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Complex-temperature-plane zeros: Scaling theory and multicritical mean-field models
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We formulate a finite-size scaling theory for the partition function. This leads to a scaling
description of the complex-temperature-plane zeros. The asymptotic form of the scaling function
for large complex arguments is conjectured and used to calculate explicitly the location of an un-
bounded number of zeros. Scaling predictions are checked against the exactly solvable generalized
infinite-range models which exhibit multicritical mean-field behavior. New mathematical results are
reported for the asymptotic behavior of integrals representing finite-size scaling functions of

infinite-range models.

I. INTRODUCTION

The study of partition-function zeros in the complex-
temperature-variable plane was initiated by Fisher.! He
located the locus of zeros for the two-dimensional Ising
model and, generally, emphasized the analogy with the
complex magnetic field plane.> However, there is no strict
Yang-Lee theorem? for complex-temperature zeros. For
over a decade studies of the complex-temperature zeros
have been mainly numerical (consult Refs. 3—5 for litera-
ture). Recently, however, some progress has been made
along two lines. Firstly, there have been attempts to
understand implications of duality and other symmetry
properties on the distribution of zeros for two-
dimensional models.’ Secondly, Itzykson, Pearson, and
Zuber® (see also Ref. 4) formulated a scaling theory as-
suming that the zeros accumulate at 7, along a complex
conjugate pair of lines. These lines form an angle ¢ with
the negative real axis, given by’

tan[(2—a)p]=[cos(mra)—A_/A  ]/sin(ma), (1.1)

where a and 4. are defined by the critical behavior of
the singular part of the bulk free-energy density (mea-
sured here in units of kzT)

%A, |t|*% witht=(T—T,.)/T, , 1.2)

as t—0%. (Note that the ratio 4_ /A4, is universal.)

In the present work, we report several developments in
the theory of the complex-temperature zeros. In Sec. II,
we extend the scaling theory of Ref. 3 to higher dimen-
sions and present a systematic formulation including iden-
tification of nonuniversal amplitudes and corrections to
scaling. By considering the asymptotics of the finite-size
scaling functions, extended into the complex plane, we es-
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tablish the following asymptotic relation valid for an un-
bounded number of zeros (see Sec. III for details):
) 1/(2—a)
T

[A% +A4% —24, A_cos(ma)]'? v

Iy

i

xexpli(mr—¢)], (1.3)

where V is the finite-system volume and n takes large
positive integer values. Note that there is a conjugate zero
at ¢, and that the denominator in (1.3) is dimensionless
(as is the product 4.V, provided free energies are mea-
sured in units of kpT, as already mentioned). Relation
(1.3) breaks down when pure power-law scaling behavior
is complicated by logarithmic factors (see Secs. I and III
for further discussion).

Since the scaling-theory predictions are rather
phenomenological, it is of interest to check them against
solvable model results. In Sec. IV, we review certain mul-
ticritical mean-field infinite-range models and discuss
their scaling properties. Asymptotic behavior of the ap-
propriately scaled partition function in the complex plane
is analyzed in detail in Sec. V. This calculation involves
deriving some new mathematical results. One of our con-
clusions is that for the tricritical mean-field models

¢=60°". (1.4)
This ¢ value applies to three-dimensional tricritical lattice
systems; although, as mentioned, the full relation (1.3)
may break down due to logarithmic corrections at the

upper critical dimension. The value (1.4) is very close to
the three-dimensional Ising-model estimate of ¢ =57°.%

II. SCALING THEORY

As a first step, let us formulate finite-size scaling rela-
tions for the partition function. It is crucial to restrict the

1841 ©1987 The American Physical Society



1842 M. L. GLASSER, V. PRIVMAN, AND L. S. SCHULMAN 35

consideration to finite systems of fixed shape (as V— )
and with periodic boundary conditions.® Then the free
energy can be represented in the form®

FEM =20+, V),
where £, is the bulk analytic background contribution.

The singular part’ scales according to®

f(S)EV—IW[t(AV)I/Q—a)] , (2.2)

(2.1

where the scaling function W can be made universal (up
to possible system-shape dependence) by choosing, e.g.,

A=[A% +4%2 —24_ A_cos(ra)]'?. (2.3)

This particular choice simplifies calculation of complex-¢
zeros [compare (1.3)]. In other applications, 4 = |4 |
or | A_|, or other choices can be used (A4>0 is re-
quired). Corrections to scaling in (2.2) are, generally, ad-
ditive and of order higher than ¥ ~! (consult Ref. 8).
Thus we explicitly exclude from consideration cases where
logarithmic factors multiply power-law terms in (2.2)
and/or (1.2), as happens at borderline dimensionalities and
in some models with integer a.’® By including (1.2) in the
above restriction, we also require a power-law (no loga-
rithms) asymptotic behavior of the scaling function W, in
the bulk limit,

W(r=(4,/A)7 * as 7>+ , (2.4)
W(r)=(A_/A(—7)> "% as T7—>— oo . (2.5)
We now turn to the partition function
Z=exp(—Vf), (2.6)
which according to (2.1) and (2.2) can be represented as
Z =exp[ V2 (O)le Wt ). 2.7

The first factor is of no interest. In the scaling term, we
expanded the corrections to scaling off the exponential [to
where the ellipsis indicates them in relation (2.7)] because
they are of the order of some negative power of ¥V, which
. . —A,/(2=a) .
in many cases is V (consult Ref. 8 for notation
and further details).
Suppose that we solve for the zeros of the scaling part,

G(r)=exp[—W(7)]=0, (2.8)

continued analytically into the complex 7 plane. Then
each zero, 7, can be corrected by a perturbation expan-
sion of the full relation

G(r)+ - =0. (2.9)

The conclusion is that corrections to the scaling results
for the zeros, 7, have a pattern similar to those for gen-
eral real-axis thermodynamic quantities.

The scaling picture presented above applies provided
t—0, V— «, while the scaling combination

r=t(4AV)V/ 2= (2.10)

takes fixed values. Thus, only zeros which fall in the crit-
ical region can be described by

Ly =T (AV) V2= (2.11)

where 7 are universal [provided (2.3) is obeyed]. Without
going into details'® let us mention that a critical region is
defined, to the required accuracy in the pure power-law
bulk critical behavior, simply by |t | <<c, where c is a
very small system-dependent (and required accuracy-
dependent) number. Thus, as ¥V— o, O[c(4V)!/?~9)]
zeros are accurately represented by (2.11).

The scaling theory of this section extends the results of
Ref. 3 into a systematic formulation in terms of the parti-
tion function, which accounts for the character of the
corrections. It is valid both below and above the upper
critical dimension (when hyperscaling is violated®). A
nonuniversal factor in the complex-¢ zeros [see (2.11) and
(2.3)] is identified in terms of the bulk amplitudes A ..
Extension to models with non-pure-power-law scaling
behaviors will require analyzing each case separately, and
is outside the scope of the present work, as is a study of
nonperiodic boundary conditions.

III. COMPLEX-PLANE ASYMPTOTICS

In order to proceed with the scaling analysis, let us ac-
cept the conjecture** that at normal critical points the
loci of partition-function zeros near 7, form two complex
conjugate pairs of lines. In the critical region, for small
| £ |, these lines can be regarded as straight: The curva-
ture is not seen in the scaling results, as can be surmised
from (1.3). For the d=2 Ising model with unequal cou-
plings, the zeros are known to fall into regions.!! Howev-
er, the boundaries become tangential near 7, so that the
spread of the zeros away from 7, is perhaps a
correction-to-scaling phenomenon.

Accepting a line locus, at least in the scaling regime,
implies that thermodynamic functions, derived from the
integral representation in terms of the density of zeros,
have in the ¥V = oo limit, two distinct analytic continua-
tions into the complex ¢ plane. Let us denote

t=re'?, (3.1

and restrict our consideration to the upper half plane
0<O<m.'> Then the bulk free-energy scaling behavior
(1.2) can be formally extended away from the real ¢ axis:

fPmA,rm%%=9 for0<O0<r—6, (3.2)
fO%A_rioem-02=a) for p_g<O<m. (3.3)

But what happens near 6=7—¢? As noted by Itzykson
and Luck,* the continued scaling behavior satisfies condi-
tions similar to those for the full integral-represented free

energy.’ The real parts of £$ in (3.2) and (3.3) are equal

exactly at 6=m—¢ [see (1.1)], while there is a discontinui-
ty in the imaginary part.

We will propose an extension of the above observations
to finite systems, following two lines of argument, both
admittedly rather heuristic. Firstly, we can extend the
asymptotics of the scaling function W, in (2.4)—(2.5), into

the complex 7 plane. Then in terms of

E=r(an)/t-a, (3.4)

and 6 [note r={exp(if)], the partition-function scaling
[see (2.7), (2.8)] has the following asymptotics for large
| 7] =¢:



35 COMPLEX-TEMPERATURE-PLANE ZEROS: SCALING THEORY ... 1843

G(t)=g, (T)=exp[ — (4, /A)E>~%I%2~=]  (3.5)
G(r)=g_(r)=exp[ —(A_/A)* % ~i7—02—a)]
(3.6)

for 0<f<m—¢ and m—¢ <O <, respectively. At the
Stokes line 6=7—¢, g+ become equal in magnitude but
not in phase. We conjecture that the leading-order
behavior near this line is given by

G(r)=g, (r)+g_(7). (3.7

In fact, this form may apply all over the upper half plane
(for & large). Indeed, this is typically the case with
asymptotic expansions near Stokes lines and can be
checked explicitly for mean-field models: See Sec. V and
Ref. 13. Corrections to (3.5) and (3.6) are terms additive
in the exponentials, which (possibly) diverge more weakly
than {2 % as {— 0.

A different argument leading to (3.7) can be offered.
Indeed, the balancing of the real parts of the bulk free en-
ergies continued into the complex plane, and the corre-
sponding domination of the statistical sum by terms
~exp(—Vf4), are reminiscent of first-order transitions.
Although analogy should probably not be taken too seri-
ously, we may employ results on finite-size behavior at
first-order transitions.!* Thus, near 6=7—¢ and when
critical fluctuations are not important (this eventually
translates into having | 7| large), we have'

—Vf++e—Vf_ ‘

Z=e (3.8)

Here f. are the analytically continued bulk free-energy
branches, which near T, take forms

fe=f"+f 8+

[see (2.1), (3.2), and (3.3)]. Now we can employ the pro-
cedure of matching the scaling forms!® to derive the
asymptotics of the critical scaling function G (7) for large
| 7|. By using (3.8), (3.9), and (2.7), we arrive'® at the re-
lation (3.7). [Note that (3.8) is more general.]

Finally, we solve for the zeros of the asymptotic expres-
sion (3.7),

(3.9)

g4 (T)+g_(1)=0. (3.10)

It is a matter of straightforward algebra to show that
0=m—¢ and, provided A4 is defined exactly by (2.3),

En=[2m(n — )]V, (3.11)

Here the positive integer n labels different roots of (3.10).
The — 5 term appears when (3.10) is solved as is. Howev-
er, corrections to (3.7) may change the relative phase of
the two exponentials (changing the constant) and actually
induce terms which are additive positive powers of n [sub-
dominant to n'/?=®] in 7,. Thus, we omitted the —+
in translating to (1.3) [by using (3.4)]. Regardless, the ap-
proximation (1.3) is valid for large n, but let us also recall
the upper bound, growing with the system size
< O[(AV)!/2=2)], described in Sec. II.

IV. OVERVIEW OF INFINITE-RANGE MODELS

There are several ways of defining multicritical
infinite-range models. For example, one can have Ising
spins (o= *1) but allow for multiple spin couplings. We
prefer, however, pair-interacting scalar spins, taking
values in R with measure du(o). We take

N N
E=—(J/2N) Y 3 00, J>0. 4.1)
i=1j=1
The partition function
z={--- [TIdulowexp ((BI/2N) 3 0,0;], 4.2)
k ij

with B=(kgT)~!, can be calculated as usual by “uncomp-
leting the square” via a Gaussian integral,

Z = f_mmciye_"’2

Xf fnd,u(ak)

X exp

’

2 (BI/2N)' 2 S o

(4.3)

where here (and below) we discard uninteresting prefac-
tors in Z. This leads to

© N
z— [" dye | [durexlrvotpr2m' |,
)

which is finally reduced by changing the integration vari-
able to

x=y(2BJ/N)'/? . (4.5)
The result is

Z= [ dxexp|N —5p TeW || 4.6)
where

Q(x)=In [fd,u(a)e""] . 4.7)

The function Q(x) is essentially arbitrary. The usual
choice leading to multicritical mean-field theory is

Q(x)=gx*—qx?P+0(x%?), (4.8)

where g, and g,, are both positive, while p =2,3,... .
For p=2 we have an ordinary (Ising) mean-field theory.!?
For p=3 a tricritical model is obtained. We keep both
coefficients general in order to see how these nonuniversal
quantities are absorbed in the amplitudes 4,. It is con-
venient to use free energies per spin (and in units of kgT)
here, so that Z =exp(—Nf). Then formulas of Secs. II
and III can be used, with V—N. We will also disregard
completely the higher-order terms in (4.8) since they do
not contribute to the scaling behavior.'?

The calculation of the bulk free energy is straightfor-
ward, the results are as follows:
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B.=Q2g )", (4.9)
T-T, 1
t= = ~1, 4.10)
T, 2q,JB
A, =0, @.11)
a=(p-2)/(p—1), (4.12)
1 q 1/(p—1)
A_=—Pg |22 4.13)
p P42

Following (2.10), with 4 = | A_ | here, we introduce a
scaled variable

T=t(AN)1/(2—¢1)

) » {P—l (p—1/p , l/pN(p_”/p
29,J8 ] p Pa2 '
(4.14)
The finite system partition function then reduces to
Z= f_ww du exp[—p(p — 1)1 =P/Pry2__y 2]
=G(7), (4.15)
where the new integration variable is
u =x(qy,N)"/%P (4.16)

[compare (4.6)]. Relation (4.15) is the anticipated univer-
sal scaling representation of the partition function: It
does not contain BJ, g5, q,,. Note that some discarded
prefactors (contributing to the background in the free en-
ergy) were system dependent. The correction terms in
(4.8), which we did not consider (but see Ref. 13), acquire
extra negative powers of N [provided they were powers in
(4.8)] in the process of rescaling (4.16) and contribute
corrections to scaling (see Sec. II).

According to the scaling theory presented in Secs. II
and III, the partition-function zeros are given by (2.11) in

terms of the zeros of G(r) defined in (4.15). For large
| 7|, these zeros must approach
To=(2mn)? ~VPexp |i 2 +E (4.17)

by (3.11) and (1.1). For p=2 this checks against the re-
sults of Ref. 13, where a variable

z=p(p —1)1—P/pr (4.18)

was used. Exact asymptotic analysis of the function

G(z)= f_w du exp(—zu?—u?) (4.19)
will be presented in Sec. V.
J
G(z)=2exp[(p m)E*" f ”
n=0m=3n Bl
2pn
=exp[(p —1)(z/p)”/(1’_1 —ipm/(p

n=0m=3n

X[P(P _ 1)]—(m+l)/22—(m~1)/2(ze

V. ASYMPTOTIC BEHAVIOR OF THE
MEAN-FIELD SCALING FUNCTION

The behavior of G (z) in the lower half complex z plane
is simply the complex conjugate of its behavior in the
upper half plane, so we restrict our attention to this re-
gion.!? Consider z in the first quadrant. Since the in-
tegrals are absolutely convergent, Watson’s lemma'® im-
mediately gives the following for large |z |:

~ < (‘l)n ®  _—zu? 2pn
z)=2n§0 o fo e uP"du

(np ++)z= 12, (5.1)

Careful examination of arguments involved'® shows that
this algebraic expansion is dominant arbitrarily close to,
and to the right of, the ray

(z )__ L 5.2)
arglz) =" + 2p (
which is a Stokes line for G (z). Next, consider z in the
second quadrant to the left of the Stokes line (5.2). In

particular, for negative z, if we make the substitutions

z=pE¥ %", u—tu, (5.3)
then
G(z)=Eexp[(p —1EP]

exp{E¥[u®—pu’+(p —1)]}du . (5.4)

<f_,
However, the integral in (5.4) is analytic in the sector
larg(§) | <m/4p , (5.5)

so that this representation is valid throughout the second
quadrant to the left of the Stokes line. Since p is an in-
teger, the integrand in (5.4) has equivalent saddle points
u=1and u = —1. Consider the former, and let

b(w)=(1+w)?—p(1+w)+(p—1)

3

=2p(p —Dw?+ o+ +0?, (5.6)
p

where o=u — 1. By expanding

exp[ —E%b (w)]=exp[ —2p (p 1)§2pa)2]
0 2pn )n

<3 3

n=0m=3n

n m)w m§2pn ,

(5.7)

where the D(n,m) are easily calculable combinatorial
coefficients, we have again by Watson’s lemma,

exp[—2p (p — NE¥P0*lo™dw

D (n,m)T[3(m +1)]

—i1r)[1+2pn —p(m+1)1/2(p—1) (5.8)
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(a factor of 2 is due to the equal contribution from the saddle point u = —1).

Finally, near the Stokes line the algebraic expansion (5.1) and the exponential expansion (5.8), each of which are sub-
dominant in the domain of the other, are of comparable order of magnitude and must be combined.'® Consequently, the
complete asymptotic expansion in the upper half z plane is

G(2)= i (=D
n=0

. I"(pn +%)Z_"p—l/2+exp[(p—l)(Z/p)p/(p—“e_p‘”i/(p-”]

© 2pn (—1)"

Xzz n!

as |z | — o0, with O<arg(z) <7. The form of (5.9) supports the observations concerning the scaling functions made in
conjunction with (3.7).

Next, we investigate the large modulus zeros of G (z). Because neither the exponential nor algebraic portions of the ex-
pansion (5.9) have zeros in their regions of dominance, the desired zeros must cluster about the Stokes line. We calculate
explicitly the leading-order result, and the first correction term, for which only the leading terms in (5.9) must be re-

D(n’m)z—(m—l)/Z[p (P _1)]-—(m+1)/2(ze—-i1r/p)[l+p(2n—m—l)]/2(p—l) , (5.9)

tained. Thus, asymptotically the zeros of G (z) are given by the equation

172
1+i 21 exp[(p — 1)(z/ppP/'P ~Ve—Pm/P=1]=0 .
The large modulus roots to this equation are!’
2 (p—1)/p 1
mn NEE —
Zy=p | S ) P X
=P L l apmn

where n is a large positive integer. This completely sub-
stantiates the proposals made concerning these roots in
Sec. IV.

In summary, our present work achieves asymptotic
scaling description of an unbounded number of complex-
temperature-plane zeros clustering near a line forming an
angle ¢ with the negative temperature axis. The closed
form (1.3) is proposed for zeros outside the immediate vi-
cinity of the critical point, which expresses these zeros in
terms of the bulk parameters 4+ and a. Exact results for

7+iIn

(5.10)

2
p—l”’ (5.11)
r

mean-field models support the phenomenological scaling
theory.
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