PHYSICAL REVIEW B

VOLUME 35, NUMBER 4

1 FEBRUARY 1987

Invariant geometry of spin-glass states

Gregory G. Athanasiu and Constantin P. Bachas
Stanford Linear Accelerator Center, Stanford University, Stanford, California, 94305

Wilfried F. Wolff
Xerox Palo Alto Research Center, Palo Alto, California 94304
and Department of Applied Physics, Stanford University, Stanford, California 94305
(Received 7 July 1986)

We study how the geometry of spin-glass states changes under redefinitions of the metric. We
show that in mean-field theory the property of ultrametricity is robust. We present numerical evi-
dence suggesting that in the more realistic D=2 and D=3 spin-glass models a stronger result may
hold, namely that the choice of metric is to a large extent unique.

Much of the recent progress in understanding the na-
ture of the spin-glass phase has focused on the geometry
of the space of thermodynamic equilibrium states. A
striking feature of this space in mean-field theory is its ul-
trametric structure,! implying a hierarchical organization
of states in clusters.

Ultimately, the importance of this ultrametric property
will be determined by the extent to which it proves univer-
sal. Is it, for instance, a robust property of finite-
dimensional spin glasses,” in which case it would be exper-
imentally relevant, and of other complex frustrated sys-
tems,’ in which case it may furthermore find applications
in combinatorial optimization. And does it also imply a
hierarchy of energy barriers, thereby leading to simple
models of dynamical relaxation?*

Such questions are, in general, hard to address. In this
paper we study one aspect of the universality of ul-
trametricity which can, however, be conclusively verified,
namely its invariance under redefinitions of the metric in
the space of states. The distance between two spin-glass
states a and b has so far been taken to be a measure of the
variation in local magnetization®
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where g, is their overlap, and the self-overlap gg, is
state independent. Though natural, this definition is not
unique. By analogy with (1) we could define
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for any other observable density O;, such as the local
molecular field, a coarse grained magnetization, the ener-
gy density, etc.
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Now the local details of how one chooses to define the
distance between states should not matter, if ultrametrici-
ty is to be a meaningful concept, because (i) in real experi-
ments, the precise density measured by a given probe may
well be ambiguous (for instance, neutron diffraction ex-
periments with less than perfect resolution would presum-
ably measure a coarse-grained magnetization) and (ii) in
most complex frustrated systems (such as the problem of
close-packing randomly-shaped tiles, a model for amor-
phous materials) there is no a priori natural definition of
the distance between states.

Our results are as follows: (a) We will show explicitly
in mean-field theory that the property of ultrametricity is
invariant under metric redefinitions, and (b) we will
present numerical evidence that in the more realistic
D=2 and 3 Ising spin-glass models not only is ul-
trametricity, if present, preserved, but a much stronger re-
sult apparently missed by mean-field theory may hold,
namely that a wide variety of locally defined metrics are
identical up to an overall scale factor. In this sense, the
metric in the space of spin-glass states is almost unique,
and the geometry universal.

The mean-field theory of spin glasses is described by
the long-range Sherrington-Kirkpatrick® Hamiltonian
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where the o; are Ising spins and the J;; are independent
quenched random variables with a symmetric Gaussian
distribution of variance 1/V'N. The property of ul-
trametricity was demonstrated! by calculating the average
probability that three states a, b, and ¢ have mutual mag-
netization overlap z,, z,, and z;. Using the replica trick
this can be written
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where Tr, stands for a summation over all spin configura-
tions of the n replicas and the magnetization overlap of
two real replicas is

qap(0)=— 20,0, . (5)

Using standard saddle-point integrations, this is rewrit-
ten as
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where Q,, is the n X n matrix that minimizes the free en-
ergy. Below the transition temperature, it has the
hierarchical form obtained by Parisi’ and best described
by the homogeneous tree shown in Fig. 1, and a monotone
nonincreasing and positive (for nonvanishing magnetic
field H) sequence g;. It follows immediately from the
hierarchical form of Q,,, and Eq. (6), that P(z,,z,,z;)
vanishes unless the two smaller overlaps coincide. Thus
all triangles in the space of pure states have their two
bigger sides equal with probability one, which is the state-
ment of ultrametricity.

We are now ready to show that the property of ul-
trametricity is robust under redefinitions of the metric, of
type (2).8 Instead of a general proof, which would be tedi-
ous and not particularly illuminating, we will restrict our-
selves here to two examples where the observable O; is (a)
the local molecular field, and (b) the energy density; these
can then be readily generalized.

(@) Local molecular field. The field overlap of two real
replicas is defined as
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To calculate the average probability that three states a, b,
and ¢ have mutual field overlaps z,, z,, and z3, we substi-
tute g\» for g, in Eq. (4), and then replace in turn J;;
and g,(0) (for as£b) by their saddle-point values

I
To show that Q') has the same hierarchical structure as

Q, note that the invariance group of the latter is the direct
product of the permutation groups of m i,/Mi 1
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branches at each branching point A4 on the tree:
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When a runs over all n replicas so does 7(a) and hence, by
a change of dummy variables it follows that Q%) has the
same symmetry group, and thus also the same hierarchi-
cal structure as the Parisi matrix. It remains to prove that
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FIG. 1. The tree describing Parisi’s hierarchical replica sym-
metry breaking ansatz. Then entry Q,, =¢; depends only on the
level i of the nearest common ancestor of a@ and b. The bifurca-
tion number of all branches at the ith level is m; /m; _,.

(B/N)X}_ 070} and Qg, respectively. The result is the
same as Eq. (6), but with the saddle-point matrix Q re-
placed by

Q(h)ZBZ(Q+1)3

where 1 is the identity matrix. Now matrices of the Parisi
form are closed under addition and multiplication, as can
be easily seen by inspection. That monotonicity of g; is
preserved under multiplication follows from the trivial in-
equality xX+yy >xy+Xy if x>y and X >y. Thus the
matrix of field overlaps Q*) has the same hierarchical
form as the saddle-point matrix Q, which suffices to es-
tablish ultrametricity in the new metric.
(b) Energy density. The energy overlap of two replicas
is
qab (0 2 2 0%0}

b b
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Going through the same steps as before, we arrive at the
joint probability of mutual energy overlaps of a triplet
given by Eq. (6) with Q now replaced by

Qab —ﬁz 2 (Q+1)ac(Q+1)bdMabcd ’
c,d=1

where M, is the one-site average’

its entries are larger the more they are nested. This can be
shown with the use of lengthy to prove but straightfor-
ward inequalities!® for the ferromagnetic hierarchical
model with Hamiltonian H =+ P Qu0°0® which is a
generalization of the long-range Dyson ferromagnet. The
positivity of Q. is crucial here.

The above examples can be easily generalized to other
gauge-invariant definitions of the metric. The invariance
of ultrametricity is a consequence of the fact that the dis-
tance d.y of two states is a (monotone increasing) func-
tion of their magnetization distance alone: d;f,))
=f%d,). (Note that such a functional relationship



35 INVARIANT GEOMETRY OF SPIN-GLASS STATES 1967

does not exist among the various overlaps of arbitrary
spin configurations.) In mean-field theory the functions
f'9 are, in general, complicated.

We will now present numerical evidence that in the
more realistic two- and three-dimensional spin-glass
models (a) d.J’ are still monotone functions of d,,, and
(b) for several Z,-odd densities O; these functions appear
to be, surprisingly, straight lines. Hence, such changes of
metric amount to a simple rescaling that preserves not
only the notion of ultrametricity, but all other geometric
features (such as the distribution of overlaps) as well.

Our numerical simulations were done on the IBM 3081
at SLAC. We studied models (3), with J;; being +1 with
equal probability for nearest neighbors on a D =2 square,
and D =3 cubic lattice, and zero otherwise. We used
periodic boundary conditions on lattices whose size varied
from 162 to 54 and from 8 to 14°. We slowly (~ 5000
lattice sweeps) cooled several replicas, typically 50, of the
same sample down to some low temperature, that ranged
from 8=0.8 to 3.0, and then in each replica we measured
the densities of magnetization (m;), molecular field (4;),
energy (E;), coarse-grained magnetization (mf), and a
composite operator (c;), where m{ is the average magneti-
zation over an elementary square of cube of the lattice
with i at its lower left corner, and for the composite
operator we took
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The averages were taken over a few hundred Monte Carlo
sweeps. Finally we measured the distances d'? between
each replica and some randomly chosen fixed replica, for

ea(((:)l} of the above densities O, as well as the self-overlaps
dEA-

Consistency checks included verifying that the internal
energy of all our states agreed with previous simulations
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FIG. 2. Plots of (d'*)%, (d'?)?, and (d‘F’)? versus the magnet-
ization distance d?, for 50 replicas of a typical 2D 24 X 24 sam-
ple at 3=2.1. The little squares indicate where the correspond-
ing self-overlaps for all 50 states fall. The slopes are the ratios
of self-overlaps; the quoted errors are due to fluctuations from
sample to sample. The energy fluctuations (d‘®’)> may be van-
ishing in the thermodynamic limit.
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FIG. 3. Plots of (d®)2, (d™“), and (d®)? versus d? for a
typical 3D 12X 12X 12 sample at B=2.1.

to within 1%,!! and that self-overlaps are to a good ap-
proximation state independent and self-averaging; we used
their fluctuations to estimate error bars. We made no at-
tempt to establish the presence or absence of an equilibri-
um transition, for which much better data already ex-
ists;'? for all we know our states could be metastable.

In Figs. 2 and 3 we present typical distributions of
(d\f”,d2) with O =h and ¢ for a D=2 sample, and
O=h and m° for a D =3 sample, at zero external field.
The little squares indicate the area in which the points
(939 ,g,0) fall for all replicas a. Assuming state-
independent self-overlaps, the square sizes can be used as
estimates of the corresponding error bars. Within these
error bars, the distributions are (1) one-dimensional
curves, rather than spread out over the plane, and (2) re-
markably well fitted by straight lines. Due to the global
Z, invariance, there is a reflection symmetry about the
point (qﬁf,qEA ); thus the slopes of the straight lines are
the ratios of the corresponding self-overlaps, whose values
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FIG. 4. (a) A typical (d'®)? versus d? curve at external field
H =0. In the insert, (b) a magnetic field H =1 has been
switched on.
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we found to be essentially independent of lattice size, cool-
ing rate, sample, and to a good approximation tempera-
ture below 1/B=1; they are given on the figures. Note

that if gauge noninvariant additions to the metric self-

average to zero, one would expect q;;";c)/qEA =8 in three

dimensions, which is consistent with the ‘“‘experimental”
value. Let us stress, that although our data shows no sta-
tistically significant deviations from linear laws, we know
of no theoretical argument that would exclude such devia-
tions.

In Figs. 2 and 3, on the same scale as [d#']%, we have
also plotted [d'F']?, to show that the energy-density fluc-
tuations from one state to another are relatively small. A
preliminary scaling analysis suggests that in D =2 these
fluctuations may actually vanish in the thermodynamic
limit, an intriguing possibility. In D =3, the (d©)?
curves seem to converge to the symmetric shape shown in

Fig. 4(a). The symmetry under reflections about d =qga
is due to the fact that E; is Z, even, and can be lifted in
the presence of a magnetic field, as shown in Fig. 4(b).
Our statistics are not good enough to determine the func-
tional form of these curves, although we can safely say
that, up to reflections, they are monotone increasing and
hence preserve the notion of ultrametricity.

In conclusion, we have presented analytic (in mean field
theory) and numerical (in the D =2 and 3 spin-glass
models) evidence, that the notion of ultrametricity is in-
variant under redefinitions of the distance between states.
We have also presented evidence that in the D =2 and 3
models, the choice of metric may to a large extent be
unique.
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