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Dipole-exchange spin-wave modes in very-thin-film antiferromagnets
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We study spin-wave modes in very-thin-film antiferromagnets in the wavelength region where
both exchange and dipolar energies are important. Exchange boundary conditions appropriate to
the (100) and (110) surfaces of a bcc crystal are derived and solved consistently with the equations of
motion to yield the dispersions for spin-wave modes in various thin-film geometries. The effects of
surface conditions are explored, illustrating the importance of free and pinned surface spins and also
revealing a dramatic dependence on microscopic film surface geometry. In calculations for MnF2
we show how the dipole-exchange modes can be localized to one surface in certain film geometries
without the presence of an applied field.

I. INTRODUCTION

Many of the unique features (nonreciprocal surface
waves, backward traveling volume waves, etc.) of fer-
romagnetic spin waves have found application in practical
devices such as the delay lines and filters which are used
in microwave processing technologies. ' In these devices
it is the dipolar fields which play an important role. An-
tiferromagnetic spin waves where dipolar interactions are
important, however, have not received as much atten-
tion. Nonetheless, in a recent experiment nonreciprocal
reflection of infrared radiation was observed from the sur-
face of antiferromagnetic MnFz. The nonreciprocal re-
flection can be attributed to the influence of dipolar fields.

Previous treatments of dipole-influenced spin waves in
bounded antiferromagnets have concentrated on the 1ong-
wavelength region. In this paper we consider the dipole-
exchange modes of an antiferromagnetic film which is
thin enough that the long-wavelength approximation is
not sufficient. An advantage of this treatment is that the
dependence of spin waves on surface conditions may be
investigated. For example, in ferromagnets, it is well
known that surface anisotropy fields may lead to the pin-
ning of surface spins. Experimental magnetic reso-
nance ' and light-scattering studies" ' yield spectra
with line intensities and positions that significantly de-
pend on spin pinning at the surface. A great deal of in-
formation about surface conditions may thus be obtained
from spin-wave experiments on magnetic crystals.

Surface anisotropy and exchange fields affect modes in
antiferromagnets as well. Due to the reduced number of
neighbors at the surface, the exchange field that a surface
spin experiences may be greatly reduced compared to the
exchange field felt by a spin in the bulk of the material.
As we will see, this may also lead to spin pinning at the
surface of an antiferromagnet. This is in stark contrast to
the results for ferromagnets where the reduction in the
number of neighbors at the surface does not lead to any
pinning effects.

The microscopic structure is also important for antifer-
romagnets, especially for thin films. For example, the
(110) surface of a body-centered cubic antiferromagnet

toi y[H, (2H,„+——H, )]'i

to, =y[H, (2H,„+H,+4aM)]'

to2 y[H, (2H,„+H,+——8m.M) ]'
(2)

where H, is the anisotropy field, H,„ is the mean ex-

FICx. 1. Film geometry. The film is aligned with the sublat-
tice magnetizations parallel and antiparallel to the z axis. The
surfaces are parallel to the xz plane and are at y =+d/2 and
y = —d/2. An applied field may lie in the +z direction. The
spin-wave vector, Q~~, makes an angle 0 with the z axis.

contains spins from both magnetic sublattices while a
(100) surface contains spins from only one sublattice. As
we shall see, spin waves propagating in a structure where
the surface contains both magnetic sublattices have dif-
ferent properties from those propagating in a film where
the surface contains only one magnetic sublattice, and an-
tiferromagnetic resonance experiments should be very sen-
sitive to these differences. With this sensitivity to surface
construction, an examination of spin-waves modes in very
thin films is necessary to help characterize the quality of
anti ferromagnetic films which are presently being
grown. '

We will want to compare our results for the dipole-
exchange spin-wave modes in thin antiferromagnetic films
to earlier results in thicker films. We consider a
geometry where the easy axis of the antiferromagnet lies
along the z axis and the y axis is normal to the surfaces of
the film. This geometry is illustrated in Fig. 1. For spin
waves propagating parallel to the surface but perpendicu-
lar to the easy axis in very thick films, there are three im-
portant frequencies:
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change field, and M is the saturation magnetization of a
sublattice. These results hold only in the long-wavelength
limit. co& and cuz are the frequencies of bulk spin waves.
There is an infinite number of degenerate spin wave at
each of these frequencies corresponding essentially to an
infinite set of standing waves in the y direction with dif-
ferent wavelengths. We note that co& is the well-known
antiferromagnetic resonance frequency. In addition to the
bulk modes, there are two degenerate surface modes with
frequency co, which exist between the two bulk bands.
The two modes correspond to waves which have odd and
even symmetry about the midplane of the film. For thin
films, this degeneracy is removed with the even mode hav-
ing a lower frequency.

When a field is applied, the above formulas do not
hold. The upper bulk modes are shifted up in frequency,
and the lower bulk modes are shifted down, but the degen-
eracy is not removed. The degeneracy of the surface
modes, however, is removed, and one mode is shifted up-
ward and the other downward, and an interesting localiza-
tion occurs. The upward shifted wave propagating along
the positive x axis is localized at the lower surface of the
film while the wave propagating along the negative x axis
is localized at the upper surface. The surface modes
which are shifted lower also display localization, but the
localization is reversed. The bulk modes also show some
slight localization. Even weak applied fields of only a few
hundred gauss can strongly localize the surface modes.

In this paper we are concerned with spin-wave modes in
very thin antiferromagnetic films. Such films necessarily
have short wavelengths due to the standing-wave charac-
ter of the spin waves inside the film. Spin waves with
shorter wavelengths but that include dipolar fields have
been studied by Louden and Pincus' for an infinite anti-
ferromagnet. Their results show that the higher-order
terms in the expansion of the magnetization add effective
fields which are proportional to the square of the wave
vector. We have found that these additional exchange
terms lift the degeneracy of the bulk modes in thin films
and shift the modes upwards in frequency. This holds for
both the upper and lower bulk bands.

The surface spin waves are not shifted strongly by the
addition of higher-order exchange terms. This is easily
understood. The magnitude of the decay constant deter-
mining the penetration depth of the surface mode has,
even for thin films, approximately the same magnitude as
the wave-vector component parallel to the surface of the
films. The surface modes thus retain nearly the same pro-
file for different thicknesses and hence nearly the same
frequency. The results is that the lower bulk band moves
upward through the surface modes as the thickness is re-
duced. There is some interaction between bulk and sur-
face modes even though the surface modes are predom-
inantly dipolar in character and the lower bulk modes are
largely governed by exchange fields. We note that a simi-
lar behavior occurs in ferromagnets.

In Sec. II, we will present the theoretical development
necessary for the treatment of spin waves in thin antifer-
romagnetic films. This includes the derivation of boun-
dary conditions for the various surfaces and the develop-
ment of a method to find the dispersion relation for spin-

wave modes propagating at an arbitrary direction, parallel
to the surface of the film. In Sec. III we present numeri-
cal results for the dispersion curves and for the spatial
variation of the fluctuating portion of the magnetizations
and the magnetic scalar potential.

II. THEORY

The geometry of the film is shown in Fig. 1. The sur-
faces of the film are parallel to the xz plane and the film
has thickness d. We consider a simple two-sublattice
model where the magnetizations in one sublattice are tak-
en parallel to the z axis and those in the other sublattice
are antiparallel to the z axis. The applied field Ho is in
the positive z direction. The wave vector Q~~ makes an
angle 0 with the z axis and lies in a plane parallel to the
surfaces.

The dipole-exchange waves must satisfy both Bloch's
equations of motion and the magnetostatic form of
Maxwell's equations. For our two-sublattice model, these
read

dM /dt=yM ~H
dM /dt=yM XH

(4)

where y is the gyromagnetic ratio and H and H are the
effective fields acting on sublattice 2 and B, respectively.
We have

H" =z(Hp+H, ) +H,„+hd,

H =z(Hp H, )+H,„—+hd .

(6)

Ho is the applied field in the z direction, and H, is the
anisotropy field directing the magnetizations along the z
axis. hd is the magnetostatic field that satisfies V && hd ——0
and is given by hd ———VP. H,"„and H,„are the effective
fields acting on the 3 and B sublattices. The effective ex-
change field at position x due to sublattice 3 is given by

For exchange fields in the bulk, this expansion leads to
the expressions

H,„(x)=k(8+a V )M"(x)

and

H,„(x)=A,(8+a V )M (x),
where a is the lattice constant of the material.

The first-order terms and second-order cross terms van-
ish in the sum over nearest neighbors because of the sym-
metry of the cubic lattice. This is not true at a surface
and will in fact lead to a set of boundary conditions for
the magnetizations.

H,„=A,g M (x+6) .

The exchange constant is A, and the sum is over the
nearest neighbors only. In a continuum limit, we want all
our variables to be evaluated at the same point. We thus
expand M"(x+5) about x

M (x+5)=M (x)+(5 V)M"(x)

+ (5.V ) M"(x) +
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Substitution of these fields into Bloch's equations and
linearizing results in four equations. A fifth is found
from the condition that V'.B=0 which yields

7—'/+4m V' (M" +M~) =0 . (12)
In order to solve these five equations, we assume that all
variables (M„",M»", M„,M», P) have the following
behavior:

exp[i(Q~~ x~~ cot)+—ay] .

The position vecto~ x~~ is defi~ed as x~~
——xx+zz and the

wave vector parallel to the surface is Q~~
——xg„+zg, The

superscripts on M refer to the sublattice and the sub-
scripts mark the spatial components. This represents an
excitation which is plane-wave-like parallel to the surfaces
of the film. For the direction perpendicular to the film,
the y direction, the excitation may have exponentially in-
creasing or decreasing character (a is real and positive or
negative) or may have a sinusoidal character (a is imagi-
nary). The first case indicates a surface wave, while the
second case is a bulk wave.

With these assumptions, Eqs. (4), (5), and (12) can be
written in the following matrix form:

—l CO/P 0 M
0

H+ —l CO/P —D
—l CO/g

0
4m'ig„ 4rta —4~i Q„

—1CO/P

—4~0.'

ig„M
—nM M„

—iQ„M
g' —a'

0
0
0

(13)

Here we have defined D = H, [1+et—(a —
Qll )/8] . (17)

M =Mz = —Mz

H, = —8AM,

H+ =Hp+(H, +H, ),

(14)

(15)

(16)

For Eq. (13) to hold, the determinant of the matrix must
be zero. This condition gives us a relation between a, co,
and Q~~. Considered as a function of a, the determinant
of this matrix is a fifth-order polynomial in a . An expli-
cit expression for o. is

(a —Q~~)[co (H+ H)/y +D—(H+ H)+H+H— (H+ H+2D +—2D ]

+(a —Q~~)[ cp /y —+co (H++H 2D )/y H—+H (2D—+H+H ) D]=0 . —(18)

We will later require an expression containing only the
first six orders in a. This is obtained by replacing D and
D in Eq. (18) by

D = —[1+3(a —Q ()
) +3(a —Q )(

) ]H.

D =[1+—,(a —g(()+ —„( —g~)) ]H, .

(19)

(20)

The resulting expression is consistent with the dispersion
relation given in Ref. 15.

We expect our solution for the thin-film problem to be
a superposition of ten waves, each with a different charac-
teristic cx. Thus we may write the magnetizations and po-
tential as sums:

P=ggexp[i(Q~~. x~~ cot)+ajy] . —
J

(25)

A. Boundary conditions

Since some of the a will be real and some will be imagi-
nary, we see that every mode has both surfacelike and
bulklike characteristics.

Through the use of the equation of motion matrix, we
can relate A»J, BJ, B~~, and qV to AJ for each individual
cp, Q~~, and aj. The result is that we have ten unknowns,

These ten unknowns are then found from
1 10

the boundary conditions.

M„"=gA„'exp[t Qii'xi' cp' +ajy]
J

M,'=g A»'exp[t (Q~~. x~~
—cpt)+a, y]

J

=g Bjexp[i (Q~~ x~~
—at )+ajy],

J

M» =QB»exp[i(Q~~ x~~ cot)+ajy], —
J

(21)

(22)

(23)

(24)

The dipole-exchange modes must satisfy both the elec-
tromagnetic Maxwell boundary conditions plus conditions
imposed by the inclusion of exchange interactions. A gen-
eral expression for boundary conditions that account for
exchange interactions can be derived in the usual manner
of integrating the equations of motion over a small
volume that includes the boundary. The resulting expres-
sion is a linear combination of the components and nor-
mal derivatives of the components of the magnetizations.
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d Msu

dt
=y(M, „~XH,„~), (26)

where H,„~ is the effective field acting on the surface
spin. We now add and subtract Hb„&k to obtain

dM, „~
dt

=y(M, „~XHb„ik) +yM, „~X(H,„~—Hb„ik) .

(27)

Equation (27) reduces to the bulk equations of motion if

In this paper we refer to the latter as the "free-spin" terms
and the former are the "pinned-spin" terms.

We use a somewhat different method' which yields the
same results. The basic idea is that an eigenmode of the
system must have all spins oscillating at the same fre-
quency. In particular, this requires the frequency of a
surface spin to be the same as that of a bulk spin. Thus
the torques (and equations of motion) on a surface spin
must be the same as that of the bulk spin. Normally, the
surface spins see a different field than the bulk spins be-
cause they have fewer nearest neighbors. We can require
that the surface spins have the same equations of motion
as the bulk spins and thereby obtain a boundary condition.
The equations of motion for a surface spin are

y M,„~X(H,„~—Hb„ii, ) =0 . (28)

We see that the above equation is an effective boundary
condition. The particular form of boundary conditions
depends on the particular surface under consideration.

B. (110) surface

We have a total of five equations per boundary: one
from the magnetostatic boundary conditions, two from
the equations of motion for the 3 sublattice, and two
from the equations of motion for the 8 sublattice. As an
example, we explicitly derive the boundary conditions for
the A sublattice spins. When one expands the magnetiza-
tions about the position of the spin of interest, one obtains
the effective exchange field acting at the surface:

g B 36—av'2 +a + +—a AM
By B~ 2 By 4 Bz

(29)

In addition, due to surface conditions (roughness, contam-
ination, the lowering of the number of nearest neighbors,
etc. ) the anisotropy field at the surface may also be dif-
ferent. The boundary condition Eq. (28) at the upper sur-
face becomes

[ 2H, +8—(bH~), ]M» H, 2+av 2 —+a — +-
By 2 By~ 4 Bz~

M»" +8(b.H, )»M =0, (30)

[2H, 8(bH, ), ]M—„+H, 2+a V2 +a — +-B B , 1 B' 1 B'

By 2 By 4 Bz
M„"—8(bH, )„M=0, (31)

2M„+ 2+aW2 +a — +-B 1 B' i B'

By 2 By
2 4 Bz

ME =0.
(33)

where hH, is the difference in the anisotropy fields be-
tween the bulk and surface spins. Note that the boundary
condition above contains both free-spin terms (BM/By ) as
well as pinned-spin terms (M) even if there is no change in
the anisotropy fields. This is in contrast to the result in
the ferromagnet where spin pinning comes primarily from
surface anisotropy fields.

In the limit that 5Hz ——0, these two equations reduce to
a particularly simple form:

2M + 2+a V 2 +a — + — M» =0,B B , 1 B' & B'
2 By2 4 Bz2

(32)

A quick estimate shows that the pinning terms often
dominate in magnitude over the free-spin terms in the
long-wavelength limit. An important exception to this
occurs when M~ =M„. In this case, the pinning-like
terms cancel, and the free-spin term is dominant. We
note that this case does occur. In the long-wavelength
limit, for example, when Q„/Q» &&1, then M„"=M for
the lower modes and My~ ——M„ for the upper modes.
~hen Q„/Q» « 1, the y components are equal and oppo-
site for the lower modes and the x components are equal
for the upper modes. ' Such dynamic pinning, in cases
where the degree of pinning depends strongly on the wave
properties itself, has been discussed previously for fer-
romagnets. ' '

The remaining boundary conditions may be derived in a
similar manner. We obtain

[ 2H, +8(EH, ), ]M +H, —2+av2 +aB, 1 B'
a z y

y 2 By' 4 Bz' M» 8(AH, )»M =0, — (34)
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[ 2—H, 8—(EH, ),]M„" H—, 2+av 2 +a — +—
2 By

2 4 BZ2
M„+8(EH, )„M=0 . (35)

2M, + 2+av 2 +a 1 B' i B'

By 2 By' 4 Bz' ME =0,

(36)

2M„+ 2+a ~2 +a — +-A B q 1 B 1 B

2 By 4 Bz
M =0.

(37)

Again, these reduce to simpler equations in the limit
AHq ——0:

six boundary condition equations are found. To have this
be consistent with the equations of motion, only six of the
ten a's may be used in superposing solutions. We can de-
cide which a s to retain by noting that in the long-
wavelength limit only the terms of a—a will be signifi-
cant when solving Eq. (13). We may then use Eqs. (19)
and (20) in (18) to find the appropriate size alphas.

The procedure for finding the explicit boundary condi-
tions is similar to that given in the preceding section,
therefore we only state the results. For simplicity we have
taken AH, =0.

The remaining boundary condition comes from the re-
quirement that the normal component of B and the
tangential components of H are continuous. At the sur-
faces this gives

Here we find

1. Symmetric surfaces

[(+Q~~+a)P —4m(M» +M» )]=0, (38)
2

4+2a + P M —0
2

(39)

where the + sign is appropriate for the upper surface of
the film and the —sign for the bottom surface. The
remaining boundary conditions for the bottom of the film
are obtained by replacing +B/By by —B/By in Eqs.
(30)—(37).

The ten boundary conditions provide a set of ten homo-
geneous equations for the remaining unknowns A ' —A ' .
If we set the determinant of the coefficients equal to zero,
this provides the condition which relates

Q~~~
to co. The

procedure outlined above is accomplished by a computer
routine. To do this, one chooses a value for

Q~~~
and

guesses a value for co. Given these values, the program
calculates the allowed values of a and the relationship be-
tween A„and the other variables A», B„,B», and P. The
program then computes the value of the determinant
D(g~~, co) resulting from the boundary conditions. The
problem is thus to find the values for which D(Q~~, co) is
zero. This search can be efficiently accomplished by a
general root finding program, and one may then detail
both the dispersion relation and the spatial variation of
the various fields in the film.

(100) surface

The (100) surface differs considerably from the (110)
surface in that the surface planes are made up of only one
of the magnetic sublattices. This allows two distinct com-
binations of magnetic surfaces for the film. The same
sublattice may occur at each boundary (symmetric com-
bination), or a different sublattice may occur at each
boundary (asymmetric combination). We will see that the
spatial variation of the eigenmodes propagating in the
film will be very sensitive to the combinations of magnetic
surfaces.

Only one sublattice appears at each boundary, and as a
result, the number of exchange boundary conditions is two
per boundary. The magnetostatic boundary conditions
provide a third equation for each boundary. Thus, only

2

4M„+ 4+2a + T M„=O .
2

(40)

The + sign is appropriate for the upper surfaces, while
the —sign is for the lower surfaces.

In this case,

2. Asymmetric surfaces

2
4~el+ 4+2 + g2 Mg 0

By 2
(41)

2

4M + 4+ 2a + P2 M 0
By 2

(42)

The equations in the above two cases are appropriate for
the upper surface. To obtain the equations for the lower
surface, we replace +B/By by —B/By and replace Mk
with Mk.

III. RESULTS

The thin-film dipole-exchange modes are a superposi-
tion of up to ten waves corresponding to the ten allowed
solutions, a&, . . . , cx&o, of the equation-of-motion matrix.
The values of a are frequency dependent and may be real
for some frequencies and imaginary for others. As a re-
sult, the final dipole-exchange mode has frequency-
dependent bulk and surface characteristics. For a com-
plete understanding of the dipole-exchange modes we ex-
amine the behavior of the five positive o. s as a function of
frequency in Fig. 2. The u s are plotted in dimensionless
units as aa. These are solutions to Eq. (13) with

Q~~a =0.01 and propagation perpendicular to the z axis.
The material parameters here and in the remainder of the
paper are those appropriate for MnF2 (H,„=550 kG,
H, =7.87 kG, and M =0.6 kG'). One a is real for all fre-
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4.05—

4.00—

0.06—

0.00
92 93 95 96

FREQUENCY (kgauss)

FICr. 2. Decay constants as functions of frequency for

Q~~~~a
=0.01 and 9=90'. The solid lines are the imaginary part

of the a's and represent bulk modes. The dashed lines are the
real part of the a's and represent surface modes. Note how two
of the a's change from real to imaginary as frequency increases.

quencies shown and has a nearly constant magnitude of
approximately Q~~. This portion of the superposition
comes from the dipolar fields and exists even in the long-

wavelength limit. The remaining values of u arise as one
goes to shorter wavelengths. Two e's are real for frequen-
cies below certain cutoff frequencies. The frequency at
which they change from real to imaginary is different for
each and depends on Q~~. For example, at Q~~a =0.0001
one o. becomes imaginary at 93 kG and the other becomes
imaginary at 93.1 kG. At larger Q~~a, the two a's remain
real until higher frequencies and change to imaginary at
the same frequency. For Q~~a =0.1, they both become
imaginary at 97 kG.

The two largest u's are imaginary over the entire fre-
quency range. They change very little with frequency and
represent rapid spatial oscillations in the final superposi-
tion. These u's, however, have magnitudes greater than
~/a and thus lie outside the first Brillouin zone. These do
not represent physical solutions. We note, however, that
similar results occur in the ferromagnetic case and are due
to the inadequacy of the long-wavelength approximation.
This feature does not generally invalidate our methods be-
cause in the superposition of waves the ones with these
large values of a make only a very small contribution.
Furthermore, these e's can be discarded when the boun-
dary conditions do not require the full ten solutions.

Before proceeding to the exact solutions of the equation
of motion matrix with the boundary conditions, it is use-
ful to examine an interesting approximation which yields
surprisingly good results. In the case of zero applied
field, the determinant of Eq. (13) reduces to the simpler
form obtained by Louden and Pincus

co/y={H, +2H, +a H, (Q ~+Q )[H, +4nM(Q +Q )/(Q ~+Q )]I
' (43)

co/@= [H, +2H, [H, +a H, (Q ~+Q )]I'~ (44)

Here, terms to second order in Q have been kept. To
good approximation, we can calculate the frequency of
the bulk modes by requiring Q» to be an integral multiple
of rrld; i.e., Q»=nrr/d. This simply says that the bulk
modes are characterized by simple sinusoidal standing-
wave patterns across the thickness of the film. When the
full boundary conditions of Eqs. (32)—(37) or Eqs.
(39)—(42) are applied, of course, they becotne more in-
volved. Even so, the approximation is quite good and in
Table I we present the frequencies obtained from the
standing wave approximation. For comparison, we in-
clude frequencies obtained by the numerical solution of
the equations of motion with the (110) surface and various
boundary conditions. The two columns labeled "upper"
and "lower" refer to bulk modes which originate from the
upper or lower bulk bands in the case where only mean-
field contributions are considered. We recall that for
propagation perpendicular to the z axis, in the long-
wavelength region there are two bulk bands whose fre-
quencies are given by cot and co& (in the first section). In
this limit there are an infinite number of bulk modes de-
generate to each of these frequencies. When higher-order
exchange energies are included, this degeneracy is re-
moved and all the bulk modes are shifted up in frequency.

The resulting dispersion relations are given approximately
by Eqs. (43) and (44). We are thus able to identify the
upper-band bulk modes as obeying the dispersion (43) and
the lower-band bulk modes as obeying (44). We note that

Standing Wave
Lower Upper

(110) Surface
Free Pinned

93.460
93.593
93.814

94.123

94.519

94.094

94.228

93.176
93.234
93.470
93.601
93.816
94.055
94.132
94.199
94.426

93.528
93.673
93.843
93.930
94.167
94.194
94.429

TABLE I. Frequencies from the (110) surface cases of free-
and pinned-spin boundary conditions are compared to the re-
sults of the standing wave approximation. Here Q~~a =0.01,
d/a =300, and 0=90'. The standing-wave approximation al-
lows for the classification of modes according to their origin in
the long-wavelength upper or lower bulk band limits.
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the lower-band modes are completely free of dipolar ener-
gies in the very long-wavelength region and remain nearly
free of dipolar energies even when exchange is included.

In the full boundary condition equations we saw that
the boundary conditions contained a pinned-spin part and
a free-spin part. In a real crystal, surface anisotropy
fields differing from those in the bulk or different ex-
change constants at the surface may alter the importance
of each term. It is therefore worthwhile to study the re-
sulting dipole-exchange dispersions for each term
separately. For both free and pinned examples, we use the
(110) surface of MnF2 as the film boundaries.

With the (110) surface at both film boundaries, there
are boundary conditions on both M and M . For free

aM~
spins, these boundary conditions are of th fe orm

M~ =Ma
/By=8M /By=0, while for pinned spins we hwe ave

=0 at the boundaries. The dispersion curves
which follow are calculated for propagation perpendicular
to the z axis (8=90'), with QI~I~a =0.01 and for zero ap-
plied field.

In Fig. 3, the dispersion curves for the free-spin boun-
dary conditions are shown. The curves are plotted as fre-
quency versus d/a, a dimensionless thickness. The most
obvious feature is the removal of the bulk mode degenera-

very ong-cy and the increase in frequency from the very lon-
wavelength thick-film limit. As thickness increases, the
bulk modes go toward the long-wavelength upper- and
lower-bulk-band limits (col and coq). The lowest two
curves are surface modes. Note how the surface modes
curve down away from the bulk modes for small
thicknesses. As will be seen when we study the potentials,
one surface mode has even symmetry and the other has

odd symmetry. As thickness increases, the two surface
modes become degenerate, reflecting the lack of coupling
between the boundary surfaces.

A s mentioned earlier, the surface modes are not strong-
y influenced by the inclusion of higher-order exchange

terms or by variations in the thickness of the film. How-
ever, there is a small effect. We saw that the bulk modes
were shifted up by effective fields which were proportion-
al to the square of the wave vector. For surface mod
the

o es
e wave vector is complex, and the surface wave portions

(the a' s) lead to a decrease in the effective fields which
leads to a small decrease in frequency. Indeed, the fre-
quencies of the surface modes in Fig. 3 are about 0.5%
ower than the values found when only mean field contri-

butions are included.
Dispersion curves for pinned-spin boundary conditions

are given in Fig. 4. Again, these are shown as frequency
versus thickness. The most immediate difference between
the pinned- and free-spin cases is that we find no predom-
inately surface modes for the pinned case. While both the
free- and pinned-spin frequencies are shifted away from
the standing wave approximation, the pinned-spin fre-
quencies see the largest shifts. From Table I, we see that
there is an interesting pattern to the frequency shifts: the
ower-band bulk modes are generally increased in frequen-

cy while the upper-band bulk modes are decreased in fre-
quency.

Both the
dis la

e ree- and pinned-spin dispersion cur ves
isp ay the feature of mode repulsion and crossing. Some

bulk modes cross without interaction while others repel.
As will be shown below, the modes which repel have the
same symmetry while the modes which cross have oppo-
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FIG. 3. Frequency as a function of number of layers, d/a,
for the (110) surface at the film boundaries. There is no surface
pinning. There is no applied field, QIIa =0.01 and 0=90'. The
two lowest curves are surface modes and the higher curves are
the first few bulk modes. Note how some bulk modes cross
without interaction while others repel.

FIG. 4. Frequency as a function of number of layers, d/a,
for the (110) surface at the film boundaries. The spins are corn-
pletely pinned at the surface. There is no applied field,
QIIa =0.01 and 0=90'. The frequencies are shifted from the
ree-spin case according to whether a mode belongs to the upper

or lower long-wavelength bulk band.
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site symmetry.
To understand the features displayed in the dispersion

curves, such as the mode crossings and repulsions, we
must investigate the mode symmetries. In the long-
wavelength region, or for very thick films, the allowed
modes always display even or odd symmetry about the
midplane of the film except in the presence of an applied
field. This is not the case for very thin films, however,
where the symmetry of the dipole-exchange modes de-

pends on the film's microscopic surface structure. To
show this, we first investigate the case where the (110)

I

surface appears at both film boundaries, and later we dis-
cuss the various possibilities for the (100) surface.

In discussing the symmetry properties of the dipole-
exchange modes, it is useful to consider the spin-spin
correlation function M j(x,x', t, t') defined as

M 1(x,x'; t, t') = (M;(x, t)MJ (x', t') ) . (45)

The subscripts here identify the spatial component of the
magnetization. Since the crystal has translational invari-
ance parallel to the surface, we may write M;.(x,x', t, t') in
terms of its Fourier transform as

M~&( x, x', t, t') =
3 J dQlldcoMij(Qll, co,y,y')exp[iQll. (xll —xll) ice—(t —t')] . (46)

Here x~~ is the projection of x on the plane parallel to the
surface. The diagonal element M„„(Qll~,co,y,y)dy, for ex-
ample, is interpreted as measuring the probability of find-
ing a spin fluctuation in the x direction with wave vector

Qll and frequency co, in a slab of thickness dy a distance y
from the surface. The time-averaged values of the square
of the magnetizations given in Eqs. (21)—(24) can also be
interpreted as probabilities dependent on Y, and can thus
be related to the diagonal correlation function elements.

Suppose the (110) surface is parallel to the film sur-
faces. The 3 and B sublattice magnetizations are written
M"(xll, y) and M (xll,y). A symmetry operation for this
configuration is a reflection through the rnidplane, fol-
lowed by a translation along the x axis by the lattice con-
stant a. By investigating the effects of these operations
on the correlation function M„„(Qll~,co,y) we can discover
the allowed symmetries for the fluctuating portions of the
magnetization.

Reflection through the midplane changes M„(x,y, z) to
—M„(x,—y, z), since a spin reverses under reflection
changing both the sign of the x component and the direc-
tion of the z component. Translation in the x direction
by a returns the lattice to its original configuration.
Under these operations, the correlation function
M„"„(xll,xll,'y, y') becomes M (xll+ax, xll+ax; —y, —y).
Since we have performed a symmetry operation, the corre-
lation functions must be equal. Writing these in their
Fourier expansions and equating coefficients, we have y~-150 ye+150

»»(Qll ~ y)+M»»(Qil ~ y ™»»(Qll.~ —y)
A B B

+M»»(Qll, , —y) . (49)

The preceding argument shows that if we time average the
square of M and add the time average of the square of
M„, we obtain a function which is even about the mid-
plane. One can now easily show that if we first add M„
and M„and then square and time average, this result is
also symmetric about the midplane. In fact, it is this
latter quantity that we will display in our figures.
The quantity A plotted in our figures is thus given
by A„=[((M„+M„) ) ]'~ . Similarly, A» = [((M»
+MB)2) ]1/2

We now wish to emphasize an important point. The
preceding symmetry operations are valid for a finite thin
film if the (110) surface is present at both film boundaries
but these operations do not necessarily hold when other
surfaces are present at the boundaries. As we shall see,
this can lead to interesting localization effects for those
cases where the symmetry operations of a reflection about
the midplane followed by a translation parallel to the mid-
plane do not hold.

The symmetries of the dipole-exchange modes can be
displayed by plotting the time average of the square of the
magnetizations and dipolar potentials as a function of y,
the coordinate normal to the film surfaces. In Fig. 5 we

M (Qll, co;y) =M (Qll, co, —y) . (47)

Qll' y)+M-'(Qll»y) M (Qll» V)

+M" (Qll, to, —y) . (4g)

A similar argument may be made for the diagonal ele-
ment M»»(Ql~, co,y). We obtain

The translation along x by a has no effect on the integral
of Eqs. (46) since both xll and xll are translated equal dis-
tances.

We can now see that while the magnetization of any
one sublattice need not be symmetrical about the mid-
plane, the sum of both sublattice magnetizations is. Using
Eq. (47), we find

A
y

patentlol

FIG. 5. Magnitude of the potentials and magnetizations as a
function of depth, y, for the case of (110) surfaces. There is no
surface pinning. The two sets are for the surface modes of Fig.
4 with d/a =300. The lowest frequency surface mode is shown
in (a) and the highest surface mode is shown in (b).
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present these results for the surface modes for free-spin
boundary conditions on a (110) surface. The reduced
thickness is d/a =300, the wave vector is given by
Q~~d =3.0, and the propagation angle is 8=90. From
the dipolar potentials, these are clearly surface modes ex-
ponentially decaying from each surface. The lowest fre-
quency mode has odd symmetry about the midplane, and
the other surface mode has even symmetry about the mid-
plane. We note that since we have plotted the time aver-
age of the square of the fluctuation, the curves in Fig. 5
and below are always positive and even. However, it is
relatively easy to determine the symmetry (odd or even) of
the modes. For example, modes which do not go to zero
at the midplane must be even.

If these results are compared to those found in thicker
films where the only exchange contribution comes from
the mean field, one finds that the lower frequency surface
mode is even about the midplane. This is in contrast to
the above result. To see that our new results are con-
sistent, we have extended our calculations to much small-
er wave vectors and we find that the modes do indeed
cross.

The magnetizations in Fig. 5 have their greatest magni-
tude at the surface, as in a surface mode, but the curva-
ture of the magnetizations suggests the standing-wave
character of a bulk mode. There is an interesting pattern
to the symmetries of the magnetizations. In the lowest
frequency mode, the x component of the magnetization
has odd symmetry, while the y component is even. In the

next highest mode, the situation is reversed, with the x
component now having even symmetry and the y com-
ponent having odd symmetry. We note that the two sur-
face modes have opposite symmetry in all respects (the di-
polar potential, and the x and y components of magneti-
zation) which allows them to have the same energy in cer-
tain circumstances. At large thicknesses the two surface
modes merge together.

The first four bulk modes for the free-spin conditions
above are shown in Fig. 6. We note that the distinction
between surface and bulk modes is somewhat artificial
here. The magnetizations and potentials in Fig. 6 both
look somewhat like sinusoidal standing waves across the
thickness of the film, and hence we call them bulk modes.
We do see some influence of the real n's in the superposi-
tion, creating surface-wave-like variations in the magneti-
zations and potentials.

The x and y components of the bulk modes magnetiza-
tions exhibit the same kind of symmetry reversal as seen
in the surface modes. The symmetries of the bulk modes
of Figs. 6(c) and 6(d) are opposite in all respects while the
modes of Fig. 6(b) have the same symmetry as that of Fig.
6(d). Referring to the dispersion curves of Fig. 3, we see
that the same symmetry modes [Figs. 6(b) and 6(d)] repel,
while the opposite symmetry modes [Figs. 6(c) and 6(d)]
cross without interaction.

The potentials and rnagnetizations for pinned spin
boundary conditions are shown in Fig. 7. The wave vec-
tor is again Q~~d =3.0, 8=90', and d/a =300. There is
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FIG. 6. Magnitude of the potentials and magnetizations as a
function of y for the case of (110) surfaces. There is no surface
pinning. The four lowest frequency bulk modes from Fig. 4 are
represented with (a) having the lowest frequency and (d) the
highest.

FIG. 7. Magnitude of the potentials and magnetizations as
functions of y for the (110) surface at the boundaries. The spins
are fully pinned at the surfaces. Here the four lowest frequency
modes of Fig. 5 are presented at d/a =300. Again note the al-
ternating symmetries of the potentials and magnetization com-
ponents.
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no applied field. Here we present the four lowest frequen-
cy modes of the pinned spin dispersion of Fig. 4. The
components of the magnetization show the same symme-
try reversal as in the free-spin case, and the bulk modes
cross and repel exactly as before.

We have calculated the dispersion relations when both
the free-ee-spin and the pinned-spin terms appear in the
complete boundary conditions. The results are unfor-
tunately not correct. When the full boundary conditions
are used, the unphysical, large a partial waves are strong-
ly represented in the superposition of the partial waves.

Up to now we have discussed only symmetrical f'1i ms;
at is, films which have symmetry operations which take

them into themselves. We now consider films where the
(100) surface is parallel to the film boundaries. If sublat-
tice A appears at one boundary, and sublattice B appears
at the other boundary, the film will be taken into itself by
the simple symmetry operation of reflection about the
midplane, and the time average of (M"+M ) will
be symmetrical about the midplane. Should the same sub-
lattice appear at both boundaries, the correlations func-
tions M (QII, ni, y) or M~Y(QII, ni, y) can no longer be relat-
ed to the equivalent correlation functions involving ~,
and —.U—y. Under any symmetry operation which takes +

v ng ~~I~,

to —y, the x component of the wave vector is also
changed from Q„ to —Q„. As a result, for a wave with a
fixed QII, there is no requirement that the magnetizations
be symmetric about the midplane. This is clearly seen by seen y
the profiles of the magnetizations and potentials, which
we will discuss shortly. It is also reflected by the disper-
sion curves for the two boundary cases.

We note that for the asymmetrical boundary film, the
propagation is nonreciprocal, i.e., co(QI~I)&co( —Q ). Al-

Symmetric
(Hp ——0)

93.528
93.678
93.850
93.923
94.162
94.204
94.421
94.548

Asymmetric
(Hp=0

93.519
93.658
93.840
93.967
94.192
94.204
94.439
94.550

Asymmetric
(H, =0.1)

93.500
93.637
93.828
93.978
94.188
94.215
94.451
94.543

though this effect can be significant, we do not pursue
this topic here, but it is planned to be discussed in a subse-
quent paper. ' A similar effect has been found for super-
lattices composed of ferromagnetic films which alternate
in magnetic direction.

The dispersion curves and profiles for the (100) surface
when sublattice A is at y =+d/2 and sublattice B is at
y = — /2 are nearly identical with those presented earlier
for the pinned case of the (110) surface. Although the
complete boundary conditions are used, it is clear that the
pinning terms dominate in this case.

A
X

y= —100 y=+100

/
/

/

/

TABLE II. Frequencies from the (100) surface cases of
symmetrical and asymmetrical boundaries are compared. The
asymmetrical boundary film frequencies are tabulated for the
case of no applied field and the case of Hp ——0. 1 kG. All fre-
quencies are for the parameters d/a =300, Q a =0.01 d

0=90'.
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quency as a function of number of layers for th
( 00) surface at the film boundaries. The 2 sublattice appears

e

at both film boundaries. There is no applied field, Q a =0.01,
g 900 Th ge frequencies are shifted significantly from the

case where different sublattices appear at each boundary (Fig.
8).

(c)
FIG. 9. Magnitude of the potentials and magnetizations as a

function of y for the (100) surface at both boundaries. Sublat-
tice 2 appears at both film boundaries. The four lowest fre-
quency modes of Fig. 8 are profiled at d/a =200. Note how
the potentials and magnetizations are localized at the surfaces
even though there is no applied field.
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The dispersion curves for the (100) surface with sublat-
tice A at both boundaries are given in Fig. 8. There is no
applied field. Here we find that the frequencies are signi-
ficantly different from the previous considered case.
There are no crossings in the dispersion curve, only repul-
sions. A comparison of the frequencies for the different
surfaces is given in Table II.

The difference between the two (100) surface film con-
figurations is even more striking when we compare the
potentials and magnetizations for each case. The poten-
tials and magnetizations for the four lowest frequency
modes for the films with asymmetric boundaries are near-

ly identical to those in Fig. 7. The same four modes for
the symmetric boundary film are shown in Fig. 9. In
comparing these two figures, one comes to a conclusion
that the asymmetrical boundary film has modes which are
symmetric about the midplane, but the symmetrical
boundary film has modes which are asymmetric about the
midplane. This result is consistent with our earlier sym-
metry argument. Since the modes for the same-surface
film no longer have odd or even symmetry about the mid-
plane, there is no way for two modes to have completely
opposite symmetry. This explains why only repulsions are
seen in the dispersion curves in Fig. 8.

The modes for the film with the symmetric surfaces
can be quite localized. The localization is similar to what
would happen for the asymmetrical boundary film if it

were subject to a small applied field. This is, in fact, one
way of viewing the symmetrical boundary film. For the
same sublattice to appear at both boundaries, there must
be an odd number of sublattice layers. This means there
is a net magnetization in the film due to one extra sublat-
tice layer. We note that in recent work by Hinchey and
Mills, the number of layers (even or odd) plays an im-
portant role in superlattices with antiferromagnets.

We explore this idea further in Fig. 10 where the first
four modes of the asymmetrical film are profiled with the
same parameters as in Fig. 9, but now with an applied
field of 0.1 kG. The localization seen in Fig. 10 is very
similar to the results for the symmetrical boundary film
seen in Fig. 9. A comparison of the frequencies is
presented in Table II.

Under this interpretation, we would expect that the lo-
calization of modes in a symmetrical boundary film
should decrease for larger thicknesses where the surfaces
might have less of an influence. This is indeed the case as
is seen in Fig. 11~ In this figure we profile the first four
modes for a like boundary film with a thickness of
d/a =600 and Q~~d =6. We see that there is still a no-
ticeable localization, but it is much less pronounced than
in the preceding figures.

In the dispersion curves previously considered, we have
varied the film thickness while holding the wavelength
constant. In Fig. 12 we hold the thickness constant, at

A
X

A
y

y~-100 y=+100
/'X

/
/

/
/

y= -300 y=+ 300

potential

potential

(b)

I
I')

1

~ ~ ~ ~ ~ ~ ~

gg

(c)

FIG. 10. Magnitude of the potentials and magnetizations as
a function of y for the (100) surface at both boundaries. Sublat-
tice A appears at y =d /2 and sublattice B appears at

y = —d/2. Here we include an applied field of magnitude 0.1

kG. The lowest four bulk modes are profiled at d/a =200. We
see that the presence of an applied field localizes the modes to
one or the other boundary.

(c)

FIG. 11. Magnitude of the potentials and magnetizations as
a function of y for the (100) surface at both boundaries but with
sublattice A at both y =d/2 and y = —d/2. The reduced
thickness is 600 and there is no applied field. We see that the
modes are much less localized than the thinner film case of Fig.
9.
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modes and for the y components of the lower bulk band
magnetizations. The y components of the upper bulk
band magnetizations would still feel the pinned-spin terms
as would the x components in the lower bulk band modes.

We see this effect in the profile of the magnetizations
shown in Fig. 13. These are plotted for the fifth and sixth
highest modes in frequency. The reduced thickness is
d/a =320. In Fig. 13(a) a bulk mode from the lower
bulk band set shows a pinned x component of magnetiza-
tion while the y component seems to obey a combination
of pinned and free boundary conditions. In Fig. 13(b), the
mode belongs to the upper-band set, and the y component
of the magnetization is fully pinned while the x com-
ponent shows only some pinning.

IV. SUMMARY

93.0
0.000 0.025 0.050

REDUCED WAVE VECTOR (Qa)

FIG. 12. Frequency as a function of reduced wave vector

Q~~a for the (100) surface at both boundaries. Sublattice A ap-
pears at y =d/2 and sublattice B appears at y = —d/2. There
is no applied field, 8=90', and d/a =300. As Q~~a goes toward
zero, two modes approach the long-wavelength surface mode
limit.

d/a =300, and vary the wavelength. As the wavelength
decreases, the mode frequencies increase with increasing
Q. Crossings of opposite symmetry modes occur as be-
fore. We note that two modes approach the long-
wavelength surface mode limit (shown by the dotted lines
for a~, ) as Qa goes to zero.

Finally, we explore the effect of dynamic pinning intro-
duced earlier. In the derivation of the boundary condi-
tions in Sec. II, we saw that under certain circumstances
the pinned terms could cancel leaving only the free-spin
terms. In the limit Q„~&Q», this would occur for the x
components of the magnetizations in the upper-band bulk

y=+160

A
y

FIG. 13. Behavior of the magnetizations at the boundaries.
The two modes are profiled for the (100) surface asymmetrical
boundary film with D/a =320 and Qt~a =0.01. The mode in

(a) is at frequency 94.14 kG and belongs to the lower bulk band
set. The mode in (b) is at 94.17 kG and belongs to the upper
bulk band set. The x component is pinned in (a) while the y
component is pinned in (b) ~

In this paper we have considered the problem of spin
waves in thin antiferromagnetic films. We find that to
properly describe the excitations, both dipolar and ex-
change contributions must be included. We have derived
boundary conditions appropriate to several possible film
surface structures. Seeking solutions to the equations of
motion which are consistent with these boundary condi-
tions, we have found fundamental and sometimes compli-
cated relations between the properties of the dipole-
exchange modes and the film's magnetic surface structure.
Our major results can be summarized as follows:

(1) As the thickness is reduced, the surface modes de-
crease slightly in frequency, while the bulk modes show a
significant increase in frequency. For propagation per-
pendicular to the easy axis, the frequencies of the bulk
modes are approximated reasonably well by assuming that
the mode profiles perpendicular to the film surfaces are
simple standing waves with wave vectors given by

Qy nor/d and by using Eqs. (43) and (44).
& ) The spin-wave frequencies depend on the relative

magnitudes of the free- and pinned-spin terms in the

bulk
boundary conditions. Modes which come from the 1

u band in the long-wavelength limit have frequencies
which increase with surface pinning. Upper bulk band
modes decrease in frequency with surface pinning.

e pinned spin terms in the boundary conditions(3i Th
can cancel in certain limits, leaving one component of the
rnagnetizations essentially unpinned.

n the dispersion curves, we see both mode repulsion
and mode crossings. When we examine the profiles of the
magnetizations and the dipolar potential, we see that the
modes which cross have opposite symmetry in all
respects. Similarly, the modes which repel have the same
symmetry.

(5) When the film has surfaces such that there exist
symmetry operations which can change y to —y but leave
the wave vector Q unchanged, the spin wave will have
even or odd symmetry about the midplane. This will
occur for the (110) surfaces and will also occur for the
(100) surface if the top layer is from a different sublattice
than the bottom layer.

(6) If the film has surfaces such that there do not exist
symmetry operations which take y to —y and leave ~

X

unchanged the spin wave will be somewhat localized to
one surface of the film. Surface modes will be stron 1e srongy
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localized, and bulk modes will exhibit weaking localiza-
tion. The effect is analogous to the application of a small
magnetic field along the easy axis. This situation will
occur for a film with (100) surfaces where spins from one
sublattice only appear at both surfaces.
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