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Phase diagrams of a disordered, ferromagnetic, binary Ising system
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Phase diagrams of a binary ferromagnetic Ising system with randomly distributed exchange pa-
rameters are investigated by use of the effective-field theory with correlations. Some interesting re-

sults for the effect of structural fluctuations on phase diagrams are found.

I. INTRODUCTION

Over the last several years the magnetic properties of
binary random substitutional alloys have been studied in-
tensively from both bond and site perspectives. The bond
model considers all lattice sites to be equivalent, but the
interaction energy between each pair of adjacent sites is
randomly assigned one of a set of possible values. In the
site model, however, the lattice sites are randomly occu-
pied by two different species of magnetic ions, A and B,
and the interaction between two ions is determined entire-
ly by the species of those ions. The Hamiltonian for the
system is then given by

g [JAA ~iA ~jA +JBB~jB~jB
17J

+JAB(~iA ojB + oiB~j A ) lSi Sjki kj

where the J;z's are the interaction energies between type-i
and type-j ions, the S' are the spin variables with S'= + 1,
and the sum is over all nearest-neighbor pairs. g; is a ran-
dom variable which takes the value of unity or zero, de-
pending on whether the site i is occupied by a magnetic
atom or not.

On the other hand, there has been some interest in the
phase diagrams of binary ferromagnetic alloys with
A~A, B, with a transition temperature T, (p) as a func-
tion of concentration p. ' When all the exchange in-
teractions in (1) have the same ferromagnetic signs and we
suppose without loss of generality that T, (1) & T, (0), the
simplest possible phase boundary may be a straight-line
extrapolation for T, (p) between T, (0) and T, (p). As dis-
cussed in Ref. 1, however, nine phases may be possible
from the three behaviors of the initial slope (t)ln T, /c}p) of
the transition temperature with p at the two points p =0
and p =1. For special low-dimensional crystalline lat-
tices, such as the Bethe and honeycomb lattices, six phases
have been found by using the exact calculations at p =1
and p =0 from the possible nine phases. ' The standard
molecular field theory (MFT) predicts only four possible
phases. The MFT generally overestimates T, and un-
derestimates the number of phases in the mixed alloy with
low coordination numbers. However, as discussed in Ref.
2, it may be expected that the phase diagrams for lattices

with these low coordination numbers z approach that
given by the standard MFT once z is increased.

In amorphous ferromagnetic alloys with the general
formula (A&B~ z), N, „where N represents some metal-
loid, the concentration dependences of T, have been in-
tensively investigated, in order to determine one of the
most important parameters (or J„A,JAB, and JBB) for
understanding magnetic properties. In amorphous mag-
nets, however, it has been discussed that the fluctuation of
exchange interactions (or the structural fluctuation) is one
of the underlying causes for the changes of physical quan-
tities, in comparison with those of crystalline alloys. In
fact, experiments of the Mossbauer effect and the magnet-
ization of amorphous ferromagnets indicate that, at least
in some materials, there are large fluctuations in the ex-
change interactions. Theoretically, for studying such sys-
tems, the lattice model of amorphous magnets has often
been applied, in which the structural disorder is replaced
by the random distribution of the exchange integral; the
exchange interactions in (1) are assumed to be distributed
randomly about their mean values.

In this paper, the phase diagrams of a binary ferromag-
netic Ising system with randomly distributed exchange pa-
rameters are investigated by using the effective-field
theory with correlations, in order to clarify the effects of
the structural fluctuation on the phase diagrams for its
corresponding crystalline binary alloy. We find some in-
teresting results for the phase diagrams. In particular, for
an anisotropic structural fluctuation a new phase may ap-
pear, which is not found in a crystalline binary alloy.

The outline of our paper is as follows. In Sec. II, we
briefly review the basic points of the effective-field theory
with correlations when it is applied to a disordered fer-
romagnetic binary Ising system. In Sec. III, the general
formulas of the initial slope (t)in T, /t)p) at the two points
p =0 and p =1 are derived. For the lattice model of an
amorphous ferromagnet in a square lattice, the numerical
results of the phase diagram are studied and discussed in
Sec. IV.

II. FORMULATION

We consider a binary alloy of the type, AzB& ~, ran-
domly occupied by two different species of magnetic ions,
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A and 8, where the 2 and 8 atoms have the same spins
(S~ ——+ 1 and Si'] ——+ 1, respectively). The Hamiltonian of
the system is given by (1). Moreover, to describe the
structural disorder of amorphous magnets in a simple
way, the nearest-neighbor exchange interactions are as-
sumed to be given by three independent random variables,
i.e., p(J» ), p(J~& ), and p(Jj]i]), where p (x) is a probabil-
ity distribution function.

The magnetization per site is

(2)

with a restriction

series of works, ' the starting point for the evaluation
(S,' „)or (S,' s ) is the exact Callen identity:

(S ) =g; (tanh(Pg; 9; )), o.'=A or B

with

(4)

Oi =a g ( Jad~jA +JaBojB )Sjkj
J

where P = I /kz T.
At this stage, in order to write identities (4) in a form

which is particularly amenable to approximation, let us
introduce the differential operator technique as follows:

(4;=g ),+(g;=j]),=1, (3) (S ) =g; (e '= '= )tanh(x)
~ „

(6)

where (. ) expresses the usual thermal average and
( . )

„

is the random configurational average. The ran-
dom average (g; ~ )„=p is the concentration of
atoms. The main problem is the evaluation of the mean
values, (S z ) and (S ~ ). As has been discussed in a

exp(as )=cosh(a)+S sinh(a),

Eq. (6) reduces to

(7)

where D =8/Bx is a differential operator. Using the rela-
tion g,

"=g; ( n = integer) and the identity

(S;* ) =i;,(g {$~5A[c )h(Dos' )+Ssi h)(sDn' )]+sf 5 [)c )sh(Dos' )+Ssi h)(sDn', )]{)St h(xsn)

x=0

where D'„=g; J „DP(a, r =2 or B).
For a disordered system with random bonds and ran-

dom occupation of magnetic atoms, we must perform the
random configurational average for Eqs. (2) and (8); the
averaged total magnetization per site is given by

m = «S,') )„=pm„+(1—p)m~,

where mz and m& are defined by

Here, it is clear that, if we try to exactly treat all the
spin-spin correlations appearing in the partial magnetiza-

tions through the expansion of Eq. (8) and to properly
perform the random configurational average, the problem
becomes mathematially untractable. In the previous
works, therefore, the decoupling approximation, or

(12)

with j~k&. . nand .xj ——AS~', has been used. In fact,
the approximation corresponds essentially to the Zernike
approximation in the nonrandom problem, as discussed
in Ref. 6. The approximation has been successfully ap-
plied to a great number of disordered magnetic systems.

By taking account of the fact that the exchange interac-
tions and the random occupation of magnetic atom sites
are given by independent random variables, the average
partial magnetization m (a=A or B) is given by, upon
performing the random average and introducing the
decoupling approximation (12),

m =Ip[(cosh(DJ ~)),+m~(sinh(DJ ~)),]+(I—p)[(cosh(DJ i]))„+m~(sinh(DJ z)), ]I'tanh(x) ~„Q
with

(13)

Jar PJar

where z is the number of nearest neighbors.
We are now interested in investigating the phase diagram of the system. The usual argument that m tends to zero as

the temperature approaches a critical temperature allows us to consider only terms linear in m . Near the critical point,
therefore, we have

Amp +Bmg ——0,
Cmg +Dmg ——0

(14)
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with

A =pz[p (cosh(DJ&„))„+(1 —p )(cosh(DJ„s) )„]''(sinh(DJ„„))„tanh(x)
~ „0—1,

8 =(1—p )z[p (cosh(DJ~~ ) ), +(1—p)(cosh(DJ&~ ) )„]''(sinh(DJ&z ) )„tanh(x)
~ „

C =pz[(1 —p ) (cosh(DJs~ ) )„+p(cosh(DJ~s ) )„]''(sinh(DJ„~ ) )„tanh(x)
~ „

D = (1 —p )z[(1—p ) (cosh(DJBs ) )„+p(cosh(DJ~s ) )„]''( sinh(DJ~s ) )„tanh(x)
~ „0—1 .

(15)

Equation (14) yields the following secular equation

M
PlB

B
C D mB

=0. (16)

The critical ferromagnetic boundaries (or phase diagram)
can be derived from the condition detM =0, namely,

ac
a T= T [B)

(18)

ing the overall character of the phase diagram.
Differentiating both sides of (17) with p, the initial

slopes are given by

AD =BC . (17)

From this relation we can obtain the transition tempera-
ture T, (p) as a function of p.

III. INITIAL SLOPE

Let us now study the initial slope BlnT, /Bp at the two
points p =0 and p =1. Although the initial slopes by no
means provide a complete description of the phase dia-
gram obtained from (16), they do severely restrict what
can occur and so can be used at the basis of a classifica-
tion scheme; these initial slopes determine the overall
character of the phase diagram although not the detailed
shape, of course. In fact, when all the exchange interac-
tions in (1) have the same ferromagnetic signs and we sup-
pose without loss of generality that T, (1)& T, (0), the
simplest possible phase boundary may be a straight-line
extrapolation for T, (p) between T, (0) and T, (p), as
shown in Fig. 1 by a dashed line. As shown in Fig. 1, the
initial slopes at p =0 can identify three possible types of
behavior: (i) a slope greater than the linear extrapolation,
(ii) a slope less than the linear extrapolation but greater
than zero, and (iii) a slope less than zero. There are also
three similar types of behavior at p =1. From the three
possible behaviors of the initial slope at the two points
p =0 and p =1 in Fig. 1, nine phases may be possible.
Based on these arguments, Thorpe and McGurn' have ex-
amined the various phase diagrams which may occur in a
mixed A&B& z Ising ferromagnetic crystalline alloy for
special low-dimensional lattices, such as the Bethe and
honeycomb ones, and found that for these lattices three
possible phases ( T,S, and S' in their notations) do not ap-
pear. Honmura et aI. have also investigated the phase
diagrams for mixed AzB& ~ crystalline Ising alloys with
z =4 and z =6 and found that the three phases do not ap-
pear, using the relation (17) without random-bond aver-
ages in (15).

Within the present formulation discussed in Sec. II, let
us now investigate the initial slopes at the two points
p =0 and p =1 and derive general relations for determin-

aA
q=0

T=T (3)

BB
q=0

T=T,[~)
(19)

and

z[(cosh(DJss ) )„]''(sinh(DJss ) )„tanh(x)
~
„o——1 .

Using the relation

Jar
Bp

J, BT,
(a, r =A or 8),

Tc p

we obtain, from (18) and (19),

Tc

Tc(A)

ye[a)

P=O P= I

/=0

FIG. 1. Nine possible initial derivatives at p =1 and p =0,
and the linear extrapolation of the phase boundary between
T, (0) and T,(1).

where q= 1 —p. The parameters T, (A) and T, (B) are the
transition temperatures for p = 1 and p =0, which are ob-
tained from

z [ (cosh(DJ„q ) )„]'' ( sinh(DJq~ ) )„tanh(x )
i „o——1

(20)
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Te ~$' p

K2 —1

K) T=T (B)
(23) T BP 0

K4 —1

T=T (A)
(24)

and where the coefficients K; (i = 1—4) are defined by

IC& ——[(cosh(DJBB)),]' '(JBBcosh(DJBB))„sech(x)
~ & p

+(z —1)[(cosh(DJBB ) )„]' (sinh(DJBB) )„(JBBsinh(DJBB ) )„sech(x)
~ „

E2 ——z[[(cosh(DJBB))„]' '(sinh(DJAB))„tanh(x) ~„OII[(cosh(DJAB))„]' '(sinh(DJ„B)),tanh(x) ~„
+(z —1)(cosh(DJAB ) )„[(cosh(DJBB)),]' (sinh(DJBB ) )„tanh(x)

~ „

E3 —[ (cosh(DJAA ) )„]''( J„Acosh(DJ„A ) )„sech(x)

+ (z —1)[( cosh(DJAA ) )„)' ( sinh(DJA„) )„(J„„sinh(DJ„„))„sech (x)
~ „

K& ——z I [(cosh(DJAB ) )„]''(sinh(DJAB ) )„tanh(x)
~ „OII [(cosh(DJAA ) )„]''(sinh(DJAB ) )„tanh(x)

~ „

+(z —1)[(cosh(DJAA ))„]' (sinh(DJAA ))„(cosh(DJAB))„tanh(x)
~

„
(25)

BT =0,
, T =T(B)

(26)

From Fig. 1, on the other hand, the phase boundaries
determining the overall behavior of the phase diagram are
given by the following relations:

where AJ, AJ', and AJ" are the fluctuations from the
mean values JAA, JAB, and JBB. In the lattice model of
amorphous magnets, ' the fluctuations of exchange in-
teractions are assumed to come from the topological dis-
order of the systems. The random-bond averages in (25)
are then given by

T, (A) —T, (B)
T(B)

(3Te

T =T (A)

=0,

1 ~Te

T, BP T T (B)
(27)

(28)

( cosh(DJ „))„=cosh(DJ „)cosh(DJ „5~„)
(sinh(DJ „))„=sinh(DJ„)cosh(DJ „5„),

(a,g=A or B) (31)

BTe

T Bg

T, (B)—T, (A)

T(A)
(29)

p(JBB ) 2 [5(JBB JBB ~J )+5(JBB JBB+~J )]

Thus, within the present formulation, the general relations
which determine the behavior of initial slopes at p = 1 and

p =0 are given by Eqs. (23)—(29).
Let us now investigate a disordered system in which the

probability distribution functions p(JA„), p(J„B),and
p( JBB ) for exchange interactions J„„,JAB, and JBB are
given by

p(JAA)= —,
'

[5(JAA JAA ~J)+5(JAA —JA'A+~J)1

p(JAB) 2 [5(JAB JAB ~J )+5(JAB JAB+~J
(30)

where J z
——PJ z. The parameters 5 z are dimensionless0 0

parameters which are often called structural fluctuations
in the lattice model of amorphous magnets and are de-
fined by

hJ
~AA 0

AJ'
AB 0

JAB

QJ1l
~BB p

JBB

Substituting the relations (31) into (20) or (21), we ob-
tain

~ cosh'(DJ ~ 5 )cosh' '(DJ )sinh(DJ )tanh(x)
~ „o——1 (a=A or B) (33)

by which the transition temperature T, (A) or T, (B) is
determined. Then, by applying a mathematical relation
e' f(x) =f(x +a), Eq. (33) can be expressed as a sum of
transcendental functions tanhx with an appropriate argu-
ment x. For z=4, Eq. (33) has already been solved nu-

merically as a function of 5 in Ref. 11 (the definition 5 in
Ref. 11 corresponds to 25=6 in the present formula-
tion). In Fig. 2, the result of (33) for z =4 is once more
depicted as a function of 5 . For 5 =0, the transition
temperature t, =kBT, (a)/J (a=A or B) is then given
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2.0-

feet of frustration appears in Fig. 2; the possibility of
reentrant phenomenon is obtained in the range
1.0~5& 1.13. In the following, however, we are interest-
ed in the overall character of the phase diagram shown in
Fig. 1, so that we restrict the value of 5 in the range
0 & 5~~ ( 1.0.

Substituting (31) into (25), and using the relations
0 0J~a Jaw

(JO JO )1/2 JO

O. O 0.5 I.O

FIG. 2. Transition temperature for square lattice (z =4) plot-
ted as a function of structural fluctuation. The possibility of
reentrant phenomenon may be found in the range
1.0(6 ( 1.13.

and
0J~

kt7 T, (a)

Eqs. (23) and (24) reduce to

(34)

(35)

by kz T,(a)/J =3.0898, as obtained in Refs. 2, 6, 7, and
11. As is easily understood from the definition of 5, the
probability distribution function p(J ) can take positive
and negative values randomly, when 5 becomes larger
than 5 =1.0. For 5 ~ 1.0, therefore, the so-called ef-

and

with

BT, K4 —1

T~ Bg
(36)

K& ——t, cosh' '(Dt, )cosh' '(Dt, 5~&)[c soh(Dt, )c soh(Dt, 5 ~a)+5&zsi hn(Dt, )sinh(Dt, 5&~)]sech (x)
~ „

+ (z —1)t, cosh' (Dt, )sinh(Dt, )cosh' '(Dt, 5&73 )

X [sinh(Dt, )cosh(Dt, 5~~)+5&&cosh(Dt, )sinh(Dt, 5~~ )]sech (x)
~ „

K2 ——z cosh' '(Dt, 5t7J3 )cosh Dt 5zz cosh' '(Dt, )sinh Dt, tanh(x)
7l 7l x=0

X cosh' Dt, 5~~ cosh' ' Dt, sinh Dt, tanh(x)
7l x=0

+ (z —1)cosh' '(Dt, 5~& )cosh Dt, 5&z cosh Dt, cosh' (Dt, )sinh(Dt, )tanh(x)
~ „

7l 7l

K3 —t, cosh' '(Dt, )cosh' '(Dt, 5„&)[cosh(Dt, )cosh(Dt, 5„„)+5&z sinh(Dt, )sinh(Dt, 5„&)]sech (x)

+(z —1)t,cosh' (Dt, )sinh(Dt, )cosh' '(Dt, 5» )

X [sinh(Dt, )cosh(Dt, 5&q ) +5~~ cosh(Dt, )sinh(Dt, 5&„)]sech(x)
~ „

K4 z[cosh' ——'(Dt, 5&~ )cosh(Dt, gv 715~~ )cosh' '(Dt, )sinh(Dt, gv 71 )tanh(x)
~ „o]

X [cosh'(Dt, g~g5&~)cosh' '(Dt, gv 71)sinh(Dt, p 71)tanh(x)
~ „o]

+(z —1)cosh' '(Dt, 5~„)cosh(Dt,g~g5q~ )cosh(Dt, g'v 71 )cosh' (Dt, )sinh(Dt, )tanh(x)
~ „

(37)

where the coefficients K; (i =1—4) can be also evaluated
by the use of the mathematical relation
e' f(x)=f(x+a).

%'e are now in a position to examine phase diagrams
for the lattice model of amorphous ferromagnets, which

can be obtained by solving Eqs. (35), (36), and (26)—(29),
numerically. In the next section, the results are shown for
a square lattice (z =4). Before discussing the results, it is
worthwhile to notice a general fact for the overall charac-
ter of the phase diagram; for 5&z ——5~~ ——5&~ ——5 the fol-
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lowing relations are always satisfied for the initial slopes
(26) and (28): 5.0 -5.0

(38)

and
.0

(39)

For the phase diagrams in the (g, g) space, therefore, the
phase boundaries (38) and (39) are independent of 5, al-
though the phase boundaries obtained from (27) and (29),
may change with 5. The results (38) and (39) are also ob-
tained in Refs. 1 and 2 and from the standard MFT (Ref.
5) for a mixed Ising ferromagnetic alloy with 5=0.

I-3.O

I20

IV. NUMERICAL RESULTS AND DISCUSSIONS "I.O

At first, the phase diagrams of square lattice (z =4) for
5zz ——5' ——5&z ——5 are shown in Fig. 3 by solving (27)
and (29) numerically. As mentioned in Sec. III, the phase
boundaries (38) and (39) (solid lines) are independent of 5.
The phase diagram for 6=0 is equivalent to that found in
Fig. I of Ref. 2 for the mixed ferromagnetic Ising square
lattice. In the following, we use the same notations in
describing the phase diagrams as those of Thorpe and
McGurn. ' In Fig. 3, only six kinds of the phase (A, A',
S, S', B and B, ) are permitted, although the nine phases
(T, A, A', B, B~, S, S', S, , and S'~) compatible with the
initial slopes are possible (see Fig. 1 of Ref. 1). As is seen
from the figure, the phase boundary obtained from (27) is
very sensitive to the change of 5 in the region

0.0 I.O

&ee ~ &AA

FIG. 4. Phase diagrams of square lattice ( z =4) for
6BB 6p 1'5~ 6AB 1 56p

0.8&6&1.0. On the other hand, the phase boundary ob-
tained from (29) changes slightly upon increasing the
value of 6. Especially for the value of 6 in the range
0.8&6&0.9, the region of parameter space where the S
and S' occur are extremely expanded, while the 2 and A'
regions become narrower in comparison with each region

5.OI

5.0 I-5.o

4.0-I 4.0
p Q)

s.oj

II

2.0

3.0

2.0

4.0-
.
"' 4.0

l. 3.0

I.O I .0

2,0- Izo

I I.O

0.0 0.5
+ee /+AA

1.0

0.0 0.5 I.o

FIG. 3. Phase diagrams of square lattice (z =4) for
6&~ ——6~& ——6~~ ——6 with selected values of 8: (a) 6=0.0, (b)
6=0.50, (c) 8=0.90, (d) 6=0.05. Solid lines show the phase
boundaries g'=My and g=Mg. The dashed lines are obtained
from the relation (27). The dotted-dashed lines are determined
from the relation (29).

~ee~ &~A

FIG. 5. Phase diagrams of square lattice ( z =4) for
6gg =6' =6p=0.5, 6&~ ——0. 16p. There is a new phase T. The
figure inside corresponding the phase diagrams for
6~~ =6' =6~a =o 5-
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