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Phase diagrams of a binary ferromagnetic Ising system with randomly distributed exchange pa-
rameters are investigated by use of the effective-field theory with correlations. Some interesting re-
sults for the effect of structural fluctuations on phase diagrams are found.

I. INTRODUCTION

Over the last several years the magnetic properties of
binary random substitutional alloys have been studied in-
tensively from both bond and site perspectives. The bond
model considers all lattice sites to be equivalent, but the
interaction energy between each pair of adjacent sites is
randomly assigned one of a set of possible values. In the
site model, however, the lattice sites are randomly occu-
pied by two different species of magnetic ions, A4 and B,
and the interaction between two ions is determined entire-
ly by the species of those ions. The Hamiltonian for the
system is then given by

K= E[JAA 8;40j4 +jppdipdjp
LJj

+J 45(8;48;5+8;58;4)1S/S7E.E; (1)

where the J;;’s are the interaction energies between type-i
and type-j ions, the S? are the spin variables with S?=+1,
and the sum is over all nearest-neighbor pairs. &; is a ran-
dom variable which takes the value of unity or zero, de-
pending on whether the site i is occupied by a magnetic
atom or not.

On the other hand, there has been some interest in the
phase diagrams of binary ferromagnetic alloys with
A,B,_p, with a transition temperature T.(p) as a func-
tion of concentration p.!”3 When all the exchange in-
teractions in (1) have the same ferromagnetic signs and we
suppose without loss of generality that 7,(1)> 7,(0), the
simplest possible phase boundary may be a straight-line
extrapolation for T,(p) between T,(0) and T.(p). As dis-
cussed in Ref. 1, however, nine phases may be possible
from the three behaviors of the initial slope (3InT, /dp) of
the transition temperature with p at the two points p =0
and p =1. For special low-dimensional crystalline lat-
tices, such as the Bethe and honeycomb lattices, six phases
have been found by using the exact calculations at p =1
and p =0 from the possible nine phases.! The standard
molecular field theory (MFT) predicts only four possible
phases. The MFT generally overestimates 7, and un-
derestimates the number of phases in the mixed alloy with
low coordination numbers. However, as discussed in Ref.
2, it may be expected that the phase diagrams for lattices
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with these low coordination numbers z approach that
given by the standard MFT once z is increased.

In amorphous ferromagnetic alloys with the general
formula (4,B,_,). N|_., where N represents some metal-

" loid, the concentration dependences of T, have been in-

tensively investigated, in order to determine one of the
most important parameters (or J,4, J45, and Jpg) for
understanding magnetic properties.* In amorphous mag-
nets, however, it has been discussed that the fluctuation of
exchange interactions (or the structural fluctuation) is one
of the underlying causes for the changes of physical quan-
tities, in comparison with those of crystalline alloys. In
fact, experiments of the Mdssbauer effect and the magnet-
ization of amorphous ferromagnets indicate that, at least
in some materials, there are large fluctuations in the ex-
change interactions.’ Theoretically, for studying such sys-
tems, the lattice model of amorphous magnets has often
been applied, in which the structural disorder is replaced
by the random distribution of the exchange integral; the
exchange interactions in (1) are assumed to be distributed
randomly about their mean values.

In this paper, the phase diagrams of a binary ferromag-
netic Ising system with randomly distributed exchange pa-
rameters are investigated by using the effective-field
theory with correlations,® in order to clarify the effects of
the structural fluctuation on the phase diagrams for its
corresponding crystalline binary alloy. We find some in-
teresting results for the phase diagrams. In particular, for
an anisotropic structural fluctuation a new phase may ap-
pear, which is not found in a crystalline binary alloy.

The outline of our paper is as follows. In Sec. II, we
briefly review the basic points of the effective-field theory
with correlations® when it is applied to a disordered fer-
romagnetic binary Ising system. In Sec. III, the general
formulas of the initial slope (3InT, /3p) at the two points
p =0 and p=1 are derived. For the lattice model of an
amorphous ferromagnet in a square lattice, the numerical
results of the phase diagram are studied and discussed in
Sec. IV.

II. FORMULATION

We consider a binary alloy of the type, 4,B,_, ran-
domly occupied by two different species of magnetic ions,
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A and B, where the 4 and B atoms have the same spins
(S5 ==1and S;=+1, respectively). The Hamiltonian of
the system is given by (1). Moreover, to describe the
structural disorder of amorphous magnets in a simple
way, the nearest-neighbor exchange interactions are as-
sumed to be given by three independent random variables,
i.e., p(J44), P(J4p), and p(Jpp), where p(x) is a probabil-
ity distribution function.
The magnetization per site is

(87 =6 _a{ST_4)+& —p{(Si_p) )
with a restriction
(Eicadr+{&izp)r =1, (3)

where ( --- ) expresses the usual thermal average and
(--- ), is the random configurational average. The ran-
dom average {&;_,),=p is the concentration of A
atoms. The main problem is the evaluation of the mean
values, (S7_ 4 ) and {(S7_p). As has been discussed in a

J

J

6o SFoa) =6i-af

where Dy, =&;_,J o, DB (a,r=A or B).

For a disordered system with random bonds and ran-
dom occupation of magnetic atoms, we must perform the
random configurational average for Egs. (2) and (8); the
averaged total magnetization per site is given by

m={({(S?)),=pm4+(1—p)my , 9)
where m 4 and mp are defined by

(Ema(STO),

AT D,

fe— <§i=B(Siz=B>>r
= <§i=B>r

Here, it is clear that, if we try to exactly treat all the
spin-spin correlations appearing in the partial magnetiza-

(1n

J

{£;8;4[cosh(D}, 4)+Sisinh(D} )]+ &;8,3[cosh(D’g) +S7sinh(Dfg)]} >tanh(x)
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series of works,%” the starting point for the evaluation
(S7_4) or (S7_p) is the exact Callen identity:®

§i=a<siz=a)=§i=a<tanh(ﬁgi=a9i=a)>, a=A or B 4)
with
Oica=2, (Jaudjq +Japd;p)S/E; , (5)
j
where B=1/kpT.
At this stage, in order to write identities (4) in a form

which is particularly amenable to approximation, let us
introduce the differential operator technique® as follows:

§i=a<siz=a > :§i=a<eDﬁ§i:a9i=a)tanh(X) ’ x=0> (6)

where D=03/0x is a differential operator. Using the rela-
tion £ =§; (n=integer) and the identity

explas?)=cosh(a)+Sfsinh(a) , (7
Eq. (6) reduces to

, (8)

x=0

f

tions through the expansion of Eq. (8) and to properly
perform the random configurational average, the problem
becomes mathematially untractable. In the previous
works,®~7 therefore, the decoupling approximation, or

e x) )= (), (), - ((x)), 12)

with js=ks=...n and x;=§;S}, has been used. In fact,
the approximation corresponds essentially to the Zernike
approximation in the nonrandom problem,’ as discussed
in Ref. 6. The approximation has been successfully ap-
plied to a great number of disordered magnetic systems.

By taking account of the fact that the exchange interac-
tions and the random occupation of magnetic atom sites
are given by independent random variables, the average
partial magnetization m, (a¢=A or B) is given by, upon
performing the random average and introducing the
decoupling approximation (12),

mg={p[{cosh(DJ o)), +m 4(sinh(DJ,4)),1+(1—p)[{cosh(DT,p)), +mp(sinh(DT,p)),]1}*tanh(x) | ; _o (13)

with
jarzﬁ']ar »

where z is the number of nearest neighbors.

We are now interested in investigating the phase diagram of the system. The usual argument that m, tends to zero as
the temperature approaches a critical temperature allows us to consider only terms linear in m,. Near the critical point,

therefore, we have

AmA +Bm3 =0 N
CmA +Dm3 =0
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with

A=pz[p(cosh(DJ ,,4)),+(1—p){cosh(DJT 45)),1* " (sinh(DJ 44)),tanh(x) |y _o—1,
B=(1—p)z[p{cosh(DJ ;,4)), +(1—p){cosh(DJ 45)),1?~(sinh(DJ 45)),tanh(x) | x _¢ ,
C=pz[(1—p){cosh(DJgg)), +p{cosh(DJ 45)), 1> ~'(sinh(DJ 45)),tanh(x) | x _o ,
D=(1—p)z[(1—p){cosh(DJgg)}, +p{cosh(DJ 5)),1F ~(sinh(DJgp)),tanh(x) | x _o—1 .

Equation (14) yields the following secular equation

my A B

C D

. my

(16)

mp mp

The critical ferromagnetic boundaries (or phase diagram)

can be derived from the condition detM =0, namely,
AD =BC . (17)

From this relation we can obtain the transition tempera-
ture 7,.(p) as a function of p.

III. INITIAL SLOPE

Let us now study the initial slope dIn7, /dp at the two
points p =0 and p =1. Although the initial slopes by no
means provide a complete description of the phase dia-
gram obtained from (16), they do severely restrict what
can occur and so can be used at the basis of a classifica-
tion scheme; these initial slopes determine the overall
character of the phase diagram although not the detailed
shape, of course. In fact, when all the exchange interac-
tions in (1) have the same ferromagnetic signs and we sup-
pose without loss of generality that T,.(1)> T,(0), the
simplest possible phase boundary may be a straight-line
extrapolation for T,.(p) between T.(0) and T.(p), as
shown in Fig. 1 by a dashed line. As shown in Fig. 1, the
initial slopes at p =0 can identify three possible types of
behavior: (i) a slope greater than the linear extrapolation,
(ii) a slope less than the linear extrapolation but greater
than zero, and (iii) a slope less than zero. There are also
three similar types of behavior at p =1. From the three
possible behaviors of the initial slope at the two points
p=0 and p=1 in Fig. 1, nine phases may be possible.
Based on these arguments, Thorpe and McGurn' have ex-
amined the various phase diagrams which may occur in a
mixed A,B,_, Ising ferromagnetic crystalline alloy for
special low-dimensional lattices, such as the Bethe and
honeycomb ones, and found that for these lattices three
possible phases (7,S, and S’ in their notations) do not ap-
pear. Honmura et al.? have also investigated the phase
diagrams for mixed 4,B;_, crystalline Ising alloys with
z=4 and z=6 and found that the three phases do not ap-
pear, using the relation (17) without random-bond aver-
ages in (15).

Within the present formulation discussed in Sec. II, let
us now investigate the initial slopes at the two points
p =0 and p =1 and derive general relations for determin-

(15)

f

ing the overall character of the phase diagram.
Differentiating both sides of (17) with p, the initial
slopes are given by

- Q_ =0 = BQ—Q— p=0 (18)
9 |27 % |rl7s
and
- a—A g=0 = Ba—Bi_ g=0 ’ (19)
99 |727(a) 9 |27 0

where g=1—p. The parameters T,(A4) and T,(B) are the
transition temperatures for p =1 and p =0, which are ob-
tained from

z[(cosh(DT 44)),F ~'(sinh(DJ 44)),tanh(x) | x _o=1

(20)
and
z[{cosh(DJgp)),1* ~(sinh(DJIgp) ), tanh(x) | , _o=1.
(21)
Using the relation
ar _ Jar 3T (a,r=A or B), (22)
ap T. op

we obtain, from (18) and (19),

Tc(B)

|
|
|
1

P=
q=! 10

FIG. 1. Nine possible initial derivatives at p =1 and p =0,
and the linear extrapolation of the phase boundary between
T.(0)and T.(1).
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1 oT. K,—1 | oT, Ko—1
T, op =0=' K, |r=1,8 23) T, 3p =0:} Ky |r=r.a’ @4
and where the coefficients K; (i =1—4) are defined by
K, =[(cosh(DJgg)), ] ~{JTpgcosh(DJpp)),sech¥(x) | _o
+(z—1)[{cosh(DJpz)),1* ~*(sinh(DJgp)),{Jggsinh(DIgg) ), sech?(x) | x _o ,
Ky=z{[{cosh(DJg)),)*~'(sinh(DJ 45)),tanh(x) | , _o} {[{cosh(DJ 45)),]* ~'(sinh(DT 45)),tanh(x) | 5 _o}
+(z—1){cosh(DJ 43)),[{cosh(DJgp)),J* ~*(sinh(DJIgp)),tanh(x) | x _o ,
K3=[{cosh(DJ 44)), 1>~ (T 44cosh(DJ 44)),sech®(x) | _o
+(z—1)[{cosh(DJ 44)),1* ~*(sinh(DJ 44)),{J 44sinh(DJT ,4)),sech®(x) | x _o ,
Ky=z{[{cosh(DJ 45)),]*~'(sinh(DJ 45)),tanh(x) | , _o} {[{cosh(DJ 44)),]* ~'(sinh(DJ 45)),tanh(x) | x _o}
+(z—1)[{cosh(DT 44)), 1 ~*(sinh(DJ 4 4)),{cosh(DJ 45)) ,tanh(x) | ; _o . (25)

From Fig. 1, on the other hand, the phase boundaries
determining the overall behavior of the phase diagram are
given by the following relations:

13T

-0 =0, (26)
T. 3 Tcl-’_-_rfw)
1 3T, _T(A)-T.(B) o)
T. 3 TCP==T(C)(B) T(B) ’
aT,
1 e =0, (28)

T. oq Ti?‘O(A)

1 oT,
| L, =———. (29)
T, 3q |;97% T(A)

Thus, within the present formulation, the general relations
which determine the behavior of initial slopes at p =1 and
p =0 are given by Egs. (23)—(29).

Let us now investigate a disordered system in which the
probability distribution functions p(J,,), p(J,p), and
p(Jgp) for exchange interactions J,,, J4p, and Jgp are
given by

PWUsa)=5[8Jgg—T 34— AN +8(J 44 —J 34 +AD)],

p(J ) =3[8 5 —J55 —AT)+8(J 5 —J 5 +AT)],
(30)

pUpp)=~[8(Jgg—Jog —AJ")+8(Jgp —J 95 +AJ")] ,

7 cosh®(DJ 0,8, )cosh? ~ (DT %, )sinh(DT 2,

by which the transition temperature T,.(A4) or T.(B) is
determined. Then, by applying a mathematical relation
e®Pf(x)=f(x +a), Eq. (33) can be expressed as a sum of
transcendental functions tanhx with an appropriate argu-
ment x. For z=4, Eq. (33) has already been solved nu-

Jtanh(x) | x _o=1

f

where AJ, AJ’, and AJ"” are the fluctuations from the
mean values J, 4, J45, and Jpp. In the lattice model of
amorphous magnets,'® the fluctuations of exchange in-
teractions are assumed to come from the topological dis-
order of the systems. The random-bond averages in (25)
are then given by

{cosh(DJ an)
(sinh(DJ,)

), =cosh(DJ 3,))cosh(DJ 3,8,7)
), =sinh(DJ 3,)cosh(DT 3,8,y) ,
(a,q=A4 or B) (31)

where J 2,,: BJ 2,,. The parameters 8, are dimensionless
parameters which are often called structural fluctuations
in the lattice model of amorphous magnets and are de-
fined by

AJ
5AA = )
T

8A3=A0J— 5 (32)

JA B

AJ”
Spp = —o—
BB JgB

Substituting the relations (31) into (20) or (21), we ob-
tain

(a=A or B) (33)

[

merically as a function of 8 in Ref. 11 (the definition § in
Ref. 11 corresponds to 26=8§,, in the present formula-
tion). In Fig. 2, the result of (33) for z =4 is once more
depicted as a function of 8,,. For §,,=0, the transition
temperature . =kgT .(a)/J 4, (@=A or B) is then given
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fect of frustration appears in Fig. 2; the possibility of
obtained in the

% reentrant phenomenon is range
N ’ 1.0<8 < 1.13. In the following, however, we are interest-
3 ed in the overall character of the phase diagram shown in
2ol Fig. 1, so that we restrict the value of 8 in the range
’ 0<8,4<1.0.
Substituting (31) into (25), and using the relations
1.04 é‘—— JSB _ JgB
W R P
L ‘ and (34)
. 0.5 1.0 Suu L Jga
FIG. 2. Transition temperature for square lattice (z =4) plot- € kg T.(a)’
ted as a function of structural fluctuation. The possibility of
reentrant phenomenon may be found in the range Egs. (23) and (24) reduce to
1.0 <8pq < 1.13. =
s 1 3T Ka -1 (35)
T. 9 |,.0 K,
0 . . and
by kT .(a)/J oqa=3.0898, as obtained in Refs. 2, 6, 7, and _
11. As is easily understood from the definition of §,,, the 1 oT, K,—1
probability distribution function p(J,,) can take positive T dg g 36)
. c q=0 3
and negative values randomly, when §,, becomes larger
than §,,=1.0. For 8,,> 1.0, therefore, the so-called ef-  with
J
K =t.cosh® ~!(Dt, )cosh® ~!(Dt.8 pp )[cosh(Dt, )cosh(Dt,8 5 ) + 8 ggsinh(Dt, )sinh(Dr. 8 gz ) Jsech?(x) | x —o
+(z —1)t,cosh? ~%(Dt, )sinh(Dt, )cosh* ~1(Dt,85)
X [sinh(Dt, )cosh(Dt,8pp) +8gcosh(Dt, )sinh(Dt. 855 ) Jsech(x) | 5 o ,
K, =2z |cosh? ~!(Dt.8z5 )cosh Dt—\/grﬁAB cosh? ~!(Dt, )sinh |Dt, £ tanh(x)
n ‘/;I x=0
x |cosh® | D1, —5—8 "= [Dr,—5— |sinh D1, 5 |tanh
cos c‘/7_7 4B |COS [ c\/;} sin c‘/7_7 anh(x) o
+(z—1)cosh® ~(Dt,8p )cosh D, ——\/%8,,3 cosh | Dz, —‘/% cosh?* ~%(Dt, )sinh(Dt, )tanh(x) | . —o ,
K;=t.cosh*~!(Dt, )cosh? ~'(Dt.8 4 )[cosh(Dt, )cosh(Dt,8 4 4 ) +8 4 4sinh(Dr, )sinh(Dz,8 44 ) JsechX(x) | 5 —o
+(z—1)t,cosh? ~%(Dt, )sinh(Dt, )cosh* ~1(Dt.8 4 ;)
X [sinh(Dt, )cosh(Dt.8 4 4) +8 4 4cosh(Dt, )sinh(Dt,8 4, )]sech?(x) | x —o »
K4 =z[cosh*~(D1,8 44 )cosh(Dt V'8 45 )cosh? ~ (D, )sinh(Dt,£V/7)tanh(x) | x _o]
X [cosh*(Dt, £V 45 )cosh® ~ (Dt £V/n)sinh(Dt, £V/y)tanh(x) | xo]
+(z—1)cosh*~!(Dt,8 4 4 )cosh(Dt, £V 45 )cosh(Dt. £V 7)cosh? ~X( Dz, )sinh(Dt, )tanh(x) | x=0> 37

where the coefficients K; (i =1—4) can be also evaluated
by the use of the mathematical relation
e®f (x)=f(x +a).

We are now in a position to examine phase diagrams
for the lattice model of amorphous ferromagnets, which

can be obtained by solving Egs. (35), (36), and (26)—(29),
numerically. In the next section, the results are shown for
a square lattice (z =4). Before discussing the results, it is
worthwhile to notice a general fact for the overall charac-
ter of the phase diagram; for 8, =855 =585 =25 the fol-
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lowing relations are always satisfied for the initial slopes
(26) and (28):

gz\/7’7 (38)
and

g_L (39)

=

For the phase diagrams in the (§,7) space, therefore, the
phase boundaries (38) and (39) are independent of 8, al-
though the phase boundaries obtained from (27) and (29),
may change with 5. The results (38) and (39) are also ob-
tained in Refs. 1 and 2 and from the standard MFT (Ref.
5) for a mixed Ising ferromagnetic alloy with §=0.

IV. NUMERICAL RESULTS AND DISCUSSIONS

At first, the phase diagrams of square lattice (z =4) for
844=8pp=58,5=0 are shown in Fig. 3 by solving (27)
and (29) numerically. As mentioned in Sec. III, the phase
boundaries (38) and (39) (solid lines) are independent of 8.
The phase diagram for =0 is equivalent to that found in
Fig. 1 of Ref. 2 for the mixed ferromagnetic Ising square
lattice. In the following, we use the same notations in
describing the phase diagrams as those of Thorpe and
McGurn.! In Fig. 3, only six kinds of the phase (4, 4’,
S, S’, B and B,) are permitted, although the nine phases
(T, A, A', B, B;, S, S’, S|, and S}) compatible with the
initial slopes are possible (see Fig. 1 of Ref. 1). As is seen
from the figure, the phase boundary obtained from (27) is

very sensitive to the change of & in the region

/NI T8

o
AB

[
-
0.0 0.5 o
M = Jes/Jaa
FIG. 3. Phase diagrams of square lattice (z=4) for

8,44=0pp=08,5=0 with selected values of 5: (a) $=0.0, (b)
$=0.50, (c) =0.90, (d) =0.05. Solid lines show the phase
boundaries §=\/77 and §=\/7-7. The dashed lines are obtained
from the relation (27). The dotted-dashed lines are determined
from the relation (29).
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)
BB

b
oS
)
~
°m
P
oo 05 I K
Joe / Tan
FIG. 4. Phase diagrams of square lattice (z=4) for

8/4,1 =833=80: 15, SAB=1~550‘

0.8 <8< 1.0. On the other hand, the phase boundary ob-
tained from (29) changes slightly upon increasing the
value of 8. Especially for the value of 8 in the range
0.8 <6 <0.9, the region of parameter space where the S
and S’ occur are extremely expanded, while the 4 and A’
regions become narrower in comparison with each region

S
BB

Tan J

Taa/\Tna

o
A

FIG. 5. Phase diagrams of square lattice (z=4) for
8,44 =06pp=080=0.5, 8,5=0.18,. There is a new phase T. The
figure inside corresponding the phase diagrams for
8AA 2833 =8AB =0.5.
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3.01
50 t5.0
5
A
204
401|| s’ t4.0
S
A
E
H 10 s
<<
33 30 ‘ 3.0
o\m B1
s ,
2‘04 S 0.0 0.5 10 20
I}
A
A
104 B .0
T
B |
. |
0.0 0.5 1.0
Jes / Jan

FIG. 6. Phase diagrams of a square lattice (z=4) for
8,4=06p=80=0.9, 6,5=0.18,. A new phase T appears. The
figure inside corresponding the phase diagrams for
SAA ':SBB =6AB =8=09

for §=0. Physically, the exchange interactions in the re-
gion can take a large value and a very small value with an
equal probability, which implies that there appear some
weakly-coupled spins in the system. Thus, the result sug-
gests an interesting fact; a mixed Ising ferromagnetic
crystalline alloy which expresses the concentration depen-
dence of the A4 (or A’) type may change the overall char-
acter of T, versus p to the S (or S’) type, when it becomes
an amorphous state.

As mentioned in Sec. III, only for 6, =8z =8,5=0
the relations (38) and (39) are valid. Therefore, it is in-
teresting to investigate the phase diagram of a system
which does not satisfy the restriction 8,4, =8g5 =8 45 =0.
For simplicity, let us now take the parameters as
644=06p3=08p and 8,p5=ab, (a~1). For three selected
pairs of values (a,8,) the phase diagrams are depicted in
Figs. 4—6. In Fig. 4, the values of a and §; are chosen as
a=1.5 and §,=0.5, in which the same six phases as those
of Fig. 3 are also found. On the other hand, when we take
a=0.1 and §;=0.5, a new phase T appears in Fig. 5 in
addition to the six phases. The phase T is also found in
Fig. 6, even when a pair of values (¢=0.1 and §,=0.9) is
selected. Thus, this seventh-phase 7 seems to be charac-
teristic of a << 1; the structural fluctuation 6,5 is very
small in comparison with §,, and 6z5. As discussed in
Refs. 1 and 2, on the other hand, this phase has not been

found in mixed Ising ferromagnetic crystalline alloys,
since the phase boundaries obtained from (26) and (28) are
always given by the relations (38) and (39) in the systems.

V. CONCLUSIONS

We have studied the initial slopes of a disordered binary
Ising ferromagnetic alloy where all the exchange interac-
tions have the same sign, using the effective-field theory
with correlations introduced by Kaneyoshi et al.”

The initial slopes at p =1 and p =0 may determine the
overall character of the phase diagram although not the
detailed shape of course. From the three possible types of
behavior at p =0 and p =1, nine phases are compatible
with initial slopes. As discussed in Refs. 1 and 2, in fact,
only six kinds of phases have been permitted, although the
standard MFT predicts only four kinds of phases. In
classifying the possible nine phases compatible with the
initial slopes at p =1 and p =0, we have used the same
notations as those of Thorpe and McGurn,! in order to
avoid the confusion of readers.

In amorphous magnets, the fluctuation of exchange in-
teractions (or the structural fluctuation) is one of underly-
ing causes for the changes of physical quantities, in com-
parison with those of crystalline magnetic alloys. To our
knowledge, the effects of the structural fluctuation on the
phase diagrams (or the initial slopes) have not been stud-
ied. As shown in Sec. IV, the effects of structural fluctua-
tions on their phase diagrams exhibit some interesting
characteristics; a mixed Ising ferromagnetic crystalline al-
loy which expresses the concentration dependence of the
A (or A') type may change the overall character of T,
versus p to the S (or S’) type, when it becomes an amor-
phous state. A new seventh phase T appears in Figs. 5
and 6 in addition to the six phases, although such a phase
has not been found in mixed Ising ferromagnetic crystal-
line alloys.!—2

Finally, for crystalline mixed alloys there is surprisingly
little experimental data to compare with the phase dia-
grams predicted theoretically. In fact, many transition-
metal (TM) compounds are of the Heisenberg type, and
most of the insulating magnetic alloys are antiferromag-
netic. On the other hand, most amorphous TM-metalloid
alloys are ferromagnetis, and they can be fabricated with
wider compositions than corresponding crystalline alloys.
In Ref. 5, therefore, one of the present authors has com-
pared some of the experimental data with the phase dia-
gram predicted from the MFT, since many real amor-
phous ferromagnetic alloys usually have a high coordina-
tion number equal to z=12. We have found that most of
the data lie in the 4’ phase. However, there may be also a
possibility of finding through some characteristic dis-
cussed in this work, new amorphous ferromagnetic alloys
such as an amorphous superlattice alloy with well-
controlled composition.
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