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We present results of Monte Carlo simulations of the three-dimensional half-filled Hubbard
model on simple-cubic 4° lattices and some 6> lattices with periodic boundary conditions, as well as
of small clusters embedded in an effective medium. Magnetic properties were studied for values of
the Hubbard repulsion U ranging from O to the bandwidth W =12t (¢ is the hopping matrix ele-
ment). Our results show that antiferromagnetism is enhanced up to U ~ % W and then suppressed.

The g =0 magnetic susceptibility is enhanced by U, although much less than predicted by the
random-phase approximation. The transition temperature to an antiferromagnetic state is found to
have a broad maximum around U ~ % W, with a maximum value of approximately W /18. The im-

plications of our results for superconductivity in the attractive Hubbard model are also discussed.

I. INTRODUCTION

The magnetic properties of the Hubbard model are of
interest since it is the simplest model capable of interpo-
lating between itinerant and localized descriptions of
magnetism."? The model is defined by the Hamiltonian
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We study here the model on a three-dimensional simple-
cubic lattice with nearest-neighbor hopping only ¢, in the
half-filled band sector (u= U /2, one electron per site). In
this sector the model is expected to be an antiferromagnet-
ic insulator for all values of U, and has been widely used
to describe the transition-metal monoxides MnO, FeO,
Co0, and NiO.? These materials are electrically insulat-
ing and undergo a transition to an antiferromagnetic state
as the temperature is lowered.

For large U, the dominant interaction in the Hamiltoni-
an Eq. (1) is Anderson superexchange, and one has an ef-
fective antiferromagnetic Heisenberg Hamiltonian
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describing the magnetic degrees of freedom. The effective
exchange J;=1%/U, and hence the transition tempera-
ture to a magnetic state, are decreasing functions of U.
The Hamiltonian Eq. (2) correctly describes the magnetic
degrees of freedom to lowest order in ¢/U. From high-
temperature series estimates for the transition temperature
in the antiferromagnetic S =+ Heisenberg model* one
has for the Hubbard model for large U

T,=3.83t*/U . (3)

For small U, summation of the ladder graphs for the
magnetic susceptibility [random-phase approximation
(RPA)] yields

X
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with X, the susceptibility for the noninteracting case. Al-
though Eq. (4) is rigorously valid only to lowest order in
U /t, it is sometimes used even for large values of U /t.
From Eq. (4) one obtains a criterion for the transition to a
magnetic state,

UX()(q)
b Ao 5
1 > . (5)

(Stoner criterion). Equation (5) yields a transition tem-
perature T, which is an increasing function of U. For the
present case the magnetic susceptibility for the nonin-
teracting case Xo(q) peaks at ¢ = and actually diverges
as T—0 due to nesting of the Fermi surface. Hence, Eq.
(5) predicts a transition to an antiferromagnetic state for
any nonzero value of U, at a critical temperature T, that
is a rapidly increasing function of U, asymptotically given
by the BCS form,

kT, =1. 137We“1/”(0)u (6)

with W =12t the bandwidth and p(0) the density of states
at the Fermi energy. The RPA approximation is
equivalent to a Hartree-Fock self-consistent decoupling of
the interaction term in Eq. (1).

The purpose of this paper is to interpolate between the
weak- and strong-coupling analytic solutions [Eqgs. (6) and
(3)] by means of Monte Carlo simulations. We study
magnetic properties on small lattices for U up to 12¢
essentially with no approximations. In Sec. IT we describe
the methodology used, and in Sec. III we present results
for various magnetic properties for 4> and some 6 lattices
as functions of U and temperature. Because we can only
treat small lattices, it is difficult to extract a transition
temperature from simulations with the usual periodic
boundary conditions. For this reason, we apply in Sec. IV
a self-consistent-boundary-field approach® where we study
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FIG. 1. Staggered magnetization squared in the z direction
(a) and in the xy plane (b) vs Monte Carlo sweeps, U =6,
B=1.33, 4° lattice. The averages are the same but the variance
is much larger in (a).
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FIG. 2. Density of states of three-dimensional simple cubic
lattice.
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FIG. 3. Magnetic structure factor vs temperature for a two-
site lattice. The diamonds are the Monte Carlo results for
U =10, the full lines are exact results for U =10 and O (the al-
gorithm gives exact results for U =0).

properties of a small cluster embedded in an effective
medium. This approach has been shown to give accurate
answers for classical spin systems.> We obtain the critical
temperature T, versus U for up to U =12¢. In Sec. V we
discuss the implications of our results for superconduc-
tivity in the attractive Hubbard model. Finally, we sum-
marize our conclusions in Sec. VL.
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FIG. 4. Local magnetic moment vs (a) temperature (4> lat-

tice) and (b) U. The error in the Monte Carlo data is smaller
than the points.



35 SIMULATIONS OF THE THREE-DIMENSIONAL HUBBARD . .. 1853

II. METHODOLOGY

The approach used has been discussed in detail else-
where,®” so that we only summarize the essential points
here for completeness. The partition function is written

as

L L
- —A
Z=Tre PA=Tr[[e 2*H#=Tr[]e arHo, —AH, )
1=1 1=1

with an error O (A7tU) in the breakup in Eq. (1). The
electron-electron interaction is eliminated through a
discrete Hubbard-Stratonovich transformation,

—ATU[n‘nl—-;-(nT +n,)]

1 Ao(n,—n)
e =5Tr,e

(8)

and the trace over fermion degrees of freedom in Eq. (7) is
performed. The result is
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FIG. 5. Spin-spin correlation functions (absolute value) vs temperature. The circles, crosses, and diamonds correspond to nearest
neighbor (NN), next-nearest neighbor (NNN) and third-nearest neighbor (3NN), respectively. The NN and 3NN correlations are al-

ways negative.
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where ¢ is an N XN matrix, (2); =t;;, and V*(]) is a diag-
onal N X N matrix,

Due to particle-hole symmetry there is a relation between
the two determinants in Eq. (9) so that the product is pos-
itive definite for all configurations,” and we can formally
write

Z:Tr{al_(”;efHCff[o] ’ (11)
where H g is a nonlocal Hamiltonian describing the in-
teractions between the Ising spins on a four-dimensional
lattice. Physically, the Ising variables represent the z
component of the electron spin at each site, since the fol-
lowing relation holds:

([ni(1)—n; (D)][1;1(0)—n;,(0)])

1
l_e—ATU

= (0y(r)o;(0)) , (12)
relating correlation functions of the Ising and fermion
spins. The charge degrees of freedom have been integrat-
ed out of the problem in arriving at Eq. (11), and this is
the reason for the resulting weights being always positive.
In fact, a more general transformation than Eq. (8) can be
found that keeps part of the charge degrees of freedom,
but in that case negative weights do occur.®

We use an exact updating procedure to do the Monte
Carlo simulation,® and measure equal time and zero-
frequency spin and charge correlations. For example, the
spin-spin correlations measured in the z and in the x
direction are
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FIG. 6. Spin-spin correlation functions vs U for f=2.

C,~z,-=<(n,-,—n,-¢)(nj,—njl)> s (13a)
Cl:_’;: ((C:}Cil+ciTlCi1)(cjytcjl_*_cjylch)) . (13b)

Although Egs. (13a) and (13b) should agree for the aver-
ages because of the spin-rotational invariance of the sys-
tem, their variance turns out to be very different. As an
example, Fig. 1 shows the staggered magnetization mea-
sured in the z direction and in the x direction for one
case. It can be seen that the fluctuations for the latter are
significantly smaller. This was found to be the case to
varying degrees for all spin-dependent quantities in all
cases studied.

III. NUMERICAL RESULTS

Figure 2 shows the density of states for the three-
dimensional simple cubic lattice. The band extends from
—6 to 6 (in units where 7z =1), and in this paper we con-
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FIG. 7. Magnetic structure factor at q=w vs temperature.
The numbers next to the curves indicate the value of U.
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sider the half-filled-band case (u=U/2). We have stud-
ied the system for U ranging from 0 to 12.

The Monte Carlo procedure used here has already been
tested extensively elsewhere.”® We have used a time slice
size ATVtU =0.25, for which the systematic error due to
the breakup should be smaller than the statistical error.
As an example, Fig. 3 shows the magnetic-structure factor
S (g =m) for U =10 on a two-site lattice, compared with
exact diagonalization results. Typical Monte Carlo runs
were 200 warmup sweeps, and 1000—2000 measurements,
with one to two sweeps through the lattice between mea-
surements. The statistical error is smaller than the points
where not shown.

Figure 4(a) shows the local magnetic moment,

(82y=3(n;y—n;)%) (14)

versus temperature for various U. It increases slowly as
the temperature decreases and levels off at low 7. Figure
4(b) shows the U dependence for various temperatures.
The results for T =0.5 should be very close to the
ground-state values. For U =12 (bandwidth) the local
moment at low T is quite close to its U = oo value (per-
fectly localized spins). The behavior versus temperature is
smooth, and similar to the two- and one-dimensional
cases.” In units of the bandwidth the Hubbard interaction
is more effective in localizing the electrons as the dimen-
sionality increases.

Figure 5 shows spin-spin correlation functions versus
temperature for U up to 12. The spin-spin correlations
beyond nearest neighbor only start to build up below
T =1. For the lowest temperature studied the maximum
value attained by the nearest-neighbor spin correlation is
still quite small. As U is increased beyond 10 the correla-
tions actually start to decrease. This is clearly shown in
Fig. 6, where we plot the spin-spin correlations versus U
for T =0.5. Clearly, as U becomes stronger the antifer-
romagnetic coupling J =t2/U is decreasing and thus the
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FIG. 8. Magnetic susceptibility at q=m vs temperature.

correlations at a fixed temperature will decrease. One
may interpret the value U ~ 10t as the crossover value be-
tween band magnetism and localized magnetism.

Figure 7 shows the magnetic-structure factor

S(g)=-L 3 R R (i ol ) (15)
N
for q=(m,m,m) and U from O to 12. S(wr) starts to in-
crease rapidly below 7 =1, indicating that the system is
developing long-range order. Again, the strongest correla-
tions occur for U ~ 10.
A similar behavior is observed in the magnetic suscepti-
bility,
1

ig(R;—R;) F i i
X(q):NEe'q Y[ dr(ok(n)ak(0)) (16)
at ¢ =7. Figure 8 shows the results for U up to 8 only,
the susceptibility increasing sharply at low temperatures.
For larger values of U (not shown) X(m) levels off and
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FIG. 9. Magnetic susceptibility at q=0 vs temperature for
U =0,2,4,6,8. (a) Monte Carlo results, (b) RPA predictions.
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starts to decrease slowly at U =12.
It is also interesting to examine the susceptibility at
q =0, shown in Fig. 9. It can be seen that it also is
enhanced by the Hubbard interaction, although much less
than the g = susceptibility. The enhancement is also
quite small compared to the RPA prediction [Fig. 9(b)],
X(q)= _X;_](_g)__ . (17)

Although it is expected that RPA overestimates the
enhancement, Fig. 9 provides quantitative information
about how good the RPA is. It is grossly in error at low
temperatures for all cases except U =2.

In order to determine the point where the system under-
goes a phase transition, it is necessary to study different
size lattices. Figure 10 shows S () and X(7) for U =8
on 2, 4%, and 6 lattices (in order that the 2° results agree
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FIG. 10. (a) S(w) and (b) X(w) vs temperature for U =8 and
lattice sizes 23, 43, and 6°.

FIG. 11. Energy vs temperature for U =0 to 12, 43 lattice.

with the larger lattices for high temperature, one has to
take  =1/V2 in that case). It can be seen that the Sys-
tem is starting to develop long-range order at low T since
the correlations diverge more rapidly on the larger lat-
tices. Unfortunately, it is not possible to obtain reliable
answers for 7, from simulations on such small lattices.
For that reason we turn in Sec. IV to a self-consistent-
field determination of T,.

To conclude this section we show in Fig. 11 the energy
as a function of temperature for several values of U.
From taking the numerical derivative one can obtain the
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FIG. 12. Magnetization vs staggered field at the boundary
for a 3%site cluster embedded in a 4°-site lattice, U =4,
AT=0.125. A self-consistent non-zero solution is obtained for
L >25,i.e., B>3.125.
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FIG. 13. Same as Fig. 12 for U =8, A7=0.0625.
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FIG. 14. Magnetization vs boundary field at the critical tem-
perature for (a) Ising model and (b) three-state Potts model, for
the same lattice sizes as Figs. 12 and 13.
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FIG. 15. Magnetization vs cluster size for U =6, T =0.43.

specific heat. In order to study the detailed form of the
specific-heat curves one needs, however, more closely
spaced points and higher statistics than we have used so
far.

IV. SELF-CONSISTENT-FIELD BOUNDARY
CONDITIONS

In this section we discuss an approach which, although
approximate, yields a sharp critical temperature 7,.. The
method was introduced by Binder’ in his study of the
classical Heisenberg ferromagnet, where it yielded results
in close agreement with high-temperature series expan-
sions even for rather small lattices.

We consider a small cluster of atoms embedded in an
effective medium. Inside the cluster we decouple the in-
teraction by introducing Ising variables as in Eq. (8) over
which we will trace using the Monte Carlo method. Out-
side the cluster we decouple the interaction by introducing
an effective frozen staggered field,

Te(Heis) T, (RPA)
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FIG. 16. Critical temperature for the paramagnetic-anti-
ferromagnetic transition vs U. The RPA weak-coupling and
Heisenberg strong-coupling predictions are obtained from Eqgs.
(3) and (5), respectively.
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e"ATU{niv"ii_("it+"il)]/dehi("n_"il) (18)
with
hy =ATU(n;u )(—1)2=(—1)h (19)

and the mean field A; is determined by the self-consistent
condition Eq. (19), where {n;,) is the magnetization in-
side the cluster.

Figures 12 and 13 show results for the staggered mag-
netization

m=3(—1)"(n;;—n;,) (20)

in a 3%site cluster embedded in a 4° lattice versus the
boundary field A for U=4 and 8. As T is lowered, a
self-consistent solution is obtained at a critical tempera-
ture T,. Note that particularly for the larger value of U
the curve is S shaped, which is indicative of a first-order
transition.

As a check on the effective field boundary condition
method, we have applied it to the three-dimensional g-
state Potts model'® using the same size clusters as in the
Hubbard simulation. Figure 14 shows the results for the
Ising case (¢ =2) and the g =3 case. It can be seen that
the method correctly predicts a first-order transition for
g =3 and a continuous one for ¢ =2. The values of T,
obtained in this case are roughly 15% larger than the ex-
act ones.

As an example of the dependence of our results on the
size of the cluster used, Fig. 15 shows the self-consistent
magnetization versus cluster size. The size dependence
does seem to be small around cluster size 3, which is
where we extracted our results for 7, from. We estimate
that our results could overestimate 7, up to 20%.

Figure 16 shows the results for the critical temperature
obtained in this fashion as a function of U. The RPA cal-
culation gives a rapidly increasing T, with U; for large U
we plot the Predictions of high-temperature expansions
for the S =+ Heisenberg model,* Eq. (3). The Monte
Carlo results show that 7, peaks around U ~ 10, in accor-
dance with the results for the spin-spin correlation func-
tions, and that the maximum value of T, is roughly 1]—8 of
the bandwidth. An interesting feature of Fig. 16 is that
the values of T, for the Hubbard model at large U are
well above the Heisenberg-model predictions. Although
the Monte Carlo results probably overestimate 7. some-
what, it appears that the effect is real. This implies that
when U is reduced from infinity and charge fluctuations
are allowed magnetism is actually enhanced, contrary to
what one might have expected. Another interesting
feature of our results is that the transition appears to be
first order for intermediate values of U. Clearly, this
needs to be further investigated.

V. THE ATTRACTIVE HUBBARD MODEL

The results discussed in Sec. IV are relevant to the
properties of the attractive Hubbard model in the half-
filled band sector, since, as is well known, a particle-hole
transformation maps U >0 into U <0. The transforma-
tion is!!

dir=cit ,

R @1
dilzcil(_l)’ ’

and only works rigorously on bipartite lattices like the one
considered here. Under this transformation, spin correla-
tions in the xy plane are mapped onto superconducting
(pairing) correlations, since

o =Ciirfcu+ci)rlcir_’di*rdin +d;d;; (22)

so that the existence of long-range magnetic order in the
repulsive case corresponds to superconducting long-range
order in the attractive case. For weak coupling, the Ston-
er condition for antiferromagnetism Eq. (5) translates into
the BCS equation; for strong coupling, the transition in
the antiferromagnetic model corresponds to a ‘“bipolaron-
ic” superconducting transition,'? where pairs tightly cou-
pled in real space undergo Bose condensation. Our results
then connect smoothly these two regimes, and imply that
the maximum superconducting temperature for the three-
dimensional (3D) attractive Hubbard model is
T.~W/18.

It will be of interest to extend these results to other than
half-filled-band cases, where the equivalence between at-
tractive and repulsive cases no longer holds. The half-
filled-band case is very special in that one has coexistence
of superconducting and charge-density-wave long-range
order (corresponding to magnetic order in the xy plane
and in the z directions). This degeneracy is removed in
the non-half-filled-band cases, which will exhibit super-
conducting long-range order only, although setting in at a
lower temperature than the case discussed here.

VI. CONCLUSIONS

We have discussed results of Monte Carlo simulations
of the half-filled Hubbard model on a three-dimensional
simple cubic lattice. Our main findings can be summa-
rized as follows.

(1) The model always exhibits antiferromagnetic corre-
lations. The magnetic correlations increase with U until
U~10 (~0.85 of the bandwidth), and then start to de-
crease. Thus, U~85W can be interpreted as the point
where the system crosses over from “itinerant magnetism”
to “localized magnetism.”

(2) The transition temperature to an antiferromagnetic
state increases slowly with U until it levels off around
U ~10, and starts to decrease for U~ 12t (bandwidth).
The maximum transition temperature is around (and
probably somewhat smaller than) T, **~ W /18.

(3) When coming down from U = o, the transition
temperature increases first beyond the Heisenberg model
predictions (lowest order in ¢/U), i.e., charge fluctuations
enhance magnetism.

(4) The transition appears to be first order for inter-
mediate values of U.

(5) RPA greatly overestimates the enhancement of the
magnetic susceptibility with the interaction for all
U>0.1W.

(6) Our results for the repulsive Hubbard model apply,
suitably reformulated, to the attractive case. Recently,
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Nozieres and Schmitt-Rink!? studied the connection be-
tween weak- and strong-coupling superconductivity in the
attractive Hubbard model, and concluded that the transi-
tion temperature is a continuous function of U, but were
unable to estimate the maximum transition temperature
analytically. Our results confirm their picture and give an
estimate (certainly at least an upper bound) for the max-
imum superconducting transition temperature for the
half-filled case, as well as the value of U for which it
occurs.

In summary, we believe this study has established some
of the features of the three-dimensional half-filled Hub-
bard model, and it raised some questions that should be
further clarified by simulations on larger lattices and at

lower temperatures. It should also be of interest to study
properties of the model in other than half-filled-band
cases, and work in that direction is in progress.
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