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Onset of fractal growth: Statics and dynamics of diffusion-controlled polymerization
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We report experimental studies of the statics and dynamics of diffusion-controlled polymeriza-
tion. The polymerization involves the random aggregation of a neutral precursor, pyrrole monomer,
in a two-dimensional electrochemical cell under a variety of conditions. As the oxidation potential is
increased, the fractal dimension drops sharply from values near 2 (compact structures) to 1 as the
growth becomes dendritic. At higher potentials, where the polymerization becomes diffusion limit-
ed, a continuum of structures is observed as the dendrites become more irregular and the fractal di-
mension increases asymptotically to 1.74+0.01. The mean branch angle is found to decrease sharp-
ly from 90' in the dendritic regime to approximately 45 in the diffusion-limited regime. In this re-
gime the width of the active growth zone increases at the same rate as the fractal radius. The spec-
tral dimensionality determined by scale-dependent conductivity measurements is 1.26+0.04.

INTRODUCTION

The apparent universality of scaling behavior charac-
teristic of diffusion-limited aggregation (DLA) has stimu-
lated much interest in random-aggregation phenome-
non. ' Theoretical studies and computer simulations
have been performed to characterize the class of
diffusion-limited aggregates. Experimental studies of
DLA have successfully determined the Hausdorff-
Besicovitch (fractal ) dimensionality, D, but have not
focused on the conditions necessary for DLA. Moreover,
only recently have studies of dynamical properties been
performed. In fact, DLA is only the limiting case of a
more general process of diffusion-controlled aggregation
(DCA). In DCA the free-particle concentration at the
growing surface is controlled but not limited by diffusion
(see below). Electrochemical deposition provides a unique
way to control deposition conditions, in particular the
free-particle concentration at the surface. In the present
work, we report the preparation of polypyrrole under con-
ditions which vary from diffusion-controlled polymeriza-
tion (DCP) to diffusion-limited polymerization (DLP).
Our goal was to vary the microscopic parameters which
lead to DLA and so gain a better understanding of the
fundamental processes which affect random aggregation.
By varying deposition conditions, we observed a growth
instability as structures changed continuously from com-
pact to dendritic to that of a random aggregate. By em-
ploying a thin layer cell and appropriate supporting elec-
trolytes, effects of migration and convection were elim-
inated. Pyrrole was chosen as a precursor for these stud-
ies because it is neutral in solution, and because polypyr-
role is a poor enough conductor (10 Q 'cm) to permit
scale-dependent conductivity measurements. Structures
of macroscopic size can be obtained [Fig. 1(a)—1(o)], and
the polymer is durable enough to be handled and contact-
ed for electrical measurements. Experiments were also

performed to demonstrate the importance of screening the
electric field in order to adequately control the conditions
of aggregation.

THEORY

Diffusion-limited aggregation is a process wherein par-
ticles moving in a space with Euclidean dimensionality d
undergo a random walk until they interact with (and stick
to) a growing fractal. ' By definition, the concentration
of aggregating particles near the surface must be suffi-
ciently small such that no interactions occur between
them. When an aggregate is produced via DLA, the
resultant structure is treelike and self-similar. Because
these objects are highly irregular, they cannot be charac-
terized by a single Euclidean dimension. A better descrip-
tion of the structure is provided by the fractal dimension
which may be computed from the ensemble average corre-
lation function, c(r)=r ", where 7l, the codimension is
given by D —d. For random fractals produced by com-
puter simulations on a square lattice, a typical value for
the fractal dimension is 1.657+0.004. '

A structure grown under diffusion-limited conditions
should also exhibit scaling behavior in its dynamic proper-
ties. " For example, the density of states will scale in
energy with an exponent D, known as the spectral dimen-
sionality. This exponent may be obtained from scale-
dependent conductivity measurements. Given a fractal
structure of finite size, the averaged point to point resis-
tance, p, between two electrodes a distance r apart should
scale as the separation to a power p, where p ~ r" and p, =1
as demonstrated by Witten and Kantor. ' Stanley and
Coniglio'2 proved that D, =2D/(D + 1)=1.26 for a frac-
tal without loops and with fractal dimension 1.7. Fur-
thermore, their work demonstrates that the conductivity
exponent is one only if there are no loops. The conduc-
tivity exponent is actually a direct measure of the chemi-
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FIG. 1. (a)—(o) Aggregates of polypyrrole prepared via DCP at increasing potential: (a) = 0.8 V; (b) 0.9 V; (c) 1.0 V; (d) 1.1 V; (e)
1.2 V; (f) 1.3 V; (g) 1.4 V; (h) 1.5 V; (i) 1.6 V; (j) 1.8 V; (k) 2.0 V; (1) 3.0 V; (m) 4.0 V; (n) 4.5 V; (o) 6.0 V.
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FIG. 1. ( Continued).
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dimensionality, p, which measures the scaling of the shor-
test distance between two points. On a structure without
loops, the chemical dimensionality provides an indirect
measure of the spectral dimensionality. A particle (elec-
tron) diffusing on this object will exhibit scale-dependent
diffusion such that in a time t it travels a mean radius
I, ~ t ' ' + ', where 0 is the diffusion exponent related to
p, D, and d via O=p —d +D. The spectral dimensionali-
ty is then given by D, =2Di(P +2+D —d). Meakin and
Stanley" calculate D, in two dimensions and find
D =1.2+0. 1 or p=1.1+0.2. Though it is true that p=1
is also true for a wire (and for percolation in two dimen-
sions), it is important to note that the spectral dimen-
sionality depends on both p and the fractal dimension D.
A scale-dependent exponent of one does not imply a spec-
tral dimension of one when the structure is manifestly not
that of a wire. To obtain a spectral dimension of one
from an object with fractal dimension 1.7, one would also
require a value of 1.7 for P (i.e.,P =D).

Though many simulations have been preformed to
determine fractional dimensionalities for this class of ob-
jects, the definitive theory of DLA does not exist. To
make progress towards developing such a theory, it is
necessary to consider the conditions which lead to
diffusion-limited aggregation.

The random aggregation of particles by DLA is in fact
the limiting case of a more general process of diffusion-
controlled aggregation (DCA). In DCA, the flux of parti-
cles towards the growing surface is controlled (deter-
mined) by diffusion, but the free-particle concentration at
the surface is nonzero as determined by the energetics of
the deposition process. ' In DLA, the surface concentra-
tion of aggregating particle falls to zero and the deposi-
tion rate is limited by diffusion alone. For example, in
electrochemical deposition, the equilibrium concentration
of particles near the growing surface is given by
c ~ exp( anebglk&T) w—here a is the barrier height for
deposition, n is the number of electrons transferred per
particle, and b.P is the difference between the applied po-
tentia1 and the thermodynamic potential for deposition.
Given a uniform "finite" concentration everywhere near
the surface, deposition will proceed at sites which are ki-
netically and/or thermodynamically favored. For low
values of ab, P, the concentration gradient is sufficiently
small that dendritic growth will not occur. For inter-
mediate values, the deposition process is still partially
controlled by the local thermodynamics, but the concen-
tration gradient is large enough to overcome stabilizing
processes like capillarity or the Gibbs-Thomson effect.
At this point a planar electrode is known to become unsta-
ble. ' Irregularities on the surface formed by, e.g., fluctua-
tions, will propagate. In the absence of crystalline aniso-
tropy, such tips or dendrites will grow normally from the
surface and the angle between branches will be, on aver-
age, 90 . This preferred direction is fixed by the local con-
centration gradient. In the DCA regime, the gradient and
finite concentration result in an effective force normal to
the electrode surface. For very large values of abP the
surface concentration is effectively zero and the deposi-
tion is (locally) DLA. The rate is limited only by dif-
fusion and not by the kinetics or thermodynamics of a

chemical reaction.
As pointed out by Brady and Ball, deposition in an

electrostatic potential gradient with high concentration at
the growing surface may be analogous to DCA. However,
if this gradient is not accompanied by a large concentra-
tion gradient, the conditions necessary for diffusion-
limited aggregation may not exist (i.e., the concentration
of aggregating particles at the growing surface will be
nonzero). This may explain why experiments employing
electrochemical deposition of metal ions in a potential
gradient yield treelike structures at low deposition poten-
tial, but produce compact or dendritic structures at high
potential where the deposition is field driven and the solu-
tion is stirred by solvent breakdown.

EXPERIMENTAL

Experiments to demonstrate the importance of migra-
tion were performed in a thin-layer cell constructed of
two glass plates. On one plate a 10-pm layer of silver was
evaporated except for a 1-in-diam circular region in the
center. This region constitutes the electrochemical cell.
A 10-mil hole was drilled through the center of the other
plate and a silver wire was inserted, epoxied, and sheared
flush with a razor blade. A second 10-mil hole was
drilled 1 cm from the first to allow contact to the electro-
lyte with a micro-reference electrode. In the first experi-
ment the electrolyte was 0.1M AgNO3 aqueous with 0.1M
KNO3 as supporting electrolyte. In the second experi-
ment the supporting electrolyte was omitted to eliminate
screening of the electric field. In both cases the reference
electrode was Ag/AgC1 with 3M KNO3. Samples were
prepared at —0.5 V with respect to the Ag/AgCl refer-
ence electrode.

Polypyrrole is a conducting polymer which may be
prepared by electrochemical oxidation of neutral pyrrole
monomer in a variety of supporting electrolytes. ' Sam-
ples of polypyrrole were prepared in a similar two-
electrode thin-layer cell consisting of two glass plates
separated by a 10-mil Kapton spacer and a 2000-A gold
counter electrode evaporated on one plate. A 10-mil hole
was drilled through the center of the other plate and a 5-
mil gold wire was inserted and sheared flush with a razor
blade. The electrolyte was 0.1M silver tossylate in aceton-
itrile with 0.1M pyrrole. Since concentration dependence
was not to be studied, the experiments were performed
with only two electrodes. The applied voltage was varied
between 0.8 V (the threshold for polymerization in this
cell) and 6.0 V. Above approximately 5 V the current was
insensitive to the potential, indicating the current was dif-
fusion limited. These voltages do not reflect the actual
half cell potential for polymerization because no reference
electrode was used. The potentials are, therefore, charac-
teristic of the particular cell configuration. However,
even at the highest potentials the solvent (acetonitrile) is
stable and no gas is evolved at either electrode (i.e., there
is no stirring of the solution). The counter reaction is the
deposition of silver and the structures visible on the
counter electrode in Fig. 1(n) are silver dendrites. Note
that the pyrrole experiment also differs from the metal
deposition experiment described above in the boundary
condition at the counter electrode. For the silver deposi-
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tion, for each ion deposited, one is added to solution at the
outer edge of the cell. In the case of the polymer, there is
no source of pyrrole at the counter electrode.

To determine the fractal dimension of the structures
produced, video images were acquired with a standard
video camera. For growth kinetics measurements, these
images were acquired, in situ, every ten seconds during
polymerization. The maximum resolution of the images
was 512&512. The data was digitized and processed with
the IBM IAX image processing software. The correlation
function was computed by setting a threshold intensity for
the fractals, and producing a binary image. The two-
dimensional autocorrelation function was computed (in
the frequency domain) and radiometrically averaged. The
inverse fast Fourier transform (FFT) of this function is
identical to the density-density correlation function. This
procedure is considerably faster than computing the all-

points correlation function in the space domain. &e
denote the integrated density-density correlation function
by M(r). The slope of the log of this function with
respect to log(r) determines the fractal dimension of an
object. In addition to measuring the fractal dimension,
the branch angle distribution function was measured for
each image. The angle between branches should give in-

sight into the microscopic mechanisms at work when the
compact electrode surface becomes unstable (see below).
A photograph of the polymer was placed on a graphics
tablet and three points (vertex and two branches) were
recorded at hundreds of branch points chosen at random
on the image. Since most angles correspond to side
branches (as opposed to tip splitting), the measured angle
is always the acute angle. There should, of course, exist a
distribution of congruent angles between 90' and 180'.

Each distribution was fitted to a Gaussian to compute the
mean branch angle. We applied both of these techniques
to polypyrrole prepared at different fixed potentials [Fig.
1(a)—1(o)].

RESULTS AND DISCUSSION

To demonstrate the effects of electric fields, silver ag-
gregates were prepared under identical conditions except
that in one case supporting electrolyte was added to pro-
vide some screening of the electric field. The applied po-
tential was —0.5 V (with respect to the Ag/AgC1 refer-
ence electrode) which is well below the potential for elec-
trolysis of water ( —0.7 V at pH7). At this potential, with
supporting electrolyte, the current was diffusion limited
but no stirring of the solution or gas evolution occurred.
The aggregates produced are shown in Figs. 2(a) and 2(b).
In Fig. 2(a) the field was screened and the deposition con-
trolled by diffusion. The object is similar to a random ag-
gregate and has fractal dimension 1.75+0.03. The struc-
ture shown in Fig. 2(b) is obviously different (fractal di-
mension 1.81+0.03). In this case the only screening is
provided by the silver salt and silver ions are depleted near
the growing surface. The voltage between the counter and
working electrodes was measured and found to be approx-
imately 1.1 V in the cell without supporting electrolyte
and 1.0 V with supporting electrolyte. The difference re-
flects the difference in cell resistance for the different car-
rier concentrations. We wish to point out that the refer-
ence voltage of —0.5 V versus Ag/AgCl is a relatively
high potential ~ For aqueous solutions, the half-cell poten-
tial at the active electrode can never exceed that for elec-
trolysis of water even if the applied voltage is 20 V. In
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FIG. 2. {a)and {b) Aggregates of silver prepared with and without supporting electrolyte respectively {see text).
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two recent Letters, ' ' a pair of experiments were report-
ed in which ionic species (zinc) were deposited without
supporting electrolyte. No reference electrode was used
and applied voltages exceeded that for electrolysis of wa-
ter as evidenced by the evolution of gas. Variations in
structure were studied as a function of applied voltage and
concentration. The changes in structure observed in these
experiments were affected by convection, stirring from
gas evolution, diffusion, and migration (electric fields).
The results were further complicated by the fact that
without a reference electrode, the two-electrode applied
potential is not a meaningful number when concentration
is varied over orders of magnitude. In order to study the
fundamental phenomena which govern diffusion-
controlled aggregation, we chose to confine our studies to
the deposition of neutral species under conditions which
minimize effects other than diffusion. To avoid the
necessity of a reference electrode, we used only one initial
electrolyte concentration. The growth kinetics of a poly-
mer aggregate prepared under diffusion-limited conditions
are shown in Fig. 3. The figure shows the radial depen-
dence of the integrated density-density correlation func-
tion, M(r), at various stages of the growth. For R be-
tween 0.3 mm and 6.0 mm, the plot is linear with an ex-
ponent D =1.74+0.03. For small radii the exponent de-
creases to 1.42+0.03. This may be an artifact of the di-
gitization process since features smaller than a few pixels
are lost and the structure approaches its topological di-
mension D, =1.

The derivative of the normalized difference between
successive curves in Fig. 3 is the probability of adding the
next monomer unit at radius R. The peak of each distri-
bution represents the radius of the aggregate at a given
time. This data, plotted in the inset, reflects the width of
the active growth zone as a function of time. When the
peaks were each fit to a Gaussian, the widths increased
with fractal size to the power 0.93+0.05. The full width
at half maximum (FWHM) of each peak was also mea-
sured without fitting to a particular function. The mea-
sured widths increased with R to the power 1.0+0.04.
Thus, the width of the active growth zone grows at the

same rate as the fractal. This implies that only one length
scale is required to characterize both the aggregate and its
growth.

To help visualize the growth process, some of the suc-
cessive images used above were digitally summed, and the
resulting intensities assigned different colors. The prod-
uct (Fig. 4) is an image where different colors represent
different stages of growth. The arms are somewhat
thicker than those in the high contrast black and white
photographs. This thickening is artificial and was intro-
duced in the digitization process to make the picture more
colorful.

As discussed above, since polypyrrole is a poor enough
conductor (yet mechanically durable) it was possible to
make scale-dependent conductivity measurements. Fur-
thermore, since polypyrrole is an extrinsic semiconductor,
charging effects' can be eliminated by measuring the
scale-dependent conductivity at low-frequency ac (10
KHz). Below l MHz the resistance is constant. A series
of probes were constructed with different contact separa-
tion ( r). The contacts were made by rounding the tip of a
fine gold wire with a torch. The tip was amalgamated to
minimize contact resistance. Each probe was used to
measure the resistance (p) of the sample at 10 random
sites along and between branches. The results were aver-
aged and plotted as logp versus logr (see Fig. 5). The
scale-dependent conductivity exponent as determined by
the slope of this data was 0.96+0.04 with a correlation of
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FIG. 3. The integrated density-density correlation function
M(r) vs r at successive times during DLP. The inset shows the
width of the active growth zone for each stage of growth (see
text).

FIG. 4. Various stages of polymerization for a fractal. The
colors are artificial.
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FIG. 5. The scale-dependent conductivity measured on an ag-
gregate. The slope determines the chemical dimensionality of
an aggregate.
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FIG. 6. The potential dependence of the structure plotted as
D vs V. Also plotted is the potential dependence of the mean
branch angle (right-hand axis). Note the growth instability near
1.5 V.

0.994. For D =1.7, this implies D, =1.28+0.02. A value
of D =1.65, would imply D, =1.26+0.02.

In Fig. 6 the voltage dependence of the averaged fractal
dimension for a number of samples is shown. The data,
plotted as D versus V, begins at a minimum voltage of 0.8
V which is near the threshold voltage for oxidation of
pyrrole monomer in our cell. The most remarkable
feature in the data is the sharp instability observed at
about 1.5 V where the growth changes from compact
[Fig. 1(a)] to dendritic [Fig. 1(h)]. At higher voltages a
continuum of structures is observed as the growth be-
comes more irregular and the fractal dimension increases
asymptotically to about 1.75. The left-hand side of this
transition is predicted by the instability of a compact elec-
trode growing into a sufficiently large gradient via DCA.
A scanning electron micrograph (SEM) of the surface in-
stability is shown in Fig. 7. Irregularities are evident on
the surface. In the upper left-hand corner of the photo-
graph, one of the irregularities continued to grow forming
a branch which subsequently screened the interior surface.
That the observed instability corresponds to the onset of
dendritic growth is supported by the mean of the branch
angle distribution function also plotted in Fig. 6. At 1.5

FIG. 7. An SEM of a pyrrole aggregate reveals that compact
growth is unstable with respect to tip formation.

V the mean branch angle decreases from about 90' to
42'+7' at high voltage. Note that below 1.5 V the struc-
ture is compact and the branch angle is undefined. We
also measured this distribution function for a diffusion-
limited aggregate made by computer simulation (Ref. 2).
Since the simulation is on a square lattice, all microscopic
angles are 90. However, when the aggregate is defocused,
and the angles measured on scales greater than 10 lattice
constants, the distribution was found to peak at 43 6'.
This agreement in no way implies that polypyrrole forms
a square lattice. Transition electron micrographs (TEM's)
of the polymer branches indicate the material formed is
completely amorphous and should not exhibit crystalline
anisotropy. Furthermore, we could conceive no convinc-
ing argument to explain the observed branch angle distri-
bution from conjugation via a and P carbons on the pyr-
role rings. %'e believe that the observed angle is charac-
teristic of random aggregation with our boundary condi-
tions. This does not rule out the possibility that the 45'
branch angle observed in DLA simulations is due to the
underlying lattice. Meakin et al. ' have demonstrated
that for simulations on a lattice, the lattice symmetry is
preserved on large length scales. This can be explained by
the fact that all particles are captured on lattice sites (i.e.,
it is possible to connect any two point on the fractal with
a linear combination of lattice vectors). In real (crystal-
line) aggregates, the occurrence of new nucleation sites
would destroy this long-range order and scaling would
also be preserved for large dimensions.

The fact that this instability occurs in an amorphous
material like polypyrrole suggests that the transition from
diffusion-controlled aggregation to diffusion-limited ag-
gregation is not, in general, a smooth one. The discon-
tinuity in Fig. 6 indicates that the same instability which
leads to dendritic growth precedes DLA even in the ab-
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sence of crystalline anisotropy.
The structures obtained in the diffusion-limited regime

are more dense than those obtained in DLA simulations.
Similar structures have been reported by Sawada et al. '

(who refer to some of their aggregates as "homogeneous"),
and Cxrier et al. ' The increase in density is probably due
to the fact that before aggregation begins, the electro-
chemical cell is completely filled by a "gas" of particles,
whereas in the simulations the space is empty except for a
single random walker. In the limit of high initial particle
concentration, the aggregate will resemble DLA on small
scales. On large scales, however, the shape of the aggre-
gate reflects the radial gradient. This effect may be more
pronounced in cells where the aggregating particles are re-
placed at the counter electrode (so the concentration there
increases) and the growth allowed to proceed into that re-
gion. In the case of the pyrrole aggregates, the total parti-
cle number is fixed and the concentration of particles de-
creases as the aggregate grows. This latter situation more
closely resembles the models of DLA.

We believe that understanding both sides of the growth
instability is critical to any complete theory of DLA.
Since the random fractal is the limiting case of the
diffusion-controlled aggregate, the correct theory of DCA
should predict the transition from fractal to dendrite as
well as dendrite to compact. The scale at which this tran-
sition occurs will be case dependent, but the occurrence of
the transition should be universal. For example, aging in
dielectrics exposed to high electric fields results in a tran-
sition from a uniform space charge density to a branched
defect structure. ' ' This transition from compact to
dendritic space-charge distribution may reflect the same
phenomenon which occurs in DCA, though the scale of
the process is particular to the dielectric.
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FIG. 8. This SEM of a single branch of a pyrrole aggregate
prepared at 6.0 V with no spacer demonstrates that on some
scale the material is compact (see text).

At voltages just above the transition in Fig. 6, the den-
dritic growth also becomes unstable for large samples.
This effect manifests itself in some samples where, after
reaching a critical length, dendrites (or arms) of the poly-
mer stop growing and a compact structure grows on the
tip. We believe this effect is due to the fact that polypyr-
role is not highly conducting (0.1 Acm). When the IR
drop along an "arm" is sufficient to decrease the potential
at the growing tip below that for dendritic growth, the
growth will become compact. If the arm subsequently
thickens, the dendritic growth may proceed. This effect
serves to increase the error in the data at potentials near
the transition. At sufficiently high voltage it is possible to
apply a potential large enough to sustain diffusion-limited
growth (i.e., the current is voltage independent).

In the diffusion-limited regime, the pyrrole aggregates
(like all real objects in nature) are compact on some scale.
To study this, scanning electron micrographs were taken
on aggregates prepared without the Kapton spacer. The
cell thickness was then determined by the thickness of the
gold counter electrode and any dust trapped between the
glass plates. The SEM shown in Fig. 8 demonstrates that
the arms are compact on length scales less than 10 pm,
while the polymer thickness is on the order of 2000 A.
The fact that random aggregates can be produced at all
using a system as complicated as a pyrrole polymerization
demonstrates the generality and importance of random
aggregation phenomenon.

CONCLUSION

In conclusion, we have demonstrated that electrochemi-
cal generation of a long-chain polymer results in the for-
mation of a fractal structure when the rate of polymeriza-
tion is limited by diffusion. While it is also possible to
study DLA using electrochemical deposition of charged
species (e.g. , metal ions), our results demonstrate that ef-
fects other than diffusion dramatically affect the structure
if care is not taken to screen the electric field.

We have studied the electrochemical polymerization of
pyrrole under conditions which range from diffusion con-
trolled to diffusion limited. At low oxidation potentials
the structures were compact. At somewhat higher poten-
tials a growth instability occurred and the aggregates be-
came dendritic. The fractal dimension decreased sharply
to 1. At higher potentials the fractal dimension increased
asymptotically to 1.74+0.03 as the polymerization be-
comes diffusion limited.

The fractal dimensionality for DLP was found to be
1.74+0.03. The width of the active growth zone scaled
with the fractal size to the power unity. The durability
and relatively high resistivity of polypyrrole allowed
direct determination of the spectral dimensionality' '" D,
of a fractal by scale-dependent conductivity measurement.
The spectral dimension is found to be 1.28+0.04 in good
agreement with theoretical values for DLA. Thus, we
have demonstrated the generalization of the concepts of
DLA to the process of diffusion-limited polymerization.
Both dynamic and static scaling properties expected for
DLA are experimentally verified for DLP.
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