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We investigate the dynamics of the one-dimensional S=
2 isotropic XY model and transverse Is-

ing model in the high-temperature limit by using the method of recurrence relations. We obtain the
relaxation functions as well as some Brownian analogs of the generalized Langevin equation for a
tagged spin S~" in these models, namely, the memory functions and the random forces. We find that
the realized dynamical Hilbert spaces of the two models have the same structure, which leads to
similar dynamical behavior apart from a time scale.

I. INTRODUCTION

where S; are spin operators, J are the coupling con-
stants, and B is an external magnetic field. Periodic
boundary conditions are imposed, so that S~+ l

——S&,

where N is the total number of spins and e=x, y, or z.
In this paper we are concerned with two particular cases
of this Hamiltonian, namely, the isotropic XY model
(XI') for which J"=J =J, 8 =0, and the transverse Is-
ing model (TI) where J"=J, J"=0, and 8&0.

Although the equilibrium properties of these systems
are well known, ' their dynamical behavior is less well
understood. Noteworthy nonequilibrium results are the
time-dependent longitudinal spin correlation functions at
any temperature due to Niemeijer, and the time-
dependent transverse spin correlation functions at infinite
temperature obtained by Brandt and Jacoby and also by
Capel and Perk. The infinite temperature transverse spin
correlation functions for both the XY model and TI
model with B =J are found to be

( SJ"(r)SJ")= —,
' e (1.2)

where A=J for the XY model and J /2 for the TI
model. Brandt and Jacoby use only algebraic arguments
to establish that these two models have the same Gaussian
form. Capel and Perk obtain the same result by using an
analogy between the transverse Ising chain with N sites
and a XY chain in zero field but with twice that number
of sites where the coupling constant J~ is replaced by —B.
In both cases the mathematical details are too involved to
allow a simple physical interpretation as to why the XY
and TI models should have the same time dependence.

In this paper we calculate the relaxation functions, the
spin memory functions and spin random forces of the
generalized Langevin equation for a tagged spin variable

The one-dimensional spin- —,
' XY model has been of con-

siderable theoretical interest in recent years as a solvable
many-body system. ' The Hamiltonian of this model is
given by

N N

H =2 g (J"S,". S,"+ ( +J~S~S~+ ) ) BgS—

II. METHOD OF RECURRENCE RELATIONS

Consider a one-dimensional N spin- —, system described

by a Hamiltonian H. The time evolution of an operator
6 is given formally by

G(t)=e" G(0), (2.1)

where L is the Liouville operator for the system, defined
by

I.f=[H,f]=Hf fH . —(2.2)

Sz in both the XY and TI models in the high-temperature
limit. We use the method of recurrence relations due to
Lee, which allows one to obtain a detailed and rigorous
description of the dynamics in such systems. That
method has already been applied to some spin models, to
an electron gas, to a classical harmonic oscillator chain, '

and to the study of velocity autocorrelation functions. "
In the method of recurrence relations, the time evolu-

tion of a dynamical variable, e.g., SJ", is given an orthogo-
nal expansion in a properly defined Hilbert space W,
where the time dependence is placed in the expansion
coefficients a„(t). The basis vectors f„in W are obtained
successively by applying a recurrence relation (RR I). The
ratios of the norms of consecutive vectors are then used in
a second recurrence relation (RRII) to obtain the time-
dependent coefficients a (t), so-called relaxation func-
tions. Finally the spin memory functions and the random
forces are obtained from f„and a„(t).

The arrangement of this paper is as follows. In Sec. II
we review the method of recurrence relations as well as its
connections to the generalized Langevin equation. In Sec.
III that method is applied to the dynamical behavior of
the isotropic XY model and the transverse Ising model.
Correlation functions, relaxation functions, memory func-
tions, and random forces are then obtained. In Sec. IV we
summarize our results. Also two appendixes are provided.
In Appendix A the solution for the relaxation function is
derived. In Appendix 8 some additional progress that can
be made by the method of recurrence relations is dis-
cussed, mainly to illustrate potential powers of the
method.
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Equation (2.1) can then be given an orthogonal expan-
sion, viz. ,

d —1

G(t)= g a (t)f
v=O

(2.3)

where f„are basis vectors of a Hilbert space W of d di-
mensions. The positive definite scalar product in W is
defined in the high-temperature limit ( T = oo ) as

(A,B)=—TrAB",1
(2.4)

where Z =2, which is the partition function of the sys-
tem in this limit.

By choosing fo ——G(0) it follows that the remaining
basis vectors f can be generated by the following re-
currence relation (RR I):

f„+,=iLf +5f, , v) 0,
where

(2.5)

(2.6)

are the relative norms of the basis vectors referred to as
recurrants, and by definition f ] =—0, bo—= 1.

The coefficients a (t), which are the relaxation func-
tions, satisfy a second recurrence relation (RR II):

5„+]a +,(t)= —a (t)+a ](t), v&0, (2.7)

dG(t) + f dt'P(t t')G(t')=F(—t),
dt

(2.g)

where P is the memory function and F the random force
Both P and F can be readily obtained as follows. The
random force is given by

where a (t) =da (t)ldt, a ]
—=0. Notice that with the in-

itial choice fo
——G (0), it follows from Eq. (2.3) that

ao(0) =1, and a (0)=0 for v) 1. The complete time evo-
lution of G(t) can thus be determined by using RR I and
RR II.

The generalized Langevin equation for the operator
G (t), which is formally equivalent to the Heisenberg
equation of motion, is given by

properties of the XY and TI models at T = ~.
A. XY model

Consider first the XY model, taking Sz" as the dynami-
cal variable of interest. The time evolution of S~ is given,
according to Eq. (2.3), as

d —1

Sg (t)= g a (t)f
v=O

(3.1)

where fo ——SJ"(0)=SJ". By using RRI we obtain the fol-
lowing basis vectors:

f, =2J(Sf ]SJ +S~'Sj~+] ), (3.2a)

f2 ———4J~(Sg 2SJ' ]SJ' S~" ]—Sj~Sj~+]+2'~ ]SgSj~+]

—S~~ ]S)~SJ"+] +SJ'SJ'+ ]S~'+~ ), (3.2b)

f3 =2J ( SJ 3S—J 2S~ ]SJ +4SJ ~SJ ]S,S, +]
—8S S',S.S,+ 12S" S',S-S.

+3S,S', +3S',S
+ 12S,'-,S, S,'-,S, ,—8S, ,S,'S,'-,S,-

+4S~ ]SJSJ+]SJ+2 4SJS~+—]S,+pS~+3),

(3.2c)

etc.
Although tedious, it is a straightforward matter to ob-

tain the expression for the basis vector of any desired or-
der, say f, using the known expressions for the basis vec-
tors of lower orders fo,f], . . . ,f ] in RR I. We observe
that as the order (v) increases, the basis vectors involve
more and more spins which are farther and farther re-
moved from the original lattice point j. This feature indi-
cates that in the thermodynamic limit (N~ op) the di-
mensions of the Hilbert space M will ultimately grow to
infinity ( d ~ oo ).

The norms of the above vectors can be readily obtained
in the high-temperature limit ( T = ao ). By using the defi-
nition of the scalar product, Eq. (2.4), we find for fo

F(t)= g b, (t)f
v= 1

(2.9)
and for f, ,

2

(fi,f] ) =4J ((Sj~ ]SJ'+Sf S&~+ ] )(SJ'SJ ] +SJ + ]SJ ) ) =z+
where the coefficients b„(t) satisfy the convolution equa-
tions

a„(t)= dt'b„(t —t')ao(t'), v& 1 . (2. 10) . Proceeding in the same manner we obtain the norms of
vs

The memory function is given simply by P(t) =b, ]b](t).
The remaining b 's, that is, b2, b3, . . . , are the second
memory function, third memory function, . . . , etc. The
reader is referred to the original formulation of the
method of recurrence relations for the detailed derivations
of the relations contained in this section.

III. DYNAMICS OF THE XYAND TI MODELS

In this section we apply the method of recurrence rela-
tions described in Sec. II to investigate the dynamical

etc. These calculations are simplified by the fact that the
crossed-product terms vanish since they always contain
unpaired spins which are traceless. The norms of these
basis vectors are thus given by a trace over sums of the
squares of each term of the basis vectors. The evaluations



35 RELAXATION FUNCTIONS, MEMORY FUNCTIONS, AND. . . 1837

are elementary. Now using the definition of the relative
norms or recurrants (2.6), we obtain h~ 2——J, b, 2 4J——,
53—6J 64——8J, etc. We see that the recurrants satisfy
the following simple form:

0.25
2

Ao

——A
2

I

""".A
2

b, =vh, v=1,2, 3, . . . , (3.3) ——A
2
3

where 6=2J~.
Since the recurrence relations are unique, the above

form is sufficient for us to determine the time dependence
of a„(t) from RRII. Alternatively it is possible to first
obtain ao(t) and then the others via RR II. This is illus-
trated in Appendix A. We note that the recurrants for the
high-temperature transverse spin-correlation functions of
the spin van der Waals model give exactly the same linear
relationship as above. Hence, we can immediately con-
clude that for the one-dimensional XY model at T= Oo

(S)"(t),Sg )
ao(t) —= ' ' =4($"(t)S")

(Sx Sx) J J

O.(25 2.—-A 4

0

' ~~~ "'.~. .., ~

FICs. 1. Probabilities A (t) versus time, S~"(t) samples the
basis vectors f„. The time is given in units of the basal frequen-
cy a'".

= exp( J t —) . (3.4)

SJ"(t)= g A.(t)F. ,
v=o

(3.5)

This is precisely the same result first obtained by Brandt
and Jacoby, and Capel and Perk, using very different
methods.

In terms of normalized basis vectors
F =(f,f )

'/ f, the time evolution of Sg (t) is given by

A„(t) are located at v =Et In th. e spin chain, that con-
dition corresponds to the region with boundaries j+v over
which the significant excitations are taking place.

B. TI model

Consider now the TI model. The time evolution of the
operator SJ" represented by

d —1

SJ"(t)= g a„'(t)f', (3.g)

where

1 (g 1/2t)
A„(t)=— exp( —,

' bt ) . —
~ )1/2

(3.6)

where fo ——SJ"(0)=SJ", and primed variables are used to
distinguish the notation here from that of the XY model.
By using RRI we obtain

This quantity satisfies the Bessel equality
f', =BS~~, (3.9a)

g A'„(t)= —, .
v=0

(3.7)
(3.9b)f2

—— 2JB(SJ—".
)Sf +S&'Sg+, ),

f3 ———2J (SJ )SJ+5$$~~+() SJ BS~" —)S~~Sg+),

That is, the length of the vector SJ (t) in the dynamical
Hilbert space is an invariant of time. '" In Fig. 1 we
show the time-dependent probabilities A (t) (normalized
to —,

'
) in early stages where Si"(t) samples the space of the

lower basis vectors. Notice that due to the preexponential
factor in A (t), the basis vectors corresponding to the
lower dimensions of W are more likely to be initially ex-
cited before those of higher dimensions. In addition, each
of the probabilities A „(t) decays in a Gaussian manner, so
that a somewhat localized, yet spreading, group of basis
vectors are being excited as time progresses. This corre-
sponds to a propagation of the initial excitation
throughout the spin system. This propagation, however,
is to be understood in a quantum mechanical context,
since the Bessel equality (3.7) holds for all times. This is
because actually all the f„'s are excited for t &0 due to
the instantaneous nature of the coupling constant. How-
ever, at any given t the probability of excitation is signifi-
cant only for a few of the f„'s. On the other hand, it can
be seen from Eq. (3.6) that the maxima of the amplitudes

f4 —— 4J B (Si" 2$J'—,S)' 2$J )SJ"Sg+, —
—3S,",S,"S,', —3S~,S~S,",
+Si S~'+,Si"+2 )

(3.9c)

(3.9d)

etc.
We observe that the basis vectors are simpler than those

for the XY model, reflecting the relatively simpler cou-
pling in the Ising model. The Ising basis vectors contain
one fewer spins than do the corresponding XY basis vec-
tors. This difference originates from f'~ which is still
bound to the original lattice point unlike f&. As the order
increases, the Ising basis vectors also involve more and
more spins which are farther and farther removed from
the original lattice point.

The norms of the Ising basis vectors may be calculated
directly. As in the calculations of the norms of the XY
basis vectors, only the squares of each term of f' contri-
bute to its norm. We then obtain
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B2
(fI,fl ) =B'&SJ'~f &

=

(f~,f2 ) =4J B ( (SJ",Sg+SJ'Sg+ ( )(S~'S~" j +SJ"+)SJ ) )

J2B2

2

etc. The Ising recurrants are 6'1 ——B, A2 ——2J,
bs ——2J +B, A4 ——12J B /(2J +B ), etc. When B=J,
then 61——J, Az ——2J, 6& ——3J, h4 ——4J, etc. These re-
currants are thus given by

0.5

bt
——-bp
~0 ~ ~ ~ ~ ~ ~ ~ b 3
—-—bq
-"—b 5

6' =vA', v= 1,2, 3, . . . (3.10)
—~- ——~~~ n n i——AW~ ~

where 6'=J . This linear form is identical to the one sa-
tisfied by the XY relative norms, differing only in the
scaling factor. This means that the relaxation functions
a' (t) have identically the same time dependent behavior
as a, (t) with its scaling factor b, =2J replaced by b, '=J .
For instance, for the TI model we have

FIG. 2. Memory functions b (t) versus time for both XY and
TI models. The basal frequencies 6' and (6')' ' are taken to
be unity in both axes.

(SJ".(t)Sg ) = —, exp( —,
' J t ) . — (3.11)

C. Brownian analogs

Consider now the Brownian analogs of the generalized
Langevin equation, Eq. (2.8). The spin random forces for
the XY and TI cases are given, respectively, by

and

F(r) = g b„(r)f
v=1

(3.12a)

F'(t) = g b.'(r)f.',
v=1

(3.12b)

with f„and f „' given by (3.2) and (3.9), respectively. The
memory functions b (t) can be expressed as

b(r)= gb. ' C t
m=0

(3.13)

with a similar expression for b'(t) involving b'. The
coefficients C are obtained recursively by

~P
( 1)P +& 2P

X X
p=O r=O I

( —1)"
n =0, 1,2, . . .

2"n!v!
(3.14)

be
The memory function P(t) of the XY model is found to

That both the XY model and the TI model with B=J
have the same form for the time evolution of S~" may be
understood as follows: The Hilbert spaces of SJ" for the
XY and TI models have the same geometric structure.
Hence when B =J the TI model may be regarded as being
dynamically equivalent to the XY model in so far as the
time evolution of SJ is concerned.

746 t
6!

p( r)
b 1

2b, r' 103't'=b, t=l—
7066 t' 86126't '

8! 10
(3.15)

A similar expression for the memory function of the TI
model is obtained from Eq. (3.15) by the replacement
b, ~A'. The remaining memory functions b (t) were first
calculated by Lee et al. , and their results are reproduced
here in Fig. 2. In that figure, 6 is taken to be unity.
From the generalized Langevin equation one can see now
that Sg(t) evolves in time modulated by the memory func-
tion P. The random force F, with components along the
higher dimensions of the dynamical Hilbert space
(v= 1~ ao ), acts to pull the time evolution away from the
basal plane onto higher reaches of W.

IV. CONCLUSIONS

We investigated the time evolution of a tagged spin
variable SJ (t) in the one-dimensional S=—, isotropic XY
model and transverse Ising model at infinite temperature
by using the method of recurrence relations. We obtained
expressions for the transverse spin-correlation functions,
relaxation functions, memory functions, and random
forces for these systems. Thus a detailed description of
the dynamical behavior of these systems is achieved either
by looking at the propagation of an excitation along the
spin chain or by examining the effects of the memory
functions and the random forces of the generalized
Langevin equation. The time evolution of S~" is given as
an orthogonal expansion in a properly defined Hilbert
space in each of these systems. The relative norms of the
basis vectors in the XY model and the B =J TI model
have the same structure, resulting in similar dynamical
behavior for Sg (t) in both cases.

We also find that the XY and TI models studied are
also dynamically equivalent to the spin van der Waals
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model. There may also be other systems with similar
dynamical behavior, which would be indicated by the
same geometry of their respective dynamical Hilbert
spaces, that is, same dimensionality and the same relation-
ship for their recurrants.
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APPENDIX A: SOLUTION FOR ao(t)

Given the RR II (2.7), the explicit knowledge of a p(t) is
sufficient to yield any of the a„(t), v& 1. Lee has shown
that the formal solution for ap(t) is as follows:

V

a„(t)=—'e —"'".V (A7)

These are the relaxation functions.
It should be noted that the RRII is unique. Hence, if

the RR II can be directly solved, it is not necessary to first
solve for ap(t) to obtain the complete set of solutions.

Moreover, the RR II gives

b, ,a)(t)= —ap(t) .

Hence, we obtain immediately

a, (t)=te a' /2

Others may be obtained similarly. Proceeding in this
manner we obtain the solution

ap(t) = dz e"ap(z),
2&l

where

(Al) APPENDIX B: FURTHER APPLICATIONS
OF THE METHOD OF RECURRENCE RELATIONS

TO RELATED SPIN MODELS

ap(z) = (A2)

ap(z) =

2A

3Az+
Z +

$2
1 e

ds
z+i(2b, )' s

(A3)

The above result follows from the integral representa-
tion' that for p &0

(A4)

and the identity

p+ p+ '

00 $2

f e ~ "
e

dQ e d$
2v n — p+is

Substitution of (A3) in (Al) gives

1 zf
—$

ap(t) = dz e*' ds
2+i c ~~ —~ z+i(2g)&/2

Now exchanging the order of integration we can readily
obtain

( t) 4t2/2— (A6)

+ ~ ~ ~

and C denotes a contour running along the right side of
the imaginary axis. For b =vb, [see Eq. (3.3)], v & 1,

The time-dependent properties of simple spin chain
models such as the XY and TI models in one dimension
have been first studied extensively by means of special or
ad hoc mathematical techniques. ' To our knowledge
these techniques cannot be applied to study one-
dimensional models of higher complexity, e.g. , the XYZ
model. They cannot be generalized to study the XY and
TI models in two or higher dimensions. Perhaps the most
limiting is that they cannot be used to obtain approximate
solutions. It is thus desirable to find some other, perhaps
more general, approaches by which one may obtain exact
or approximate time-dependent solutions in these prob-
lems.

The method of recurrence relations, as noted earlier, is
based on principles of Hilbert space theory. Other than
the requirement of Hermiticity, the method itself is model
independent unlike the ad hoc techniques referred to
above. Specific properties of a model enter into the form
of the recurrants which realizes the recurrence relation.
This method has already been applied to a variety of
many-body systems successfully. ' In addition, it has
given general criteria for admissible functions for the
velocity correlation function. " The practical use of this
method rests on one's ability to calculate the recurrants
and to solve the attendant recurrence relation. Also this
method can provide a systematic procedure for obtaining
time evolution approximately. ' We shall provide in the
following some examples to illustrate these possibilities.
They will serve to indicate potential powers of this new
method.

A. XF and TI models in higher dimensions
at infinite temperature

The time evolution in the XY model is expected to be
quite different from that in the TI model since two
models are inequivalent. If, however, the strength of the
external field B in the one-dimensional TI model is made
to approach the coupling constant J, the time evolution
becomes identical to that in the one-dimensional XY
model. We have shown that when B =J, the geometric
structures of the Hilbert spaces of SJ in the TI and XY
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models become identical. The two structures are not iden-
tical at any other values of B. It has been established that
the form of the time evolution is a unique function of the
geometric structure of the realized Hilbert space. Hence,
one can understand the origin of the coincidence in the
time evolution of S~ at this particular value of B. In ad-
dition, the realized recurrence relation turns out to be sim-
ple enough to permit an analytic solution for the entire
family of the relaxation functions.

For the XY and TI models in higher dimensions, e.g.,
D =2, one does not presently know anything about their
time evolution. While the analytic solution for it poses a
challenge to any method, there is a simpler, perhaps more
immediate, problem. That is, whether the coincidence in
the time evolution is unique to one dimension, or whether
it also exists in higher dimensions, possibly with some D-
dependent values for 8. This problem can be readily
tackled by the method of recurrence relations, since the
recurrants can be calculated in higher dimensions. Ac-
cording to the method of recurrence relations, it is then
sufficient to compare the geometric structures of the real-
ized Hilbert spaces and to find, if it exists, the value of B
for which the two structures become identical to each oth-
er. ' ' It is also possible that the realized recurrence rela-
tion may be soluble for some values of B, enabling one to
obtain an analytic solution for the family of the relaxation
functions in the manner of the one-dimensional models.

B. Approximate solution and
the XYZ model at T= oo

For some systems the method of recurrence relations
can provide a systematic way of approximately calculat-

ing the correlation function (A(t)A(0)), where A is a
dynamical variable for a system defined by H. Let
H =Ho+ V, where [Ho, V] =Ho V—VHo&0. We may re-
gard Ho as the ideal part of the interacting system H. If
[ V, A]=0 and if the ideal response function XI '(t) is
known, the interacting response function X(t) can be cal-
culated, exact to certain orders. ' Here the response func-
tion is given by X(t) =(t)/t)t)(A (t)A(0)), t &0. The va-
lidity of this approximation is precisely formulated in
terms of satisfying sum rules of the response function. '

To a given order the sum rules are exactly satisfied and to
the rest of orders they are satisfied exactly but with
respect to the ideal system. This process may be repeated
until a convergent result is obtained.

The XYZ model in one dimension is defined as

H = g (aS,"S;"+,+bSfSf+, +cS,'S + i ),

where a, b, and c are coupling constants. To our
knowledge, the time evolution of a single spin, e.g., S~', is
not known at all at infinite temperature. The approxi-
mate scheme based on the method of recurrence relations
discussed briefly above is applicable to the XYZ model if
we consider A =SJ' and define V= g, , cS,'S +i. The
response function for the ideal system is deducible from
the work of Niemeijer. Hence, it is possible to obtain the
time-dependent behavior of a single spin in the XYZ
model to some preassigned accuracy by this new
method. '
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