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Transport properties and spin disorder in the degenerate ferro-spin-glass Sn& „Mn„Te
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We have investigated the resistivity p of Sn& Mn Te solid solutions for various manganese con-

centrations in the range x &0.07, as a function of temperature in the range 1.5& T &15 K. The
data include the paramagnetic, ferromagnetic, and reentrant spin-glass regions of the phase diagram

in the x- T plane. We argue that the thermal dependence of p is due to the incoherent potential plus

exchange scattering from the Mn ions. A very good agreement is found with the Koon-Schindler-

Mills model, provided that magnetic clustering effects are taken into account. It is shown that the
0

free-carrier mean free path A, -200 A is smaller than the ferromagnetic cluster size, so that the

transport properties can be used as a probe of local magnetic properties at a microscopic scale. In

particular, we show that the lowering of the bulk magnetization in the reentrant phase is compensat-

ed for by an increase of the local magnetization inside the ferromagnetic clusters.

I. INTRODUCTION II. MACJNETIC PROPERTIES

The physical effects associated to magnetic impurities
are currently the subject of considerable interest. The first
studies on this subject concern the case of 3d impurities
(Fe,Mn, Cr) diluted in noble metals (Cu, Ag, Au). ' More
recently, spin-glass properties first discovered in these ma-
terials have also been observed when these magnetic im-
purities are diluted in semiconductors such as II-VI com-
pounds, which, actually, are insulators at the low tem-
peratures where the spin freezing takes place. Between
these two extreme cases, there is a possibility to dilute
these magnetic impurities in semiconductors with a densi-
ty of acceptors or donors which exceeds the critical Mott
concentration for the metal-insulator transition so that
these materials remain degenerate down to the lowest tem-
perature. Sn& „Mn„Te is a good example with a low-
density free-carrier gas 10 &p & 5X 10 cm presum-
ably due to Sn vacancies.

In Sec. II of this paper, we first recall the basic magnet-
ic properties of Sn& „Mn„Te investigated in detail else-
where and focus attention to those of the magnetic
properties which are specific to the existence of the low-
density free-carrier gas. Then, in Sec. III, we report resis-
tivity measurements which evidence sharp variations of
the spin-disorder resistivity as a function of temperature
in agreement with the data from magnetic experiments.
We find that the spin-disorder resistivity cannot be
described by the oversimplified model of Ghazali et al.
for the same material, but a very good agreement with ex-
periment is found within the model developed by Koon
et al. to fit resistivity curves of Pd:Fe alloys. The results
corroborate our previous analysis on the nature of the ex-
change interactions and spin freezing in Sn& Mn Te.

The magnetic properties of Sn& Mn Te alloys have
been explored earlier. At low temperatures, the satura-
tion moment of the magnetization curve in the high-field
limit is 5pz. In the paramagnetic configuration, the mag-
netic susceptibility satisfies the Curie-Weiss law with a
magnetic moment also in agreement with the theoretical
value predicted for Mn + ions in the (3d ) S&&2 configura-
tion. A synthesis of the results is provided by the magnet-
ic phase diagram in Fig. 1. The system is a good spin
glass for Mn concentrations x & 3 at. %%uo, bu t at large rcon-
centrations, a ferromagnetic phase is observed, character-
ized by the existence of a spontaneous magnetization in
low magnetic fields, in a definite range of temperatures,
below the Curie temperature Tc. At lowest temperature,
a reentrant spin-glass phase is observed, characterized by
an increase of irreversible effects. ' The existence of a
ferromagnetic long-range ordering down to Mn concentra-
tions as small as 3 at. % suggests the existence of a long-
range magnetic interaction, namely the Ruderman-
Kittel-Kasuya-Yosida indirect exchange mediated via the
few 10 holes present in the samples.

We assume that the Hamiltonian which couples the lo-
cal spin S„carried by the Mn + ion at site R„with the
spin density s(r) of the free carriers is local:

H,„=—QJS„.s(R„)

with J the exchange constant. To second order in pertur-
bation, we obtain the RKKY interaction:

H —
2 gJ ff(R;~. )S; .S)
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J,ff(q) =QJ,rr(R, J. )e

10

5

is a maximum.
Equations (1)—(6) are classical expressions of the

RKKY interaction, independent of the localized spin con-
centration x. The effect of this interaction, however,
strongly depends on x. For a single magnetic impurity
(x~0), the summation over q in Eq. (5) leads to

9~ p
~

2
sin(2k+R;J ) —2k~R;J'cos(2k+R;~ )

ff
(2k~R;J )

(9)

This equation shows that the spin polarization of the free
carrier s(r) ~J,rr(r) creates a ferromagnetic cloud which
extends to a distance

R -rr/(2kF) . (10)

0
0

x (at.'k }
FIG. 1. Magnetic 'phase diagram of Sn& „Mn„Te after Refs.

5 and 6. P is the superparamagnetic phase. F is the ferromag-
netic phase where ferromagnetic clusters coexist with a long-
range magnetic order. SG is the spin-glass phase, R denotes the
reentrant spin-glass phase.

with the effective exchange coupling

J,rr(R;J) = ——gX (q)e
q

X (q) is the susceptibility of the free-carrier gas:

x' n)

q E(k) —E(k+q) (4)

and X is the number of unit cells. For a parabolic disper-
sion relation of the hole gas, E(k) =Pi k /2m', X (q) can
be calculated explicitly' to give

2

J,rr(R;~ ) = —QH(q)e (5)
8EF cV

with H(q) the Lindhart function:"

4kF —q' q+2kFH(q)=1+ ln
4kFq q —2kF

(6)

with Q the wave vector q of the magnetic structure, de-
fined by the q value for which

p is the hole concentration, k~ the wave vector of the
holes at the Fermi energy EF. In the molecular-field ap-
proximation (MFA) which will be discussed hereafter, the
RKKY interaction leads to a magnetic ordering at the
temperature

2S(S+1)J (g)c =
3k eff

At larger distances, s(r) and J,r&(r) present Friedel-type
oscillations. In the opposite case x~1 which is met in
magnetic semiconductors (such as europium chal-
cogenides) and rare-earth metals, the localized spins SJ.
are distributed on a periodic array which lead to coherent
interference effects between the Friedel oscillations in Eq.
(9). Therefore the summation over j in Eq. (8) is an oscil-
lating function of kr. These well-known RKKY oscilla-
tions depend on the topology of the lattice and have been
studied in detail' at least in cubic lattices. Such oscilla-
tions of J,rr(q) versus kr for all q (and in particular for
q =0) are expected to smear out as x decreases from uni-
ty, because the coherence of the interference between the
Friedel oscillations will disappear when the periodic ar-
rangement of the localized spins on the lattice will be al-
tered by the dilution process. On a mathematical point of
view, this loss of spatial ordering in the distribution of the
magnetic ions means that the discrete summations over
the lattice can be averaged by integrals in the preceding
equations:

Since the lattice is defined by the atomic positions in-
side a unit cell, i.e., the position of nearest neighbors
(NN), we expect that the RKKY oscillations will disap-
pear basically for a magnetic impurity concentration the
order of magnitude of the geometric site percolation con-
centration of the lattice for NN interactions, x~. It is im-
portant to realize that the condition of validity (x &x~)
for the jellium approximation [Eq. (11)] is a problem in
geometric disorder. In particular, the restriction to NN
simply defines xz as the geometric percolation threshold,
and does not involve any hypothesis on the range of the
magnetic interactions between magnetic impurities. Actu-
ally, one can define independently a magnetic percolation
concentration x, above which long-range magnetic order-
ing takes place at a finite temperature. Of course, if the
magnetic interactions are restricted to NN, then x, =x~,
but if the interaction Hamiltonian between the magnetic
moments is long range (which is the present case for
RKKY interactions), x, is substantially smaller than xz.
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We show how one can derive both the nature of the
magnetic ordering for x &x„and an estimation of x, .
For x & x&, the Friedel oscillations will interfere in-
coherently and will then average to residual local fluctua-
tions b,E(r) of the exchange interaction. In this case the
RKKY interaction mainly consists in the ferromagnetic
interaction, the range of which is given by Eq. (10).

If R is larger than the mean distance R between the
magnetic ions, the ferromagnetic clouds around the mag-
netic ions will overlap, driving a transition to a ferromag-
netic phase at a Curie temperature T&. Since the mean
volume occupied by the magnetic impurities is

4 —
3 Q—m.R

3 x (12)

with 0 the volume of the unit cell, the condition R ~ R
writes x &x„with x, the critical concentration

18
xc — &p~2 (13)

For x &x, the MFA can be used and T, is given by
Eqs. (7) and (8), with Q=0. For x &x~, the jellium ap-
proximation [Eq. (11)] can be used to evaluate
Q.J,rr(R;j ), in which case Eq. (5) leads to the following:

2

QJ,rr(RJ )~ —H(q =0) .3p J
(14)

8EF

This is the expression already derived in Ref. 8 in a dif-
ferent way, to which we have now added the limit of va-
lidity. Therefore in this range of Mn concentrations, Tz
does not oscillate as a function of kF or p, but just in-
creases monotonically like p

'

In the opposite case R ~R, the ferromagnetic interac-
tion due to the ferromagnetic clouds around any given lo-
calized spin is not experienced by the other localized spins
which are now too remote, with the consequence that the
ferromagnetic long-range ordering is broken.

In this case, a spin-glass freezing will be observed at a
temperature Tg where the exchange interaction J,ff be-
tween localized spins distant by the mean distance R will
balance the thermal energy:

~
J,rr(R)

~
=ksT (16)

Since R ~R, this exchange interaction is the tail of the
RKKY interaction, i.e., the oscillation part, which de-
creases like R; taking Eq. (12) into account, we get the
scaling law

Tg~x, X&x (17)

Since Ts ——T, for x=x„Eq. (17) implies that Tg(x) is
just the linear curve T, (x) given by Eq. (15) extrapolated
in the range 0&x &x, ~

Since x, &xz, there is a whole range of concentrations
x, &x &x~ where both Eqs. (7) and (14) can be used to
derive T, . Since H(q =0)=2 according to Eq. (6), the
Curie temperature is given by

Tc —— J0, x, &x&xz .
S(S+1) 2 px

4k' Ep

Let us now compare these results with the phase dia-
gram in Fig. 1. For all samples investigated, x &xz since
x&-0.3 is above the limit of solubility of Mn in SnTe.
The linear law of T, versus x in Eq. (15) is in quite good
agreement with experiment (except in the close vicinity of
x =x, where the MFA is not a good approximation and
where correlations must be taken into account). Other
calculations, in the mean-random-field theory' reproduce
the same results. The linear dependence of T~ versus x is
also approximately satisfied. Note that the mean-
random-field theory predicts a different behavior' '
(Tg cr x with 0.5 & a &0.66). Since we have only two ex-
perimental points in the range x &x„ this x dependence
cannot be ruled out although the data are in closer agree-
ment with Eq. (17). For the samples we have studied, the
hole concentration deduced from Hall-effect measure-
ments, taking the anisotropy factor 0.6 into account' give
p —5 & 10 cm . Assuming that the variation of the lat-
tice parameter with x is negligible for these low Mn con-
centrations, Eq. (15) gives x, =5 at. %, which reproduces
quite well the order of magnitude of the experimental
value x, =3 at. %. This result is thus a proof of our pre-
vious assumptions that the ferromagnetic ordering for
x ~x,. originates from the ferromagnetic cloud around
magnetic impurities, while the spin-glass freezing for
x &x, is due to the oscillating tail of the RKKY interac-
tion, like in metallic spin glasses. Since T, ~ ~p', the
lines T, g(x) in the phase diagram (Fig. 1) do not depend
strongly on the hole concentration. In particular, the
comparison between the experimental and theoretical
slopes of the curves T, (x) gives a determination of the pa-
rameter J:

J=0.4 eV .

The critical point of the phase diagram, however, is locat-
ed at coordinates directly proportional to p according to
Eq. (14). It follows that its location in Fig. 1 is not a
specific property of the material, but results from the fact
that our samples were prepared with a concentration
p —5 ~ 10 cm Sn vacancies.

III. TRANSPORT PROPERTIES

Transport properties of Sn~ ~Mn Te have been previ-
ously investigated in Ref. 7 for x & 3 at. %%uo, in th evicinity
of the Curie temperature. In the range of interest (T & 10
K), the resistivity of the host matrix SnTe does not de-
pend on temperature, so that the diffusion of the holes by
phonons is negligible. Therefore, the variations of p with
temperature in Sn& „Mn Te for T&10 K is due to the
scattering of the holes by the magnetic impurities.

We have reported in Fig. 2 the temperature dependence
of the resistivity for Mn concentrations x ~ 3 at. % in the
range 2& T &10 K. In agreement with previous results,
the ferromagnetic ordering at the Curie temperature T,
induces a decrease of the resistivity. T„deduced from
the zero-field magnetic susceptibility, ' illustrated in Fig.
1, coincides with experimental uncertainties with the in-
flection point of the resistivity curve, which is the canonic
behavior in diluted ferromagnets, like PdFe. Note, how-
ever, that the freezing temperature T, deduced from mag-
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10 p( T) =pd;, —aMo(T), (19)

roscopic bulk magnetization which depend on the domain
structure and relative orientations of the ferromagnetic
clusters. Above T„a similar situation has been met, for
example, in Au-Fe alloys with Fe concentrations exceed-
ing the value x, appropriate for this system. ' Below T„
however, the transport properties of Sn& Mn Te are
markedly different from those of Au-Fe, in which the fer-
romagnetic phase is homogeneous. ' Actually the arche-
typal ferro-spin-glasses like Au-Fe, ' Cu-Mn, ' or Ni-
Mn, are homogeneous, which means that the microscop-
ic properties at the scale of A. are essentially identical to
those of the macroscopic samples, with a magnetoresis-
tance which decreases quadratically as a function of the
bulk magnetization M. The extension of this quadratic
behavior suggests that in an homogeneous ferromagnetic
configuration or a reentrant spin-glass phase, the spon-
taneous drop in resistivity upon cooling is also given by a
quadratic law

T(K)
FICr. 2. Variations of the electrical resistivity p with tempera-

ture for two Mn concentrations x =0.04 [solid circles (l)] and
x =0.054 [open circles (2)]. The solid lines are theoretical. The
absolute value at T=10 K is reported in Fig. 4. Arrows mark
the Curie and the reentrant phase temperatures.

netic susceptibility and magnetization data in a static
external field H=100 G is larger than T„and rather
corresponds to the temperature above which the resistivity
becomes temperature independent. (It means, in particu-
lar, that there has been an incorrect confusion between T,
and Tf in Ref. 7.) This effect is due to the formation of
ferromagnetic clusters in the range T, & T & T, . In this
intermediate superparamagnetic phase, the interaction be-
tween these clusters is very weak so that the clusters give
rise to a part of the magnetization easily saturated in a
small applied field H -100 G, corresponding to the
Langevin-like magnetization associated to the orientation
of these clusters along the external field. Therefore, the
appearance of this magnetization at H=100 G corre-
sponds to the onset of ferromagnetic clustering at T„
which is distinct from the Curie temperature T, defined
as the temperature at which appears a spontaneous mag-
netization at zero field, associated to the blocking of the
large ferromagnetic clusters to give a ion -range fer-
romagnetic ordering. The decrease of p at T, is evidence
that the holes are sensitive to the ordering of the spins in-
side the ferromagnetic clusters. Since the resistivity only
depends on the spin correlation at the scale of the mean
free path of the hole, A, , this result implies that A, is small-
er than the size of the magnetic clusters. Note also that
the application of the field H-100 G, which produces
the rapid increase of the magnetization mentioned above,
does not affect the resistivity [except that it suppresses the
peak in p(T) observed in some samples, in the intermedi-
ate superparamagnetic phase]. This is another form of
evidence that A. is smaller than the size of the ferromag-
netic clusters: the holes are a probe of the short spin
correlations inside the clusters, and do not probe the mac-

with pd;, the disordered state resistivity in the paramagnet-
ic state, and Mo the spontaneous magnetization. This law
is indeed well verified in concentrated Au-Fe alloys, ' but
our results show that it is not verified in Sn& Mn Te.
The most outstanding deviation with respect to the law
occurs at the temperature T, which separates the fer-
romagnetic phase from the reentrant spin-glass phase.
The breakdown of the long-range ferromagnetic ordering
tends to reduce the spontaneous magnetization Mo which
either collapses at T, according to the scaling laws, ' or at
most stays constant like in Ni-Mn. In Sn& Mn Te, we
observe that the reentrance in the spin-glass phase at T,
induces a decrease of the resistivity, which is just the op-
posite behavior with respect to the predictions of Eq. (19).

A. Analysis

The diffusion cross section of the carriers by the mag-
netic impurities can be divided in two parts: (i) a coherent
scattering of the free carriers from the array of impurities;
this is a two-ion process which thus produces a contribu-
tion of order x . (ii) An incoherent scattering which is a
single-ion process, proportional to x. In the particular
case of a nondiluted ferromagnetic semiconductor (x =1),
the coherent scattering goes through a maximum nearT„' which gives rise to a peak of resistivity, slightly
above T„observed experimentally. By analogy with the
critical behavior of p(T) in nondiluted ferromagnets, the
peak of resistivity was also used to determine T, in Ref.
8.

However, in a diluted semiconductor like Sn& Mn Te
where x «1, the contribution of the coherent scattering
becomes negligible, and the amplitude of the resistivity
peak should vanish in this limit. As pointed out in Ref. 7,
any direct relation between the peak of p(T) and T, in
Sn& Mn Te is questionable. The fact that neither the
amplitude of the peak nor its width is reproducible from
one sample to another, at any given concentration x, also
suggest that the peak is not a critical behavior of p(T),
contrary to the situation met in concentrated systems like
Eu chalcogenides in the close vicinity of a transition be-
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+ ~ g[(ck +ck + —ck ck )S
k, k'

+ck' +ck S +ck', ck +S ] (20)

which describes the interaction between the free-carrier
gas and a single magnetic ion of spin S. o. refers to the
free-carrier spin polarization +,—.The first term is the
local change in the crystal-field potential induced by the
substitution of Sn by a Mn ion in the matrix. We note
that the scattering problem has been solved formally in
Refs. 9 and 25 for a more general interaction Hamiltonian
allowing for a nonlocal and nonisotropic interaction J and
V. Due to the lack of information concerning the struc-
ture of these quantities in the particular case of
Sn& Mn Te, however, we regard them as phenomeno-
logical parameters of our problem. We note that, in the
end, we find V & J, in which case Koon et al. have
shown that the results are not sensitive to this approxima-
tion of local and isotropic interactions in the limit S» 1.

The electrical resistivity can be deduced from the inser-
tion, in the Boltzmann equation, of the transition rates
computed from a perturbation expansion in the Born ap-
proximation. The third-order terms in HI give rise to the
Kondo effects. In Sn& „Mn Te, no Kondo effect can be
detected, at least in the range of temperatures investigated
(T~ 1.5 K). In particular, the lowering of p near T, can-
not be imputed to a Kondo suppression due to an inelastic
scattering of the free carriers by the magnetic Mn impuri-
ties, in contrast with the situation met in other materi-
als. ' We thus admit that third-order terms are unim-
portant in our particular case, and we only consider the
lowest-order terms (first Born approximation). The ex-
pression of the resistivity is then:

pM= 2
2mxV D(EF)+ , vrxJ D(EF)((S,)~+—Si+S,)

pe

tween homogeneous paramagnetic and ferromagnetic
phase. The peak observed in Refs. 7 and 8 might be due
to a resonant scattering either on some impurity, or on
ferromagnetic clusters being found in the intermediate su-

perparamagnetic phase.
Since the incoherent scattering is the simple addition of

the diffusion by individual impurities, it is sufficient to
start from the one-ion Yosida Hamiltonian

1
HI ———g Vck ck

Nkk

y, (co) = f e ' '(S (0)S (r) ) (22b)

and

+~ dt r~,
y i(co) =I e ' '(S,(0)S,(t) )g, (22c)

with the same conventional notations of Ref. 9. Actually,
this expression of p is formally equivalent to Eqs. (2)—(7)
in Ref. 9, except that the thermodynamic average of the
quantum mean value of operators over the canonical en-
semble, denoted ( ), have been replaced by ( )k, which
represent the same quantity averaged over regions of the
sample at the scale of A, , to take into account the finite
value of the hole mean free path. For a homogeneous sys-
tem at the scale of 1,, i.e., when k » l with I the size of the
ferromagnetic clusters or the ferromagnetic domains, the
limit A, ~oo is valid so that ( )k reduces to ( ), which
quantity is homogeneous in space. This is the case impli-
citly envisioned in Ref. 9. In Sn] „Mn„Te, however, the
anomalous transport properties reported in the preceding
section suggest that A. & 1, in which case ( )k does not
reduce to ( ). The parameter k is given by

iri(3m. )'i 1

2 p2/3
(23)

800

600 15

400 10
ICE

The variations of A, (T= 10 K) as a function of x are re-
ported in Fig. 3 together with the variations of the mean
distance R between the magnetic ions. We note that
X( T) (1(T) and the fact that A is a decreasing function of
temperature imply that the value of k reported in Fig. 3 is
a lower limit for the parameter I in the whole range of
temperature of interest (T & 10 K). Figure 3 shows that A.

is 1 order of magnitude larger than R. On one hand, this

~x V J (S, )kD (EF )

V + —,J [(S,)„+S,+S,]
(21)

200

with D (EF ) the density of states per atom per spin direc-
co/(k~ T)

tion. If n (co)=(e —1) is the Bose-Einstein fac-
tor, we define

0
0

where

+" dion(co)
kgT

(22a) FICx. 3. Hole mean free path A, (solid curve left scale) and
mean distance between Mn ions R (dashed curve, right scale) as
a function of x in Sn& „Mn„Te.
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( $,(0)$,(r) ),= (S,'),—(S, ),',
(S (0)S (r))g=($ S )ge

(24)

where Ql is the Larmor frequency of the impurity spin in
the presence of the local effective field it is surrounded by;
the effective field is the external field Ho plus the internal
molecular field

3k~T, ( $)~
gp~S($+ 1)

(25)

result justifies the neglect of the cutoff effect of the hole
mean free path on the RKKY coupling constant
J,ff(R,J). Second, I &k implies that the ferromagnetic
clusters embed few 10 magnetic ions at low temperatures,
and l &~R implies that a local molecular-field approxima-
tion may be used to derive the magnetic properties of the
spins inside each cluster. We can then write, by analogy
with Ref. 9:

gpgHO 3 J Apx($, )g
4 ~F (26)

the x concentration entering this equation is actually the
Mn concentration inside the ferromagnetic clusters. Since
l &~R, however, it is reasonable to assume that the Mn
concentration is homogeneous at the scale of l, so that x
reduces to the mean value entering the formula
Sn& „Mn„Te (Microprobe analyses have shown that all
our samples are homogeneous at the scale of the impact
size of the electron beam, typically 1 pm. ) Taking Eqs.
(22) and (24) into account, Eq. (21) is written as

with T, the freezing temperature of the spins inside the
clusters, in the molecular-field approximation. T, is then
given by Eq. (15), at all concentration x (and not only for
x & x, ), so that

0

pM
——

2 D(EF) 2V + —,J I (S, )x+PQ [11+ n(& )1]($ S+ )~I
pe

y&J2($ )2

+ 4 J I ($2)A+PflIl 1+&«. I)i($—S+ )A. I

(27)

If we note that ($, )~=M(H=100 Ci)/(gp ) (29)

( S, )g =S(S+1)—coth(P($, )gag /2),
(S S+ )x——2n(QI)($, )x .

(28)

Equations (26)—(28) give the expression of pM as a func-
tion of (S, )x.

B. Results

The determination of p as a function of T requires the
knowledge of (S, )x. This parameter cannot be calculated
since the distribution of exchange fields inside the materi-
al is unknown, but it can be deduced from magnetic mea-
surements. We have shown that the magnetization
M(HO) presents a component, easily saturated in a field
Ho —100 G, which represents a Langevin-like magnetiza-
tion associated to the alignment of the ferromagnetic
clusters's spin polarization along the external field. This
result led us to follow the following procedure: at any
given temperature T, a magnetic field Ho ——5000 G is ap-
plied to overcome macroscopic anisotropies which may
appear in the material at low temperatures; then Ho is
decreased down to Ho ——100 G where the magnetization
M(HO) is measured with a vibrating sample magnetome-
ter. Such a magnetic field is still large enough to main-
tain the spin polarization of the weakly coupled ferromag-
netic clusters aligned along Ho, but is too small to modify
significantly the distribution of effective fields and the
amplitude of the local magnetization inside each cluster,
so that we can write

p& ——2)&10 Qcm . (31)

p has been computed from Eqs. (26)—(28), (30) and (31),
with J and V as variational parameters. The best fit, il-
lustrated in Figs. 2 and 4, is obtained with

J=0.4 eV, V=1.55 eV . (32)

Since (S, )x has been measured with temperature steps
-0.1 K within an accuracy —10, the theoretical values
of p(T) have been replaced by a continuous line in Fig. 2.
This value of J is in agreement with the value deduced

with g =2 the Lande factor and pz the Bohr magneton,
which value is used in Eqs. (26)—(28) to calculate pM at
temperature T.

The total resistivity of the samples, in the range T & 10
K where the phonon contribution is negligible, is written
as

p=pi+pM (30)
with p& the contribution associated with the diffusion of
the tree carriers by nonmagnetic defects and impurities.
The experimental values of p (T =10 K) is reported as a
function of x in Fig. 4. The linear dependence observed
in this plot shows that p~ is proportional to x, which cor-
roborates that interference effects between magnetic im-
purities is negligible. The dispersion of the experimental
points in Fig. 4 is due to the fluctuations in the impurity
concentration from one sample to another. In SnTe
(x =0), the residual resistivity is
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(S, )',
p( T) =p( pp ) — [p( ~ ) —p(0)] .

S

E
1.5
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p( oo ) and p(0) are given by Eq. (30) with

pM(T~O) =pM(0) =po(4V —J S ),
pM(T co)=pM(oo)=po[4V +J S(S+1)],

(34)

with po=m&D(EF)/(2pe ). Equation 37 is just the exten-
sion of Eq. (19) to the case of inhomogeneous spin glasses
where (S, )q does not reduce to the bulk magnetization.
The fact that Eq. (19) has been observed in canonical me-
tallic spin glasses and that Eq. (37) applies in our case [the
deviation with respect to Eq. (27) is smaller than 10%]
suggests that the atomic potential perturbation due to the
introduction of a magnetic ion in the host matrix is gen-
erally large, so that ( V/J) »1 in the spin glasses investi-
gated so far. Sn& Mn Te is no exception to this rule.

0
0

x (at.a )

FIG. 4. Resistivity at T = 10 K as a function of x in

Snl Mn Te. Dots are experimental data. The solid line is
theoretical.

from magnetic data in Eq. (18).
These values of J and V lead to a very good agreement

between theory and experiment, for all the Mn concentra-
tions investigated. The ferromagnetic ordering induces a
decrease of the resistivity, as expected. A small decrease
of p(T) upon cooling is already observed above T„how-
ever, which corresponds to the fact that large ferromag-
netic clusters are already formed above T„so that (S, )~
vanishes only at a temperature significantly larger than
T, . The decrease of p(T) upon cooling in the reentrant
phase, in good agreement with experimental data, is due
to the fact that (S, )~ is larger in the reentrant phase than
in the ferromagnetic phase, although the average bulk
magnetization (S, ) in the limit H~O is smaller or at
most constant. This property is the consequence of the
larger opening of the hysteresis cycle, with a larger devia-
tion between field-cooled magnetization curves and virgin
magnetization curve evidenced on these samples in the
reentrant phase.

Following our procedure, we first determine (S, )~
from magnetic measurements, then we compute p(T). In
this context, these are magnetic properties which give evi-
dence that (S, )~ increases upon cooling at T„. Since,
however, Eq. (27) defines a one-to-one reciprocal relation
between (S, )~ and p, one can also consider that the de-
crease of p upon cooling is a transport property which, in-
dependently from magnetic measurements, gives evidence
that (S, )~ increases upon cooling at T„.

Finally, it should be noticed that the (S, )x dependence
of p(T) is entirely contained in the third term of Eq. (27).
It is precisely in the limit ( V/J) »1 appropriate to
Sn& Mn Te that this third term dominates the varia-
tions of p with temperature, in which case, for S &&1, Eq.
(27) gives

IV. DISCUSSION

Our model used to fit the resisti vity curves of
Sn& Mn„Te differs from the prior work of Ghazali
et al. in many aspects. First, no distinction has been
made between ( ) and ( )~ in Ref. 8, assuming implicitly
that A, ~ l. We have shown in this paper that the opposite
situation k &l is met, and already discussed the conse-
quences on the p(T) curves. Second, the last term of Eq.
(27) has been omitted in Ref. 8. This is a cross term be-
tween J and V which describes interference between the
potential scattering and the non-spin-flip part of the ex-
change scattering.

This term can be neglected only in the limit V/J~O,
in which case the temperature dependence of pM on tem-
perature is due to the second term in Eq. (27). Even in
this limit, Eq. (27) gives an expression of p(~) which
matches the result of Ref. 8, but gives an expression of
p(0) which differs from zero, at variance with the expres-
sion of p(T) in Ref. 8. This disagreement arises because
Ghazali et al. used the expression of the resistivity de-
rived by de Gennes and Friedel for ferromagnetic crys-
tals (x =1), in which the contribution poJ~(S, )~ is sub-
tracted from Eq. (27). This procedure is justified in Ref.
23 because the term poJ (S, ) corresponds to the scatter-
ing by the periodic part of the exchange potential. In a
dilute material like Sn& Mn„Te, however, the magnetic
ions are distributed randomly on the lattice and the spatial
periodicity is lost, with the consequence that the de
Gennes —Friedel theory does not apply. Equations (27),
(32), and (34) correspond to the opposite approximation
that the scattering of the free carriers by the magnetic
ions is incoherent (which we have already justified in the
preceding section) with no spatial correlations between the
position of the Mn ions, which is justified, since x &&x,
and since p(T =10 K) is proportional to x in Fig. 4. As a
consequence, if we omit the third term in Eq. (27)
(V/J~O), like in Ref. 8, we find that the jump of resis-
tivity Ap=p( oo ) —p(0) is poS, smaller than the value of
Ref. 8 by a factor S + 1 = —, . The estimation of J entering
the coefficient po, deduced from a comparison between

poS and the experimental estimation b,p —p( 10 K)
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—p( T~O) is J-1 eV, not compatible with magnetic ex-
perimental data. This is another form of evidence that V
is large.

At last, ( V/J)»1 implies that the last term in Eq.
(27), not only cannot be omitted like in Ref. 8, but is the
dominant term which yields the expression of Ap given by
Eq. (34), increased by a factor (2S+1)/(S+1)= —, with

respect to the expression in Ref. 8, and a factor 2S+ 1 =6
with respect to poS.

V. CONCLUSION

Metallic spin glasses investigated so far in the literature
are homogeneous, i.e., the electron mean free path k is
larger than the size of the ferromagnetic clusters I, with
the consequence that only domain rotation effects related
to macroscopic anisotropies and demagnetizing fields

could be evidenced in spin glass and reentrant spin-glass
phases. Much lower densities of free-carrier gas can be
obtained in degenerate semimagnetic semiconductors like
Sn& „Mn Te, implying an increase of the radius R of the
ferromagnetic cloud surrounding magnetic impurities,
leading to an increase of I up to values l & k. In such a
case, the transport properties are a probe of the local mag-
netic properties, and give first evidence that the reentrant
spin-glass phase is also characterized by an increase of lo-
cal magnetization inside the larger nonsaturated fer-
romagnetic clusters or domains. The reentrant spin-glass
phase corresponds to a situation where it becomes more
favorable for the energy of the system to increase locally
the magnetization, which is achieved at the expense of the
bulk magnetization since the local axes of magnetization
are blocked by magnetic anisotropies.
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