimensions, and have found results
which agree with Straley's for most, but not all values of
y. Specifically they find that for a given spatial dimen-
sion d, there exists a critical value yQ, such that t =t for
y &0 and t =t&+y for y &yQ. In the range 0 & y &yQ,
however, the value of t is larger than both lower bounds; t
and t&+y. We illustrate this result in Fig. 2, where both
the upper and lower bounds of t and the conjectured
behavior of the exponent itself are plotted as a function of
the bond-strength distribution parameter y.

Our own discussion of the lattice models with varying
bond-strengths will be given in two subsections. In sub-
section II A, we use the linear chain analysis to derive the
non-rigorous lower bounds to these transport exponents.
In subsection II B, we use a variational approach to derive
the rigorous lower and upper bounds of these exponents.
In subsection II C we generalize our analysis to the super-
conducting and "superelastic" networks with bond
strength distribution. In subsection IID we discuss the
influence of correlation of disorder on our results

A. Nonrigorous lower bounds on t, f, and e

Nonrigorous lower bounds to the transport critical per-
colation exponents of random networks with a wide distri-
bution of bond strengths can be obtained by applying a
scaling analysis based on the nodes-links-blobs picture of
the percolation clusters. Since the argument is based on a
scaling assumption, these lower bounds are not rigorous.
We will first discuss the electrical conduction property,

Ll
G ') gg

a=1

where g denotes the conductance of a given bond i, and
the sum is restricted to the L

&
singly-connected bonds on

the string. Et has been shown rigorously that the typical
value of L

&
is proportional to (p —p, )

En the standard discrete lattice case where all occupied
bonds have unit resistance, the conductance of a string G
will be bounded from above by L

&

', and the conductivity
X of the entire network, which is related to G by the
geometrical relation X-g G, will therefore be bounded
from above by g L

&

', where d is the spatial dimension.
Thus one obtains a lower bound to the conductivity ex-
ponent t of the standard lattice percolation problem:
t ) t~ =—1+(d —2)v. The value of t& is slightly smaller
than the best computer simulation estimates of the ex-
ponent t; numerically, t& ——1, t=1.29 in d=2, t& -1.85,
t=1.9 in d=3. It is believed that t& ——t=3 in d=6, while
for d =6—e, one has t =(d —2)v+g with $=1+E/
42+ O(e ).

In the present case, the occupied bonds on the string
have a wide distribution of conductances. We can apply
statistical results due to Levy and others on sums of ran-
dom variables, to Eq. (6). The probability density of this
sum of random variables cannot be evaluated by the cen-
tral limit theorem if y&0. However, Levy, Feller, and
others have worked out some limiting formulas which
can be applied here. To use these results, we write
R = G ', r =g . From Eq. (2.18) of Weiss and Ru-
bin, one finds that when g is distributed as in Eq. (1) or
equivalently when the probability density of bond resis-
tances is given as p(r) —r 'y+ '~'~+" for large r, the
probability density of A, the sum of L

&
resistances,

behaves asymptotically for large I
&

as

Li
Pt (R)—.. . fory )0.

Then the median is given by

1

g I/(y+ &)

Thus a typical value of the sum scales, roughly speaking,
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as

R -L~&+' for y &0 .

e & 1+(d —2), v=t&, if y &0,
e & 1+(d —2)v+y —= t&+y, if y &0 .

(12)

t & 1+(d —2)v+.y—:t, +y, if y &0 .

A more intuitive derivation of these results can be ob-
tained as follows. We can estimate the sum in Eq. (6) by
an integral over the probability distribution P(5), provid-
ed that, first, L& is very large (i.e., we are sufficiently
close to the percolation threshold), and second, we proper-
ly control the contribution of the weakest bond on the
string. In particular, we have

G 'o, +I, , d5,1 P(5)
min P' + (9)

where 6;„is the minimum value of 6 along the L& sing-

ly connected bonds on the string. The probability distri-
bution for 6;„may itself be computed by considering the
probability that none of the L& singly connected bonds
has width smaller than a specified value e. One thus finds

L
Prob(5, „)e) = 1 —f P(5)d5 =e

—eL
l /5O (10)

Thus we see that the typical value of 5;„ is of order
5O/L&. (See also the discussion at the end of this subsec-
tion. )

In the case where y & 0, the integral in Eq. (9) converges
in the limit 5;„~0. Moreover, the term I/&"+;„' is typi-
cally of order L

&

' which is negligible compared to the
second term. Thus, we find for y &0,

G ')L, (g (1 la)

where ( ) denotes an average over the distribution P (5).
In this case, the upper bound of the resistance of the
string depends on the mean resistance of a bond, in the
same manner as if all the bonds on the string had equal
strengths. By contrast, for y & 0, the bound on G ' given
by Eq. (9) is typically determined by 5;„. Using either of
the terms of Eq. (9), one now finds that for almost all
strings,

G
—~ )L&+'/P'+' (1 lb)

We now use Eq. (11) in the estimate X=$2 dG of the
conductivity of the network. We thus obtain a lower
bound to the percolation conductivity exponent t, as given
in Eq. (8) above.

The above derivation can be easily generalized to treat
the elasticity and permeability problems on percolation
networks with wide distribution of bond strengths. For
the permeability problem, the above analysis goes through
in exactly the same way, and one obtains

For y & 0, one obtains

R-L& for y &0.
Thus the macroscopic conductivity of the entire network
X=/ G, will therefore be given as g "L

&
', for y&0

and g L ~

'"+", for y & 0, leading to

t ) 1+(d —2)v=t&, if y &0

For the elasticity problem, however, one needs to con-
sider the "bending moments" associated with the string
displacements. In particular, let us define a force constant
K for a string such that —,Ku is the energy cost to dis-
place one end of the string by a small distance u, when
the last bond at the other end of the string is clamped in a
fixed position and orientation. For a long chain of X
bonds, one can easily derive an expression for the chain
force constant K, by a generalization of the analysis of
Kantor and Webman:

N 2

Xa
(13)

where y is the bond-bending (or bond-twisting) force
constant of bond i, and g is the moment arm of the ith
bond. From this result, it is then easy to write down an
upper bound to the force constant of a given string, by
taking into account again only the single-connected bonds
on the string,

Li 2

K —') g (14)

where g can be assumed to be a length of the order of the
correlation length g. If all the bonds have the same
bond-bending constant, as is the case for the standard
discrete percolation model, one finds K & y/(L &g ). Since
again the overall elastic moduli are proportional to g K,
the above inequality implies the relation f)f~

—=dv + 1, a
result first obtained by Kantor and Webman.

If the bond bending strengths y have a singular distri-
bution, of the form in Eq. (1) [or Eqs. (2) and (3)], we can
estimate the sum in Eq. (14) by an integral, similar to Eq.
(9). In particular, one finds that for y &0, K ' &L,g;
and for y & 0, K ' & L

~

+ . Thus we obtain the lower
bounds to f as

f )dv+ I=f, , if y &0

f& d &+I+y =f ~ +y, if y & 0 .

Our use of the "typical value" of K or G to obtain the
network transport coefficient may be made more precise
and justifiable by means of a percolation argument, em-
ployed by Ambegaokar et a l. and Pollak in their
rederivations of Mott's law of hopping conductivity.
Here we focus attention on the "super-network" of
strings, which forms the percolating backbone at the
length scale g'. As in the hopping conduction problem,
the conductances G (or the elastic force constants K) of
strings in our problem assume a wide distribution of
values. One finds then that the conductivity X (or the
elastic modulus Y) of the entire system, which is connect-
ed by a quasiregular network of strings, can be approxi-
mated by that of a new network in which all of the strings
less conductive than a "critical value" 6, are cut out.
The value of 6, is defined such that the fraction of
remaining strings is infinitesimally more than p„ the per-
colation threshold of the "super" network of strings. The
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reasoning behind this argument is that since the distribu-
tion of string conductances is wide, the currents are car-
ried mostly in those strings that are not overly resistive.
Thus it does not make much difference if one cuts out the
most resistive strings. But, of course, the current carrying
strings must still form a connected network, so that the
fraction of bonds that are cut out must not exceed 1 —p, .
The electrical properties of the system are thus dominated
by the most resistive remaining strings, which have con-
ductance =6, . The conductivity of the original network
should thus be roughly the same as a regular network in
which all strings have conductance G, .

Now let us define a critical width parameter 6„by re-
quiring that the fraction of strings with 6;„&6, be just
equal to 1 —p, . From the first term in Eq. (9), we have
G, & &, +, and for y & 0, we take our upper bound ap-
proximation to X as the conductivity of a regular network
with string conductance &,"+'. From Eq. (10), however,
we see that

6o
6, = in[1/(1 —p, )]

Li

It is an essential assumption of the nodes-links-blobs pic-
ture that the percolation threshold p, of the quasiregular
supernetwork is not especially close to either 0 or 1. Thus
the logarithm in Eq. (16) is a number of order unity, and
the critical value 6, is indeed in the range of "typical
values" of 6;„,of order 6o/L &, as claimed. R =Jr i (gr (i') (18)

tal external current I=1. So we can regard the resistance
R as a functional of all the resistances in the network, i.e.,
R =R ( Ir I ). Now let us introduce a new network which
has resistances I

r'
I such that r &r' for each a. We

want to prove that R (
~

Ir I ) &R ([r'
I ). Suppose [i

are currents on each bond corresponding to the resistances
I r ), and I

r'
] are currents corresponding to [

r' a. Since
we know that

I
i I minimizes R = g r i, substituting

Ii'
4

in the above for [i /
can not decrease the value of

R, i.e. , R (Ir I ) & g r (i
'

) . Now if we substitute [r'
)

in the above for I r I, we increase or maintain its
value again, by definition. So R ( [r„()& g r' (i

'
)

=—R ( Ir'
I ). This is what we wanted to prove. It follows

immediately that if any bond(s) in a resistor network de-
creases its value of resistance, the resistance of the sample
must either decrease or remain the same.

Theorem 2. If each resistance in a random network is
replaced by its expectation value, the network resistance
will be larger than the expectation value of the resistance
of the original network.

Proof. Introduce a new network whose present resis-
tances are all set to be the expectation value of the original
network. Let us denote the currents on this new network
by I

i '
I and its resistance R'. If we replace I i ) in the

functional R = g r i by ) i '
I, from the variational

principle, we obtain an upper bound to R; i.e., we have

B. Rigorous upper and lower bounds of t, f, and e

In this subsection, we derive the rigorous upper and
lower bounds to the transport percolation exponents for a
network with wide distribution of bond strengths. The
treatment parallels that of Kogut and Straley, ' and uti-
lizes the variational principle. With a few simple
theorems, we have made the argument rigorous in the
elasticity case as well. We start by considering the electri-
cal conduction problem. We shall utilize the following
variational theorems.

Theorem 1. If the resistance of any bond or set of
bonds in a network is increased, the resistance (or resis-
tivity) of the entire sample must either increase or remain
the same.

Proof This theorem ma. kes sense intuitively. The
proof ' ' is reproduced here for convenience of the
reader. Consider a large system of size L. Its resistivity p
is given by p=RL, where R is the resistance of the

sample, measured from two opposite ends of the sample.
Since R measures the overall energy dissipation of the sys-
tem, we have

2
~a~a

where i is the current on bond u when the total current
injected into the system at one end and taken out from the
other is held at unity. From the dissipation function for-
mulation of the electrical conduction problem, '

I i I are
determined by minimizing the function R subjecting to
the conditions that currents flowing into any internal node
have to sum up to zero (Kirchhoff's first law) and the to-

Now let us average Eq. (18) over the distribution of I r
We then arrive at the inequality (R ) & g (, r )(i' )

=—R'. The "reciprocal" of this theorem is also true.
Theorem 3. If the conductances in a random network

are replaced by their expectation values, the new conduc-
tivity will be larger than the expectation value of the con-
ductivity of the original network.

Proof This theore. m can be proved by using the
formula for the conductance of the system
G = g [(b, V ) /r ], where b, V is the voltage drop
across resistance u and a unit voltage drop is kept across
the two opposite sides of the macroscopic sample. Once
again we have the variational principle that the proper
solution I

AV I are such that functional G is minimized,
subject to the second law of Kirchhoff, i.e., the sum of the
voltage drops along any closed loop inside the network is

zero. ' (The constraint is satisfied automatically if we

write AV = V; —V~, where V; and Vz are the voltages at
the two sites connected by bond a. Minimization with

respect to V; then leads to Kirchhoff's first law:
gI'Ii =—0, where the sum is over all bonds connected to

site i and i —=5 V /r . ) The remainder of the proof is

similar to that of Theorem 2.
Theorems 2 and 3, in a continuum form, are the basis

for the well known bounds of Hashin and Strickman, on
the conductivity, dielectric constant, and magnetic per-
meability of a composite medium. With these theorems,
the rigorous upper and lower bounds for t can be derived

very easily. The random resistor network under con-
sideration contains fraction 1 —p missing bonds and frac-
tion p occupied ones; and the occupied bonds follow a
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power-law distribution which can be formulated in terms
of a random width parameter 5, such that r =6
and P(5)~1/60 for 5~0. Let us denote the resistivity of
this network by p=1/X, and denote this network by O.
We now prepare a new variational system (network N) by
removing all resistances in network 0 that are higher than
r„—:5, ', where 6, /50«1, and the precise value of 6„
will be chosen later. Note that the fraction of occupied
bonds in this new system is p(1 —6, /6O). We know from
Theorem 1 that the resistivity of N is an upper bound to
that of network O. Now using Theorem 2, we know that
an upper bound to the resistivity of network N is the
resistivity of still another network N', obtained from net-
work N by replacing all its nonvanishing resistances by
their ensemble average value, which is given by

f" P(5) d65„@+~

(1 —5, /50)
(19)

For small values of 5„the above equation may be evaluat-
ed simply to give

const for y &0
const/5„" for y ~0 .

(20)

It is apparent that the last network N' is a standard lattice
percolation model with occupation probability p ( 1

—5, /5O) and resistance r, . Near percolation, the resis-
tivity of network N' is given by p' =const X r„(p —p,—p5, /50) ', where t is the exact percolation conductivity
exponent. Thus we have the inequality

(p) &constXr, (p —p, —p6, /50) (21)

Now we can vary 5„ to obtain the closest upper bound
to the resistivity of the original network O. Since p &p„
the optimal value 6, is small, thus the scaling form of r„
in Eq. (20) may be used. For y&0, the optimal value of
5, is zero, while for y&0, the optimal 6, is given by
5 /5p y (p —p, )/p, (t +y). As given in the work of Ko-
gut and Straley, ' the result is

(p —p, )
' for y &0

(p) (constX ', ~, +~~p —p, )
~ fory &0. (22)

Assuming the power-law behavior X —(p —p, )' or
p-(p —p, ) ', we arrive at an upper bound to the ex-
ponent t, namely t & t for y &0 and t & t +y for y&0.
(Alternatively, one could avoid the assumption of power-
law behavior by defining the exponents t and t in terms of
lim sup[in(p) /ln(p —p, )] or lim inf[ln(p & /ln(p —p, )],
as p~p

One can now use Theorem 1 or Theorem 3 to obtain the
rigorous variational lower bound t & t for all the physical-
ly relevant range of y & —1 ~ If there exists a maximum

value for the bond conductance g „,then it is easy to ob-
tain this lower bound by changing all the occupied bonds
to have the highest possible conductance g,„, and using
Theorem 1.

The rigorous lower bound 7& t is valid even if there is
no maximum value of the bond conductance g, as long as
there exists an average conductance g, defined as
g= gp(g)dg. In this case, the bound is derived by a

0
direct application of Theorem 3.

The rigorous lower bound, when combined with the
rigorous upper bound, gives the exact equality t=t for
y&0. For y&0, the rigorous lower bound can be com-
bined with the (nonrigorous) linear chain lower bound and
rigorous upper bound to give max ( t, t

& +y) & t & t +y.
The above analysis can be easily generalized to obtain

the rigorous upper and lower bounds to the exponents e
and f. The case of e parallels precisely the above analysis,
since all we need to do is to recognize the complete analo-

gy in the two problems between the electrical conductivity
and fluid permeability, and between bond electrical con-
ductance and the bond fluid flow conductance, defined as
the amount of viscous fluid flowing across a bond per unit
time under a unit pressure difference across the bond.

The elasticity case warrants some more explanation.
The elastic Young's modulus Y; which is analogous to X
in the electrical case, is related to the force constant K of
a macroscopic sample by Y=KL ", where L is the
linear size of the sample and K is the force applied to the
opposite ends of the sample when a unit displacement is
achieved. By virtue of the linearity of our problem, K
equals twice the elastic potential energy stored in the sys-
tem when the applied end-to-end displacement is equal to
unity.

The form of the potential energy function is obviously
model dependent. In the present work, we specify our
network model to be that of a "granular elastic network
model, "which resembles the actual geometries of the con-
tinuum percolation systems we will consider later. This
model was first introduced by Schwartz, Johnson, and
Feng to model sandstone rocks, and its percolation prop-
erties have been studied in some detail in Ref. 14. The
main conclusion of Ref. 14 is that the percolation critical
exponent f for the granular network model should be the
same as its counterpart in the more conventional bond-
bending network model studied earlier, and this equality is
supported by numerical simulations.

Let us now describe briefly the granular network model.
In this model, the sites are spherical rigid grains, whose
infinitesimal motions are described by their center of mass
displacements u;, and their rotational angles 8;. The sites
are taken to lie on a regular lattice and the bonds are tak-
en to be randomly occupied. Three types of elastic cou-
plings exist between two nearest-neighbor grains if the
bond connecting them is occupied, and the potential func-
tion for the system can be expressed as

U( [ u; ], [ 8; ] ) = —, g g;J ( a;, [(u; —u, ) r;J ]'+P;~ [ r;~ && [r;, && ( u; —u, ) ]+R ( 0; +0 )&&~r;~. ] +y;~ (8; —0~ ) ),
(~j)

(23)
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+p,)r;, &([r;, X(u; — )u+&(8;+8, )],
(24a)

and let us define the additional torque due to counter-
rotation of the bond by

(J tjl 1 /J(8l 8J ) (24b)

For any site i in the interior of the sample, the equilibri-
um condition is

F;= gf J=O,
J

T, —:g (t,, +Rr,, && f,, ) =0,
J

where the sums are over all neighbors to i, so that F; and

where rj[:—(RJ —R; )/2R] is the unit vector which points
in the direction of the bond ij, R is the radius of the
spherical grains, g;J is the random parameter which as-
sumes the value unity with probability p and zero with
probability 1 —p. The force constants a;~, p;~, and y;~
describe the elastic restoring forces for stretching, sliding
and counter-rotational motions of the two neighboring
grains. In Ref. 14, it has been shown that the counter-
rotation of our present model corresponds to the bond-
bending model in the conventional bond-bending motion;
therefore one can take the force constant y;~ to be the
bond-bending force constant if one wishes.

Now that we have defined our model, we can state the
variational principle for the elastic problem: The force
constant K can be obtained by minimizing its correspond-
ing functional E( [u; I, [8; I ) =2U( [u; ), [8; I ) where U is
the potential functional with the boundary conditions that
grains on the two opposite sides of the sample are held
fixed with a unit relative displacement and with no rela-
tive rotation. By comparing with the analysis we just
gave on the electrical case, we can see that the generalized
displacements [u; I and [8; I in the elastic case play the
corresponding role of the site voltages V~, forces and
torques exerted by nearest neighbor grains upon each oth-
er correspond to the node-to-node currents, and a;J, p;, ,
and y,z play the role of the conductance g in the electrical
case. It is then a relatively easy matter to prove theorems
that are analogous to Theorem 1 and Theorem 3.

Theorem 1E. If any of the elastic constants (a, p, or y)
of any bond (grain to grain contact) is decreased, the force
constant E(or the ela'stic modulus Y) must either de-
crease or remain the same. Also, if any of the elastic con-
stants of any bond is increased, the force constant K must
either increase or remain the same.

Theorem 3E. If each elastic constant of each bond in a
random network is replaced by its expectation value, the
new elastic modulus Y will be larger than the expectation
value of the elastic modulus Y of the original network.

To prove a theorem for our elasticity problem that is
analogous to Theorem 2, we need to formulate a varia-
tional principle for the elasticity problem which corre-
sponds to the resistivity formulation in the electrical case.
Let us define the force transmitted by bond ij as

f J = —fj; =afJlfJ[(UJ UJ) I J]

T; are the total force and torque on site i.
We next define a function

(~;,"f;,)' (r;, X f;, )' t~j

jJ plJ Xlj

(24c)

where the sum is over all bonds in the "infinite" cluster,
i.e., the cluster that connects the two ends of the sample at
x =L/2 and x = L/2. —We shall now consider f,j and
t;1 to be arbitrary vectors with f;1:——fj;, t;~

—= tj;, and we
shall then seek to minimize 8' subject to the constraints
that F; =T; =0 for all sites on the infinite cluster, except
for sites at the ends x = +L, /2, where we require F; = +x,
T; =0. In order to perform the minimization we may in-
troduce Lagrange multipliers u; and 0;, and minimize the
function W'= W —g,. (u;.F;+8;.T;), without regard to
the constraints. The equations 0 W'/8 f;&

——0 and
B8"/Bt;J =0 lead directly to Eqs. (24a) and (24b), and we
may therefore identify u; and 0; with the displacement
and the rotation angle of grain i

We see that minimization of 8' with the required con-
straints gives the correct equilibrium solution for f;~ and
t;J. It is also clear, that 8' is equal to the elastic energy
stored in the system, and that O' Is inversely proportional
to the macroscopic Young's modulus Y of the system.
Using this version of the variational principle, one easily
proves the required theorem.

Theorem 2E. If the inverse elastic constants 1/a;J. ,
I/p;~, and I/y;J of each bond in a random network are re-
placed by their expectation values, the inverse elastic
modulus 1/ Y must be larger than or equal to the expecta-
tion value of the elastic modulus 1/Y of the original net-
work.

Now with these theorems for the elastic problem, we
can derive the rigorous upper and lower bounds to the ex-
ponent f. Having in mind the physical origin of continu-
um systems to our network model with variable bond
strengths, we assume the distribution of the various bond
elastic constants to have the form a; =a $&+ ',
pj =b5,".J+', and y;& ——c6&+', where a, b, c are constants,
6;~ is the "width" random variable introduced earlier in
the analysis of the electrical problem. It does not actually
matter for our analysis whether there is a single random
variable 6;~, for each bond, or whether there are indepen-
dent variables 5,J. for the three elastic constants, as long as
p(6,&) is finite in the limit 5;J~0 in each case. Now if
q =r =y, then by following steps parallel to that in the
electrical case, we derive the rigorous bounds f(f (f +y
if y& 0, and f=f if y (0, where f is the exact elasticity
exponent for the standard lattice percolation model with
bond force constants a, b, and c. (In proving the lower
bound, we have assumed that the microscopic elastic con-
stants a,j, p,z, and y;~ have finite mean values. ) It is
straightforward to show that the exponent f is indepen-
dent of the values a, b, and c, provided that all three are
finite, since we obtain rigorous bounds to the Young's
modulus when we replace a, b, and c by the minimum or
the maximum of the three values.

The situation is more complicated when the exponents
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q, r, and y are not equal. For our later applications to
continuum models, we are most interested in the case
where y &q and y &r, so that the ratio of the bond
stretching to counter-rotation (or bond-bending) force
constants is infinite in the limit of small bond width 5;~.
Then the rigorous upper bound to f is replaced by the ine-
qualities

f &f +ma x(q, r, 0),

f &f„+max(y, O),

(25a)

(25b)

where the quantity f is the exponent for the vanishing
of the Young's modulus for p ~p, on a lattice where

y;~ = 1 and a;J =P;~ = oo, for all occupied bonds. Accord-
ing to the analysis of singly-connected bonds, only the
bond-bending force constant is important near the per-
colation threshold, and therefore f =f „ in that analysis.
Rigorously, we only can prove that f„&f, but it seems
most likely to us that the difference (f f ) mus—t be
very small, if it is not actually zero, so that Eq. (25b) is
the more useful upper bound in the cases of interest. For
the sake of simplicity, we shall assume that f„=f in our
discussion of the continuum models in Sec. III below.

We note that the rigorous lower bound f &f, as well as
the nonrigorous lower bound f &f ~+y—=dv+1+y, for
y&0, both remain valid in the case y &r,p. In the next
subsection, we generalize the above results to treat the
transport properties of random superconducting networks
and random "superelastic" networks with singular distri-
bution of bond strengths, below the percolation threshold.

C. Superconducting and superelastic networks
with bond distributions

As a generalization of the analysis presented in the
above two subsections, we consider the problem of super-
conductive and superelastic networks with wide distribu-
tion of bond strengths. Let us begin with the electrical
case. We consider a random network in which fraction p
of the bonds are "superconducting" (i.e., g = ao ), and the
rest of the bonds are normal conductors. Unlike in the
standard superconducting random network, these normal
conductors are assumed to have a singular distribution of
resistances (or conductances). In particular, we assume
that the distribution of the bond resistances follow a
power-law distribution for small resistances r ( r = 1/g),

p (r)-r, for r 0 . (26)

Another representation of this distribution is given by in-
troducing the length parameter 5, such that r =5' +",
with y=a/(I —a). The distribution for 5 has a finite
limit as 5~0, i.e., P, (5)~const= 1/5O as 5~0. We as-
sume the conductivity of the system diverges as
~—(p. —p) 'as p

First let us give the scaling analysis leading to the non-
rigorous lower bound to s, by studying the equivalent of
the "nodes-links-blobs" picture below the percolation
threshold. Just below p„ the superconducting regions
are clusters of typical size g, which are the equivalent of
the nodes, and are separated by a "wall" of normal con-
ducting bonds, which are the equivalent of the links. If

one denotes the conductance of a typical wall to be G',
then once again we have for the conductivity of the sys-
tem as X-g G'. lf one looks closely at a wall, one
finds that it consists of a parallel array of single bonds
and bonds that form series. It has recently been
shown ' that the number of the single bonds between
two superconducting clusters L

&
scales with p —p, the

same way as L~ above p„namely, L'~ —(p, —p) '. If one
only takes into account these single bonds in describing
the conductivity of the system, and assumes the series
bonds to be infinitely resistive, one arrives at a lower
bound to the overall conductivity estimate.

Let us first consider the standard lattice model where
each single bond has unit conductance. In this case a
lower bound to G' is L', which leads to X &g dg'~, thus
giving a lower bound of the experiment s, i.e.,
s &s, —:(2—d)v+ 1. For the more interesting case of
bonds with wide distribution of strengths, the wall con-
ductance has the lower bound

1 P, (5)
g(y+ 1 j min Q y+ (27)

max(s, s~+y) &s (s +y . (28)

In two dimensions, s&
——1, and s=1.3; in three dimen-

sions, s& -0.15 and s =0.8. Since the values of s& and s
are rather far apart in 3D, the inequality (28) can be of
only limited usefulness in determining the value of the ex-
ponent s.

The above analysis can be easily extended to elasticity
problems. Here one considers a network of perfectly rigid

Using an analysis that parallels exactly that in subsection
IIA, we see that s &s& for y &0, and s &s&+y for y&0.
Note that the above analysis relies on the scaling picture
of the percolation clusters below p„ it therefore is not
rigorous.

Rigorous upper and lower variational bounds to s can
be obtained by use of the theorems which we proved in
subsection IIB. By replacing all bonds that have 5&6„
(or g &5„'~+") in the original network network 0 by
bonds of zero resistance, we obtain a network N whose
conductivity is an upper bound to the conductivity of the
network 0, by virtue of theorem 1. By replacing in this
network N all the finite conductances by their expectation
value

m P, (5)
, d5

5, p+&

(1—5„/50)

one again obtains another network N' whose conductivity
is an upper bound to that of network N, by virtue of
theorem 3. This network N' is a standard random lattice
superconducting-percolation network, and whose conduc-
tivity scales X' —(p, —p) '. By varying the parameter 5„,
one obtains the rigorous upper bound to the exponent s,
i.e., s & s, for y & 0 and s & s +y for y & 0.

By letting all the bond resistances in the network as-
sume their maximum value and applying theorem 1, we
find the rigorous lower bound to s, i.e., s &s. The above
results can be condensed into the following inequality:
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bonds mixed with nonrigid ones that have finite elastic
constants. For a standard lattice model, we define the ex-
ponent c such that Y—(p, —p) '. Simple nodes-links-
type scaling arguments' suggest that c =s. Numerical
simulations of Ref. 14 indicate that c is slightly smaller
than s; at least in two dimensions. A more recent numeri-
cal study has suggested, however, that c =s.

Next we consider a model in which the nonrigid bonds
have a singular distribution of elastic constants. Suppose
that a;J. , P,J, and );J are all proportional to 6,,

' ~, where
p(5,J) is finite for 6;J~0, with y & —1. We define the
superelasticity exponent c for this system such that
Y-(p, —p) '. By generalizing the analysis for the elec-
trical problem sketched above, we can show that
max(c, s&+y) &c &c+y, for y&0, and c=c for y &0.

D. Correlated disorder

In Sec. III below, we shall map various continuum
problems onto equivalent discrete networks, with a distri-
bution of bond strengths. Unlike the networks considered
above, however, the constructed networks will have some
correlations among the occupation probabilities and the
strengths of nearby bonds, and the underlying lattice is
not regular. We must therefore argue that these modifica-
tions do not affect the critical exponents.

Let us first consider the effect of correlations in the oc-
cupation probabilities, on a regular lattice, with all bond
strengths equal. There have been several studies of the ef-
fects of such correlations on the geometrical percolation
exponents. ' The conclusions of numerical studies,
scaling arguments and renormalization-group analyses are
that short-range correlations should have no effect on the
critical exponents. (Of course, one must exclude patho-
logically strong correlations, such as those where the per-
colation threshold is shifted to p, =0 or p, = 1.) Also,
long-range correlations, which fall off as a power law of
the separation at large distances, can change the critical
exponents, if the fall-off is sufficiently slow. If the
underlying lattice is disordered, rather than periodic, this
might be regarded as an additional source of short-range-
correlated fluctuations in the bond occupations. This
should have no effect on the geometrical critical ex-
ponents, therefore.

There is also good reason to believe that the transport
exponents t or f are unaffected by short-range correla-
tions in the bond occupations. This result follows for ex-
ample, from the field-theoretic renormalization-group
analysis in 6—e dimensions. It is also easy to see that
within the linear-chain approximation in the nodes-links-
blobs picture, described in Sec. IIA above, short-range
correlations in the bond occupations will have no effect on
tor f.

If correlations exist in the st& ength of bonds on neigh-
boring sites, we can again estimate the effects on transport
exponents using the linear-chain approximation of Sec.
II A. (The bond strengths have no effect on the geometri-
cal exponents, of course. ) It appears that except for cases
of pathologically strong correlations, the exponents t, e,
or f will be unchanged in this approximation. For exam-
ple, a sufficient condition for the analysis to hold is that

the conditional probability density for the strength of
bond i should vary like g, for g ~0, with a fixed ex-
ponent a, regardless of the values of the conductances of
the other singly-connected bonds on the same chain. It
seems clear that this condition is fulfilled for the continu-
um examples considered in Sec. III, below.

The derivations of the rigorous bounds of Sec. II 8 are
not applicable in the case where the strength distribution
of the various occupied bonds are statistically correlated.
If the bond strengths are statistically independent, howev-
er, the derivations remain valid even in the presence of
correlations in the occupation probabilities or of disorder
in the underlying lattice, provided that the exponents t
and f, for the case where the occupied bonds have equal
strengths, are unchanged from their standard lattice
values.

This concludes our discussion of the bounds of trans-
port percolation exponents for discrete random networks
with power-law bond-strength distribution. In the next
section, we will discuss the relevance of the above network
models, i.e., we will see how the various continuum per-
colation transport problems can be mapped onto such net-
works.

III. BOND STRENGTHS IN CONTINUUM
MODELS

In this section we discuss the mapping of a few contin-
uum percolation models onto discrete random networks
with wide distributions of bond strengths, and thereafter
determine the critical transport percolation exponents for
these models. We will consider the following continuum
models individually: the "Swiss-cheese" model, the "in-
verted Swiss-cheese" model, and the "potential" model.

A. "Swiss-cheese" model

By the "Swiss-cheese" model or the random-spherical-
void model, we mean a disordered continuum system
where spherical holes are randomly placed in a uniform
transport medium. A sketch of the model in two dimen-
sions is given in Fig. 3, where the white area is the region
where transport takes place, and the shaded area does not
permit transport. It is apparent that there exists a critical
percolation threshold q, of the volume fraction of the
punched holes, such that when q & q„ the entire system
ceases to support transport. If the transport medium is
taken to be an electrical conductor, we can naturally de-
fine a continuum percolation conductivity exponent t as
X—(q, —q)', where X is the conductivity of a Swiss-cheese
system, for q (q, . If the transport medium is an elastic
solid, we can define an exponent f for the elastic moduli
as Y-(q, —q)f, where Y is the Young's modulus of the
system. If the transport medium is taken as empty space
where viscous fluid can flow through, and the spheres are
taken as solid grains blocking the fluid, as is the case in a
sedimentary rock, we can define e as the critical exponent
describing the behavior of fluid permeability sc near q„by
x.-(q, —q)'. The permeability x is defined as the amount
of viscous fluid flow through a porous medium per unit
time and unit area when a unit macroscopic pressure gra-
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we argue that it is possible to assign a unique resistance to
any bond containing a very narrow neck, and that the
probability distribution of such resistances should be suf-
ficient to determine the percolation transport exponent t.

For the cases of fluid flow or elastic response, we again
find that for the case of a bond with a narrow neck, one
can define uniquely a fluid flow resistance, or force con-
stants that correspond to bending, twisting and stretching
of the bond, and that these coefficients determine the crit-
ical transport properties at the percolation threshold. The
mapping discussed below is not sufficiently accurate to
give a reliable description of corrections to the asymptotic
percolation behavior, and it may be quantitatively quite
inaccurate if used outside of a narrow critical region near
threshold.

1. Mapping

~ ~ ~ ~ 0 ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ 0 ~ ~ ~ ~ ~

~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ I ~

FIG. 3. Swiss-cheese model in two dimensions. Straight lines
show the bonds of the superimposed discrete network; dotted
lines are the missing bonds.

dient is applied to the system.
Now we proceed to discuss the mapping of the Swiss-

cheese model onto a discrete random network with bond
strength distributions, following the work of Kerstein
and Elam et aI. The discrete network is indicated by the
straight line segments in Fig. 3, for the two-dimensional
case. In three dimensions, the bonds are located on the
edges of the Voronoi polyhedra constructed about the
centers of the spherical holes. A bond is "present" or "oc-
cupied" if and only if it lies entirely within the conducting
medium. (The Voronoi polyhedron, or Wigner-Seitz cell,
associated with a hole centered at point R& is defined as
the set of points closer to R~ than to all other hole-centers
in the system. )

We shall see below that the discrete network retains
several important properties of the continuum problem.
As was shown rigorously by Kerstein, two distant re-
gions of space are connected by the continuum conductor
if and only if there is a path of open bonds on the discrete
network connecting the two regions. Furthermore, if a
current is flowing in the continuous medium, we may
map each flow line onto the discrete network, in such a
way as to determine a current flow on the network.

If the continuum system has a linear conductivity, the
current through any bond in the network will be a linear
function of the differences between the voltages at node
points in the immediate vicinity of the bond; but the
current is not in general determined precisely by the volt-
age difference between the two ends of the bond. Thus,
strictly speaking one cannot assign a unique electrical
resistance to each bond in the network that would precise-
ly duplicate the current flow for all possible voltages ap-
plied to the outer-most nodes of the system. Nevertheless,

Berg„(r) =0
Br~

(29)

assures that there is vanishing force on each node, in the
"equivalent" discrete network.

2. Description of bonds

We now consider a fixed set of hole centers I R~), and

In his proof of the equivalence between the percolation
properties in the Swiss-cheese continuum and on the lat-
tice of edges of the Voronoi polyhedra, Kerstein
described a mapping of the interior of each unit cell onto
its edges, which we shall also employ below. In two di-
mensions, Kerstein's mapping moves each point in the cell
radially outward from the hole center R~, until the point
strikes an edge of the Wigner-Seitz cell. In three dimen-
sions, the mapping proceeds in two steps. The interior
point r is first carried in a straight line away from R~,
Until it hits a face of the Voronoi polyhedron. The point
is then moved to the perimeter of the face, in a direction
directly away from the point X, which is the projection of
the point R~ onto the plane of the face. Kerstein's map
has the important property that any continuous path em-
bedded in the Swiss-cheese-model conductor is mapped
into a continuous path on the edges of the polyhedra,
which is also entirely inside the conducting medium.

The above construction can also be used to map a
current flow in the continuum into an "equivalent" flow
along the bonds. We use Kerstein's procedure to map
each streamline in the conducting medium onto the edges
of the Voronoi polyhedra, and we correspondingly map
the motion of any particle along the streamline into a
motion along the edges. The constructed edge current
will clearly have zero divergence, if the continuum flow
was already divergenceless. In the elasticity problem we
use Kerstein's procedure similarly to convert the stress
tensor distribution in the Swiss-cheese medium to a set of
forces transmitted by bonds. The analogy to current flow
is clear if we regard the stress component a.~„as the
current, in direction k, of the momentum component p,
and then construct "streamlines" for the three values of p.
The equilibrium condition



208 SHECHAO FENG, B. I. HALPERIN, AND P. N. SEN 35

R, 3

Szz

examine the process by which various bonds are removed
from the conducting network, as the sphere radius a is al-
lowed to increase. In three dimensions, the edge of a
Voronoi polyhedron is the set of points which are equidis-
tant from three adjacent hole centers R„R2, and R3,
while further away from all other hole centers in the sys-
tem. We shall classify the possible bonds into four types,
represented by various combinations of the end and side
views in Figs. 4 and 5.

We shall first discuss bond types I and II, in which the
bond in question passes through the phase containing the
three adjacent centers. (The bond is clearly perpendicular
to this plane. ) We shall characterize the bond by the dis-
tance s to the three adjacent hole centers, and the three
angles 0~, 02, and 03 between the lines from the bond to
the hole centers.

End views of bond types I and II are illustrated, respec-
tively, in Figs. 5(a) and 5(b). For the type-I bond, the
three angles 0&, 02, and 03 are each less than 180'. For the
type-II bond, one of the angles is greater than 180'.

Consider first the type-I bond in Fig. 5(a). (A perspec-
tive view of this bond is given in Fig. 1.) The arrows in
Fig. 4 point in the directions of the adjacent hole centers
R~, R3, and R3, while the solid lines bisecting the angles
0&, 02, and 03 represents the faces S23, S», and S~2 of the
three Voronoi polyhedra which meet at the edge. The
dotted curves are the boundaries of the spherical holes,
where they intersect the plane through the centers R&, Rz,
and R3. The triangular region between the circles is the
smallest cross-section of the bond, and it is easy to see
that in the limit a ~s, the cross-section area is given by

(a

(a)

Siz

8&~ ~6&
2 2

R)

FIG. 4. End views of bonds in the Swiss-cheese model. Ar-
rows point to hole centers R &, R2, and R3, separated by angles
0&, 02, and 03. Solid lines are the projections of faces of the
three Voronoi polyhedra, which meet at the bond. Shaded
curves are the boundaries of the spherical holes centered at R&,

R~, and R3, and 6=(s —a) is the distance from those boun-
daries to the projection of the bond. In part (a), the three angles
0] 03 and 03 are all less than 180, as in bond types I and III;
and in part (b) angle 02 is greater than 180, as in bond types II
and IV.

FIG. 5. Side views of bonds in the Swiss-cheese model. Plane
of each part coincides with one face of a Voronoi polyhedron.
The heavy line E represents the edge which is viewed end on in

Fig. 4(a) or 4(b); the dot-dashed line represents the intersection
of the plane of the figure with the plane containing the hole
centers R~, R2, and R3, the points Q in parts (c) and (d) are the
intersection of this plane with the linear extension of bond E.
The points X are the projections of the "centers" of the two po-
lyhedra which share the face in the plane of the figure, while the
shaded curves are the intersections of the associated spherical
holes with this plane. Cases (a) and (d) are two possibilities cor-
responding to the face S&3 in Fig. 4, while cases (b) and (c) cor-
respond to the faces SI2 and S23 in Fig. 4(b), or to any of the
three faces shown in the end view of Fig. 4(a). Thus (a) and (d)
refer to bond types II and IV, respectively; view (b) may
represent bond type I or II; view (c) may represent type III or
IV.
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A =5 tan
0I 02 03

2
+ tan +tan

2 2
(30)

where 6—=s —a. The electrical resistance of the bond may
be computed in the limit 5 «a, as

oo

dz-
g Aop

b' ~(ay)'/2

2 Acrz 0

+2.
(31)

where oo is the conductivity of the Swiss-cheese material,
z is the distance along the bond, and we assume the ends
of the bond are much farther than (5a)'/ from the plane
of the smallest cross section. The integrand in Eq. (31) is
just the ratio of the smallest cross-sectional area to that at
z, provided that (z/a) «1. We see that as 5~0+, the
bond conductance vanishes as 5

Next, consider the bond illustrated in Fig. 4(b), where
one of the angles, 02, is greater than 180'. In this case, as
(s —a)~0, the face Si3 remains entirely outside the
spheres, and continues to conduct when the bond is
pinched off. A side view of the type-II bond, from a
direction normal to S» is illustrated schematically in Fig.
5(a). One can see from this figure that any current path
which is mapped onto the surface S», in the first stage of
the Kerstein construction, will be necessarily assigned to
bonds on the perimeter other than the type-II bond (la-
beled E) and all of these bonds remain open when E is
first pinched off.

A view of the type-II bond normal to the surface Si2 or
S23 is illustrated in Fig. 5(b), which may also be used to
illustrate the type-I bond, from any of its faces. We see
that the current paths on the surfaces S&2 and S23 are
necessarily pinched off at the critical hole radius (a =s)
for this bond. Thus in the Kerstein construction, the
current assigned to the type-II bond must also vanish as
(s —a)~0. It does not really matter how small a conduc-
tance we assign to the bond for small values of (s —a),
however, because the type II bond wi11 be sho-rted out by
the other conductances on the perimeter of Si3. (Because
of this, a type-II bond can never be one of the singly con-
nected bonds in the nodes-links-blobs description of the
percolation backbone. )

We now turn to bond types III and IV, where the plane
containing R&, R2, and R3 intersects the line of the bond
at a point Q which is off one end of the bond. In this
case, the bond will be pinched off from the end, rather

than the middle. We again define the angles Oi, Oz, and 8&

between the vectors from Q to the hole centers.
In the type-III case, all three angles are less than 180,

and the end view is illustrated in Fig. 4(a), while a side
view, projected onto the plane of any of the three faces
S23 SI3 OI SIQ will look schematically as indicated in
Fig. 5(c). The type-IV bond has one of the angles, Oz,
greater than 180, and its end view is given by Fig. 4(b).
Now, a side view, projected onto the plane of S&3, resem-
bles the sketch in Fig. 5(d). In order to discuss the contri-
bution of a bond of type III or IV to the network resis-
tance, it is necessary to consider simultaneously the
geometry of the three other bonds connected to the criti-
cal end of the bond. One such connecting bond is shown
in each of the Figs. 5(c) and 5(d), and labeled E'. For the
case shown in 5(c), it is seen that bond E' is actually
pinched off before the end of bond E is reached by the
growing sphere. For the ease shown in 5(d), bond E' is
removed from the system at the same time as bond E. In
this case, the remaining bonds on the perimeter of the il-
lustrated face remain open, as E' and E are removed, and
these bonds carry any current that might have previously
flowed from E' to E.

We find that all bonds connected to the critical end of a
bond of type III or IV will behave like the bond E' in one
or the other of Fig. 5(c) or 5(d). Thus there is a very small
current through bond E, just prior to its removal from the
system, and the resistance of this bond is of no conse-
quence for the critical behavior of the network near per-
colation.

3. Distribution of conductances

Finally, we must compute the probability density p(g),
that a given bond has conductance g, in the limit as g~0.
For the reasons stated above, we need only consider type-I
bonds, which pass through the plane of the adjacent hole
center and have 0I, 02, and 03 & 180'.

Let po(s, Oi, 82) be the probability density for finding a
bond with given values of s, 8, and 82. (The remaining
angle is determined by 83 ——2m —Oi —Oz). It is clear that p
is a smooth function of its variables. This probability dis-
tribution is independent of the choice of a, in the model
we are considering, so there is nothing special about the
value s =a or 6=0. The function f(Oi, 82)=—po(a, O„Oz)
will be finite and nonzero for 0I, 02 in the range of in-
terest. We find, using Eq. (30) and Eq. (31), that

p(g)= f ds fdOidOipo(s, Oi, 82)6 g—
2' o(s —a)

0I 02 03
tan + tan + tan

2 2 2

22/3+/3 i /3

/3 7/3 fdOid82
~o

f(Oi 82)

02

2
+ tan

0I
tan + tan

2

2/3
3

2

(32)
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Yp6sy2~a & in d =2

y —Ypg /a in d =3, (33)

where Yp is the Young's modulus of the transport elastic
medium. These results can be understood if we again ap-
proximate a neck by a thin rectangle or cylinder of width
5 and length l = (5a) ', and use the classical result
y= Fo(I/l) for a bent-beam problem, where I is the mo-
ment of inertia of the cross section of the beam. In the
three-dimensional case, for example, we have

The angular integrations in this equation are restricted to
the region where Ot, 92 are in the range (O, rr) while 0, +Oz
is in the range (rr, 2rr); there is no problem with conver-
gence of the integral.

The result p(g) ~g '~ coincides with the form ob-
tained in Sec. II for the case where g is a function of a
single variable 5, when g~5'~ and P(5=0+) is finite.
In two dimensions, the equivalent result is that g ~6
this is essentially the conductance of a rectangle of width
5 and length (5a)'~ .

The difference between the permeability and conduc-
tivity problems in the Swiss-cheese model arises from the
different behaviors of the bond strengths, for small 6. In
three dimensions, the fluid flow conductance of a viscous
fluid through a narrow channel like that in Fig. 1 is pro-
portional to 5 /l ~6, while in a two-dimensional ver-
sion of the model, the fluid flow conductance varies as
5 /1 ~5 ~ . These results can be easily derived from stan-
dard Poiseuille theory for viscous fluid Aow in fluid
dynamics.

In the elasticity problem, we need to find the bond-
bending force constant y that describes the energy cost
E= 2 QO of bending a bond or twisting a bond through a
specified small angle 0. For a bond that has a width 5, y
is given, up to a constant of order unity, by

TABLE I. Estimates of the differences between the transport
percolation exponents in the continuum models (t, f, and e ) and
the corresponding exponents on a discrete lattice. Nonzero en-
tries in the table correspond to the upper bounds in Eq. (5), and
therefore are slight overestimates of the actual values. (a) The
Swiss-cheese model; (b) the inverted Swiss-cheese or potential
model.

Conductivity

(t —t)
Elasticity

(f f)— Permeability

(e —t)

d=2
d=3 1

2

(a)
3
2

5

2

3
2

5

2

d= 2

d= 3

(b)

1

2
1

2

port exponents derived in Sec. II may then be written

max( t, t, +y') & t & t +y',
max( t, t, +y ) & e & t +y

max(f, f, +y') &f &f +y',

(35a)

(35b)

(35c)

where t, e, and f are the exponents for the Swiss-cheese
model, t and f are the exponents for conductivity and
elasticity in the standard discrete lattice problem,
t, —:l+(d —2)v is a lower bound to t, and f,:—l-+dv is
the lower bound for f first derived by Kantor and Web-
man.

I= j x'dxdy, (34) B. Inverted "Swiss-cheese" model

where the integral is taken over the cross sectional area of
the elastic beam, and x is measured from the middle plane
which is perpendicular to the direction of bending. Thus
in d=2, we have I-5, and in d=3, we have I-6 . We
remark that the bond-stretching force constant varies like
the conductivity, for 6~0, and is therefore much larger
than y in this limit.

From the above, we see that the different percolation
transport properties of the Swiss-cheese model can be
analyzed in terms of an equivalent discrete random net-
work with a wide distribution of bond strengths, near per-
colation, which was studied in some length in the preced-
ing section. In particular, the index y of the bond conduc-
tance distribution for the electrical conductivity problem
is y = ——,

' in d =2, and y = —, in d =3; while for the elas-
tic moduli problem and the viscous fluid permeability
problems one finds y = —', in d=2 and y = —,

' in d=3.
These values of y in turn determine the values of the per-
colation transport exponents, as discussed in the preceding
section.

These results are summarized in Table l(a). The num-
bers listed in the Table I(a) are actually the quantities
y'=max(y, O) in each case. The inequalities for the trans-

In the "inverted Swiss-cheese" model, or the inverted
spherical-void model, the roles of the two different media
are switched, i.e., the transport medium is now the space
occupied by the spheres, while the region between the
spheres does not support transport. A mapping onto an
equivalent discrete network with bond strength distribu-
tions can be made analogously to the Swiss-cheese model.
Now the nodes of the network are the sphere centers, and
the bonds are lines joining the neighboring sphere centers.
The shape of an occupied bond is shown for the d=2 case
in Fig. 6. In d = 3 the shape of a bond is the rotation of
the structure in Fig. 6 along the axis of the dot-dashed
line. The critical transport percolation exponents can be
defined, for example, as X—(q —q, )', for q )q„where q
is the volume fraction of the spheres.

The strength of a bond of overlap 6 can be analyzed as
follows. We define 6 =—2a —s, where s is the separa-
tion between the centers of the two spheres in question,
and a is the sphere radius. The diameter 6 of the con-
stricted region in the bond is related to 5 by

=(25 a)'~, where a is the radius of the spheres. For
electrical conduction, or for viscous fluid flow through an
aperture, we expect that the region of maximum dissipa-
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FIG. 6. Neck geometry in the inverted Swiss-cheese model.
FIG. 7. Geometry of a narrow neck in the potential model.

tion will extend for a distance of order 6 /2 on either side
of the aperture. This expectation can be easily justified by
studying the electrical conduction through a thin insulat-
ing wall with a circular hole of radius 6 /2. It is easy to
show that the electrical field differs significantly from the
uniform external field only in a region of dimension 5 /2
near the hole, in both the direction perpendicular to the
hole and in directions which lie within the plane of the
wall. Thus we may approximate the bond by a cylinder
with length l equal to its diameter 5 -6' . We there-
fore find that the conductance g for bond u, up to con-
stant of order unity, is given in d=2 by g =b, /l —6,
and in d = 3 by g = b, /I —6' . [More precisely,
g ~In(a/5 ), for d=2.] This gives the value of the dis-
tribution index y for the electrical conduction problem
y = —1 in d=2 and y = ——, in d=3, both giving rise to
no correction to the conductivity exponent. For the fluid
permeability problem, however, we see that the fluid flow
conductance of a bond scales as g =6 /l —6' in
d=2, and g =6 /l -5 in d=3, giving rise to
y = ——, in d=2 and y = —, in d=3. In the elasticity
problem, we notice that the bond-bending or twisting con-
stant of a bond can again be obtained from classical
beam-bending theory, with y ~I /l . The moment of
inertia for the cross section is given by I -5 in d=2
and I 6 in d=3. Thus y = ——, in d=2 and y = —, in
d=3 for this problem. It is clear, also, that the distribu-
tion P(5) for this model is finite for 6~0+. The correc-
tions to the transport exponents can therefore be read off
from the analysis of Sec. II, and the results are listed in
Table I(b).

C. Potential model

In the subsection we consider yet another class of con-
tinuum models, namely the potential model, where the
transport regions are the portions of space where a speci-
fied smooth stochastic "potential-function" V(r) is less
than some cutoff value V*. A two-dimensional experi-
mental realization of the potential model was studied by
Smith and Lobb, who used the intensity of a laser-
speckle pattern to generate the function V(r), and used
high contrast film and photolithographic techniques to

produce the two-dimensional conducting sample. Wein-
rib ' later discussed the mapping of this d=2 potential
model onto a discrete network. A similar construction
was suggested earlier by Ziman, for a three-dimensional
model ~ In these constructions, one associates nodes of the
discrete network with local minima of the potential func-
tion, and one associates bonds with the saddle points con-
necting two valleys. We assume that in the vicinity of a
saddle point, the potential V(r) may be expanded as

(35)

where r is the position of the saddle point, and U p, the
matrix of second derivatives of V, has one negative eigen-
value k, , and (d —I) positive eigenvalues, A, q, . . . , A,d. If
h—:V* —V(r ) is negative, the bond at r is unoccupied;
but if h is positive, the bond is occupied. At its nar-
rowest point, the bond has an elliptical cross section with
the principal diameters Aq ——(8h /A2)', b, 3

——(8h /
k3)', etc. (see Fig. 7). If h is small, the length l
of the constricted region of the bond is given by
1 = [8h /( —A, &)]', which is of the same order as the di-
arneter Az, if we assume that all eigenvalues of U p have
similar magnitudes.

Now we can proceed to compute the transport bond
strengths distribution exponents y of the equivalent
discrete network corresponding to this continuum model.
As in the inverted Swiss-cheese model, we may replace a
bond by a cylinder of length l and diameter A2. Then the
electrical conductance g of a bond with height parameter
h is proportional to h in d=3 and h in d=2. For
the fluid flow through the bond we find g~ ~ h in d=3
and g ~h in d=2. Similarly, the bond-bending and
torsion constants obey y ~h in d=3 and y ~h in
d=2.

Finally, we note that except for pathological cases, we
may assume that the distribution of saddle-point values
V(r ) is regular in the vicinity of the critical value, so
that the probability distribution P(h ) has a finite value
P(0) in the limit h ~0+. Thus we see that formally the
potential model is equivalent to the inverted Swiss-cheese
model discussed in the last subsection, in so far as its per-
colation transport properties are concerned, and the ex-
ponents are those indicated in Table I(b).
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IV. SUMMARY AND DISCUSSIONS

We are now ready to summarize our results and discuss
some of their consequences.

A. Summary

We may summarize our theoretical results as follows.
If we consider a network in which a fraction p of the
bonds are randomly present, with bond strengths g or y
that vary as 6"+', where the 5 are independent random
variables with a probability distribution that remains fi-
nite in the limit 5~0, and if t, e, and f are the exponents
for the vanishing of the network conductivity, viscous
fluid permeability and elastic moduli as p~p„ then for
y & 0 we have the inequalities

max(t&+y, t) (t &t+y,
m ax(t

& +yt) & e & t +y,
max(f )+y, t) &f &f +y,

(36)

B. When the channel size does not extend to zero

where t~ =—1+(d —2)v& t is the nodes-links-blobs lower
bound to the true lattice percolation conductivity ex-
ponent t, and f, = 1+dv &f is the similar lower bound to
the true lattice elasticity exponent f. (As discussed in Sec.
II, some of these inequalities are rigorous but others not. )

Insofar as the differences (t t, ) and (f f—, ) are smal—l,
these inequalities determine t, e, and f to a reasonable ac-
curacy. According to the arguments of Ref. 21 and the
results of Refs. 22 and 23, it seems likely that exponents t,
e, and f are precisely given by the lower bounds in Eq.
(36), in most cases. For y (0, we expect t=t, e=t, and

f=f. In order to obtain the results of Table I for the
continuum models, we have simply used the values of y
appropriate to the narrow bonds (necks) in each model.

of punched spheres, and L~ —1/(p —p, ). Thus we see
that when 5„ is sufficiently small, we can find a range of
p values for which conditions that system is in the critical
regime (i.e., scaling laws apply) and (p —p, ) &6„/a are
both satisfied. For this range of p, it is apparent that one
can still use the new continuum exponents t etc. to
describe the transport properties of the system. But when
the system is really close to threshold, i.e., when
(p —p, ) (6„/a, the resistance of a chain will be deter-
mined by the singly connected bonds whose width is of
order 5„, and the number of such bonds on each chain will
be of order L &5, /a. Thus extremely close to p„we need
to use the standard lattice exponents t, etc. to describe the
system.

The above crossover phenomenon can be described by
the following scaling function, as Ap~0:

X-(bp)'F
5„

(37)

where the universal function F(x) satisfies the asymptotic
relations F(x)—const when x «1, and F(x)-x~ when
x »1.

C. Universality for transport percolation

We have seen that the percolation transport critical ex-
ponents for the discrete lattice model (or continuum sys-
tems with finite minimum neck width), the Swiss-cheese
model, and the inverted Swiss-cheese model (or the poten-
tial model) can be different in a given dimension. This
implies that the concept of universality of critical
phenomenon, when one considers the problem of percola-
tion transport, has to be used with care. Singular distribu-
tions of microscopic transport strength can play a very
important role in determining the macroscopic transport
critical exponents.

According to the analyses given above, interesting con-
tinuum corrections to the discrete percolation transport
exponents can occur only if the distribution of the bond
width parameter 5 (or h) extends all the way down to
5~0. If, in a particular continuum percolation system
under study the bonds are restricted to be larger than a
certain minimum width, then the transport exponents
very close to the percolation threshold should be the same
as their counterparts in the standard discrete lattice
models. One may, however, observe the effect of the
bond-strength distributions in the behavior of the trans-
port coefficients when systems are near but not too close
to percolation threshold.

We can illustrate our point for the following sterotypi-
cal example. Let us consider a restricted Swiss-cheese
model, in which all the narrow channels are constrained
to have a width 5 larger than 5, . First we can again map
the problem onto a discrete network of fraction p occu-
pied bonds, with bond strength g-5"+' with the con-
straint 5&5,. From linear chain analysis in Sec. II, we
know that when the continuum corrections are relevant
(i.e., y & 0), the system's transport is mostly determined by
channels of the width 5;„-a/L~, where a is the radius

D. Experiments and numerical simulations

As we mentioned above, Smith and Lobb have studied
experimentally the electrical conductivity of a two-
dimensional continuum system falling in the class of the
potential model described above. Their result for the con-
ductivity exponent t =1.30 is in excellent agreement with
the lattice value for t, as we would expect from our
analysis, summarized in Table I.

One way to observe experimentally the difference be-
tween continuum and standard discrete percolation ex-
ponents is to measure the elastic modulus of a sheet with
randomly located circular holes (two-dimensional Swiss-
cheese model). This experiment was performed by
Benguigui, who finds f= 5. Lobb and Forrester re-
peated this experiment more recently and carefully. Both
groups' results show reasonable agreement to our theories
presented in the present paper. The system studied earlier
by Benguigui' is not of this type, however, as the holes
were centered at random sites on a discrete lattice, and
there are consequently no narrow necks in the system. We
expect the elasticity exponent of this experiment to be f,
the lattice exponent, in agreement with his findings,
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f=3.5. The conductivity experiments of Last and Thou-
less, which first demonstrated that the two-dimensional
conductivity exponent is greater than unity, were also car-
ried out in a geometry without narrow necks. It is clear
that one would expect to find the conventional lattice ex-
ponent t in this case; but the accuracy of the Last-
Thouless experiment did not al1ow a quantitative estimate.

Sen et al. and Bunde et al. have recently performed
numerical simulations of the electrical conductivity prob-
lem on a discrete lattice percolation model with power-law
bond-strength distribution, of the form discussed in Sec.
II above. Within the numerical uncertainties, they have
verified the corrections to the standard discrete lattice ex-
ponent of our analysis and of Refs. 18—22, i.e., t = t +y,
for y&0.

Roberts and Schwartz have studied numerically the
electrical conductivity and fluid permeability of a porous
sedimentary rock, using a model similar to our Swiss-
cheese model in three dimensions, except that the centers
of their interpenetrating insulating spheres were chosen
originally from a Bernal distribution, rather than com-
pletely at random. We would not expect this additional
short-range correlation to affect the critical exponents.
As noted by these authors, however, the volume fraction
of conductor in these models is very small ( =3%) at the
percolation threshold, regardless of whether the Bernal
distribution or the random distribution was used for the
hole centers. We expect that the critical exponent may be
observable only for q very close to q, . Roberts and
Schwartz do not investigate the critical properties, but
study instead a wide range of conducting volume fractions
above percolation. We note that the analysis of Roberts
and Schwartz involved mapping onto a discrete network,
similar to ours, with bond strengths determined by the
cross-sectional area of the necks.

If one adopts this model to describe sedimentary rocks
of low porosity one can write, in terms of the porosity
P = 1 —q, that X —(P P, )' and ~-—(P —P, )'. According
to Table I, we have t=2.5 and e=4.5. This implies a re-
lation ~-X', which is not far from experimental find-
ings on many types of rocks. Experiments on rocks,
however, are typically made in the regime (P —P, )/P, & 1,
so we have no right, a priori, to expect that asymptotic
critical exponents will apply. [The measured conductivi-

ties of porous rocks are generally fit to an empirical rela-
tion (Archie's law) of the form X~/ which assumes
$, =0 and a typical value of m is =1.5.] Nevertheless,
the analysis of Roberts and Schwartz suggests that the
conductivity is dominated by the decreasing cross-
sectional area of narrow passages in the entire range
3% (P (30%, and the difference between the conductivi-
ty and permeability behavior is qualitatively explained by
the different dependences on the areas of the passages.

Wong, Koplik and Tomanic have studied a network
model of conducting pipes, in which all bonds on a regu-
lar network are present, but there is a wide distribution of
pipe radii. The exponents of their model depend on pa-
rameters in the distribution, but they find also typicaHy a
permeability exponent about twice the conductivity ex-
ponent, which is not far from our finding.

Since the publication of Ref. 1, there have been many
interesting developments in regard to continuum percola-
tion transport properties. Among them are a renormaliza-
tion group analysis of the conductivity exponent t of a
hierarchical network with a broad distribution of bond
strengths, ' an experimental study of electrical conduction
in 2D continuum percolation systems, a theoretical
study of the resistor-superconductor networks with distri-
bution of strengths in one dimension, a theoretical study
of the frequency-dependent transport properties in contin-
uum percolation systems, a numerical simulation work
on conductivity and permeability of continuum percola-
tion models, and much experimental and theoretical
work on the amplitude of 1/f noise in continuum percola-
tion, systems. The ideas contained in the present paper
are useful for understanding many of these problems.
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