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Magnetic instability of a highly degenerate Kondo lattice
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The large-degeneracy (N) limit of the periodic Anderson model is studied within a model in which
the hybridization matrix elements vk are treated as angle dependent. The resulting effective
heavy-fermion Fermi surface is multisheeted, with quasi-one-dimensional bands. A spin-density-
wave instability with wave vector 2kf is shown to arise below a critical value of the effective
Schrieffer-Wolff coupling constant J =u /

~
Ef ~, where ef is the unrenormalized f-level energy.

The dependence of this critical coupling J, on crystal field splitting is shown to be quite weak. For
systems with J close to J„the effects of zero-point spin-density-wave fluctuations are shown to de-

crease the heavy-fermion mass at T=0. For increasing temperature, this decrease is rapidly
washed out, leading to an initial increase of the low-temperature y value. This behavior provides an

interpretation of specific-heat observations in CeA13 and CeCu2Si2. The effect of applied field and
pressure on the specific heat are discussed in the context of this theory.

I. INTRODUCTION

In studying the large N-limit' (N is the degeneracy of
the localized levels) of a periodic Anderson lattice, the
geometry of the resu1ting heavy-fermion Fermi surface
will be strongly affected by the (k, m) dependence postu-
lated for the hybridization matrix elements vk . This is
in contrast to the single-impurity problem where one
imagines that spherical averaging implied by the point
symmetry of the model will wash out details of this (k, m)
dependence.

In this paper we wi11 be concerned about the magnetic
instabilities of the Anderson lattice problem in the limit
that the unperturbed f state is well below the Fermi
level —the "Kondo lattice" regime. We will be particular-
ly interested in a spin-density-wave —type (SDW) instabili-
ty, and consequently have chosen to study a model in
which vk is strongly k dependent. The idea for the
model comes from a consideration of the large l behavior
of the matrix elements vk = (k

~
H„,

~

l, m ), where

~

k) is a plane-wave state,
~

l, m) is an atomic bound
state, and H„ is an effective one-electron Hamiltonian.
For large N we are lead to consider large l, for which one
can construct wave packets of atomic states

~
l,M ) whose

angular dependence is centered around a set of directions
OM, and which fall rapidly to zero outside a cone of solid
angles 5Q subtending an area 4'/(21+ I) on the unit
sphere.

With respect to this new basis, vk~ peaks for +k
pointing along QM and falls rapidly to zero as the direc-

tion of k goes outside the cone of angles 6B. So each
atomic state

~
I,M) hybridizes with two opposing sectors

of the free-electron Fermi surface. In the large-l limit,
each of the 2 (21+1) localized states (including spin)
therefore leads to a hybridized Hartree-Fock subband (see
below) which is highly oriented in k space, i.e., quasi-
one-dimensional. In order to obtain consistency with the
large-% limit of the single-impurity Kondo problem, it is
found that the number of electrons in the conduction

band, i.e., the volume of the Fermi sphere, must also scale
with N, so that there are of order 1 conduction electron
per subband per atom. This in turn implies that the Fer-
mi surface overlaps N/2 extended Brillouin zones, so
that, in a reduced-zone scheme, it becomes multisheeted.
The main result of this paper is to show, using the 1/N
expansion, that these quasi-one-dimensional subbands ex-
hibit a spin-density-wave instability of wave vector 2kF as
the position of the unrenormalized f level, ef, is lowered
relative to the Fermi level leading to a critical value of the
dimensionless effective Schrieffer-Wolff coupling con-
stant Jp —( vkM ) p/

~
&f

We also discuss the effect of splitting of the f degenera-
cy by a crystal field, on the critical J and investigate the
behavior of the low-temperature specific heat as the insta-
bility is approached.

II. THE N~oo LIMIT

Starting from the Coleman form of the U~ oo Ander-
son lattice

H g sf nfM +g Eknk +ik g (b, b, +f~fM )
i, m k i, M

ik R,+g(b;, vMk/v Ne 'f; c„+H.c.),

the N~ ~ limit is defined by evaluating the path integral

Z J D DfDbDg fo k ~k ' Ji (2)

using the method of steepest descent with respect to a spa-
tially invariant mean boson amplitude (

~

b
~

) and chemi-
cal potential (iX) =Ef —ef, where ef is a renormalized f
level energy. We note that the local phase P; of the boson
field b; =

~

b;
~

e ' may be absorbed into the local chemi-ipi

cal potential ik; following the argument of Read and
Newns and Coleman, so that the location of the saddle
point determines the mean boson amplitude. At the sad-
dle point, the resulting model is that of a set of nonin-
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3 +5Q f dE f dcok(co)
(2m ) dEi

Using

+iA((b b. ) —Q) .

V (b b)/N
(Ei —Ef )

and replacing V/(2n )k (co)5Q by the density of
conduction-band states, p, the leading contribution to W
becomes

Ao(b) 1 n(—D /sf) +iA((b b) —Q), (5)

where Ao ——U p, D is the conduction-band depth, and cf" is
measured relative to the Fermi level. Note that, since
50=4m/(2I+1) ec 1/N, the assumption that p is N in-
dependent implies that the volume of the conduction-band
Fermi sphere scales with N. Substituting ii, =sf —cf and
varying with respect to (b b) leads to the saddle-point
equation

sf" ef = b,o ln(D/Ef" ),—

from which we recover the usual Kondo energy
R —cf /60

Ef De = Tz——, in the Kondo regime b,o/E && l.
Variation with respect to A, or equivalently sf gives

g (nQ)+(b b) =Q

teracting hybridized bands which may be solved analyti-
cally using the ansatz of Sec. I for vk~.

Writing the resulting free energy in the form
E C,W= g f dc. f des[5(co E—))+5(co—Ep)]

k, M

+i A((btb ) —Q),
where E~ z are the hybridized subband energies for a cone
of k vectors hybridizing with a given M sublevel of the f
states, given by

R«+'f R 2

2
+[(sk —Ef) l4+v (b b)]'i /N (4)

and Q is the f occupancy. Since the renormalized f level,
and hence the hybridization gap lie above the Fermi level,
the heavy-fermion properties are dominated by the lower
subband, E&, leading to

III. MAGNETIC INSTABILITY
OF THE KONDO LATTICE

In order to study the magnetic instability of the Kondo
state, we need to look at effects of zero-point fluctuations,
5b =b —(

~

b
~

) of the boson field, on the particle-hole
propagators. For a spin-density-wave instability, the
relevant channel involves a particle on one sheet of the
Fermi surface and a hole on the opposing sheet. To lead-
ing order in 1/N the effects of the boson fluctuations may
be estimated using ladder diagrams. These diagrams will
not be included in the lowest-order terms of the 1/N ex-
pansion for the free energy. So the fermion and boson
propagators used in the ladder diagram calculation
should, strictly speaking, be renormalized by the usual
1/N corrections.

Since the bosons conserve the M-channel index, the
ladder diagrams are labeled by the channel indices, M, M'
of the particle and hole. The leading magnetic instability
occurs in a given subband with M'= —M. We consider
the limit where cf —cf, the energy needed to excite a bo-
son amplitude fluctuation is taken »Tx. As shown by
Read and Coleman the principal effect of the 1/N "bub-
bles" on the boson phase fluctuations is to introduce a
long-time algebraic tail in the boson propagator. In this
paper we make the assumption that, since the principal
spectral weight of the boson fluctuations lies at high fre-
quencies Ef —sf, the effect of the infrared phase fluctua-
tions on the relative energies between magnetic and non-
magnetic ground states will only become important right
at the magnetic instability. Thus from the point of view
of defining the phase diagram of the Kondo lattice, we as-
sume that the phase fluctuations may be neglected. This
point will be taken up again in the discussion.

With this assumption the boson exchange may be treat-
ed as instantaneous, with coupling constant
—v /N

~ sf
~

=J/N. We now evaluate the ladder dia-
grams in the heavy-fermion limit Tkf «1. In this limit
(see Appendix) we find

Xff(q) = [ 1 J'/N'Xff (q)X,—,(q)) 'Xff (q), (8)

where Xff and X„are diagonal parts of the hybridized
electron-hole susceptibilities for f electrons and conduc-
tion electrons, respectively (see Fig. 1).

The response functions Xff (q),X„are calculated by in-
tegrating over the cone 5AM of particle and holes belong-
ing to a particular subband:

leading to

( b b ) = 1/[1+ (b,o/T~ )]=
~o

(7)

(setting Q = 1), so that the width of the hybridization gap
in (4) becomes of order

fM
t

Ck, cr f
T
I

I

I

I

I

I

I

Ck-Q -cr f-IVI

1/2
v (b b)

N
FIG. l. Diagram contributing to the f~f ~ particle-hole

propagator.
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(j) (j')

k, J-,J' Ek,'M —Ek'-q, -M

where nk M is the Fermi occupation number for the par-
ticular band, either below or above the hybridization gap
(j =1,2), with energy Et', M These functions have a
quasi-one-dimensional peak at q =2kF. For off, the
dominant contributions come from the lower hybridized
band, since, in the Kondo limit, the carriers have predom-
inantly f character.

Writing

E (k —)=EF(ek —s~)
M''

BEk

suits. This may be answered by adding a crystal-field
term

x~x ~ EMM Cf)M CfiM
MM', i

(13)

to the basic model Hamiltonian (1).
EMM is assumed symmetric under M~ —M. Since the

noninteracting conduction-electron energies are not affect-
ed by the crystal field, the hybridization does not mix lev-
els (M, —M) with (M', —M'). The mean-field Hamil-
tonian can now be diagonalized by taking linear combina-
tions c~;„——gM P„Mc~;M which diagonalize (13), lead-

ing to linear combinations of subbands with renormalized
f-level energies

we find R R x
Ef =Ef +Ep, (14)

0(2k )
de 477 + dP

1
P F

0 o 2kF 2P/kF+gO/m-

~.(b &' 2~1+ln
NT.' + 6n

1 [1+in(2'/6Q)] .
XTz

(10)

dEk

dE~
v2(btb ) /N

(E )
—eI —e„)R x (15)

where e~ is an f-level renormalization common to all sub-
bandS and Ex are the eigenValueS Of EMM. The heaVy-
fermion density-of-states enhancement factor for the p'th
subband

TKc =(C)2X10—'
N (lnN )

(12)

for %=6, where C is a coefficient which varies slowly
with N. Equation (11) for the spin-density-wave instabili-

ty is essentially equivalent to Eq. (14) of Read et al. ob-
tained from a comparison of the ground state of the Kon-
do metal with that of a fully magnetized antiferromagnet,
apart from a slowly varying factor. In contrast to the
latter treatment, the present approach leads to a switching
on of the spin density wave through a second order transi-
tion.

IV. EFFECTS OF CRYSTAL FIELD SPLITTING
ON THE MAGNETIC INSTABILITY

The strong dependence of the critical Kondo coupling
on N, (12) naturally leads to the question of the effects of
crystal-field splitting of the degeneracy, on the above re-

For g„„the mixed propagator with the hole in the EM
subband and the particle in the EM subband gives the
dominant contribution. At the Fermi level these subbands
are separated by an energy gap Eg,z ——Tz+p '/N.
Strictly speaking, the large-N limit would make
(T~p) 'IN tend to zero. However, for N large and fi-
nite, the magnetic instability occurs at a value of Tx for
which Tzp&&1/X, hence in the vicinity of this phase
boundary Es,&-5p 'IN, leading to X,, ~pin(DIEs, „)
=p ln(NDp).

Taking Dp to be of order unity, the criterion for the
spin-density-wave instability then becomes [from (8)]

J C
lnN [1+in(2vr/50) ]= 1,

N T~p

where C is a constant, leading to a critical value of the
Kondo temperature, Tz„of

is now reduced somewhat for the higher lying subbands,
and the renormalized f-level energy e/ is now given in the
Kondo limit by the solution of

e&- b,o/N g in[D—/(eI+e"„)] . (16)

y ~ ~ [1+2/(1+a) ],
3Ef

(18)

so that for +=1, —,
' of the electronic specific heat would

come from the I 8 quartet of subbands.
The spin-density-wave instability will occur in the

particle-hole channel for the lowest lying subbands.
Equation (11) now becomes

J2
~ (lnN)[1+in(2'/M)]=1 . (19)(1+a/3) N Ne&~

Solving (19) together with (17) numerically (Fig. 2), one
finds that the value of T~, at the instability phase
boundary is still strongly suppressed by the effects of orbi-

For N =6, in a cubic crystal with the I 7 doublet state
lowest, this gives

e/=holnI(D/eI)'~'[DI(e/+e")] r'I . (17)

Setting e"/el ——a one has eI = Tx./(1+a) which shows
that for a system for which the crystal-field splitting is
comparable to the Kondo temperature, the renormalized
f-level energy is reduced by a factor =1.6. Thus one
may expect that increasing crystal-field splitting will tend
to push the system across into the spin-density-wave mag-
netic phase. Nevertheless, in the Kondo metal state,
the heavy-fermion specific heat still has a considerable
contribution from the higher lying subbands: from (15)
and a similar expression for (n/&) leading to (b b )
=-(1+a)/(1+a/3)eI/5 the linear electron specific-heat
coefficient is given by
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I I I I I I III I I I I I III I I I I I I III pling in a Ruderman-Kittel-Kasuya-Yosida (RKKY) cal-
culation]. u and v are the real and imaginary parts of
Xff(q, cv ). The Iv and q dependences of X,, vary on the en-

ergy scale of the bare conduction band, rather than on the
heavy-fermion energy scale, so have been ignored. The
saddle-point equations for ef and (b b ) now become

—v pin(D/Ef)+A, —1/(b b)~'=0, (22a)

( b ) ( v p/ ef +1 ) —Q +2/Ef ~' =0, (22b)

where the variation of hF with respect to (b b ) and Ef
arises from its dependence on the heavy-fermion density
of states factor dc/dE&

1O-5
I I I I I I III

10 4 10

Ex/D

I I I I IIII

10—2
I I I I I I I II I I

10-' d dc 1 dc
d(blab) dEi (blab) dEi

FIG. 2. Dependence of the critical heavy-fermion mass
(=1/T~) on crystal field. The constant in Eq. (11) has been ar-
bitrarily set to 0.3.

tal degeneracy even when the crystal field is an order of
magnitude larger than Tz, . Put another way, the max-
imum heavy-fermion C/T value, which occurs for cou-
pling constant J just above the critical value, will be
lowered as c increases. Thus the value of the crystal-field
splitting energy may be expected to be one of the signifi-
cant factors determining whether a given heavy-fermion
compound will have a Kondo or magnetic ground state.

In the N~ op limit, the system is modeled by a set of
narrow hybridized bands of noninteracting heavy Fer-
mions. The low-temperature specific heat is given by the
Sommerfeld formula

y ~ N(eF)=NpdE/dE, =I/Tg
N~oo

(20)

(neglecting crystal field effects). In order to estimate the
contribution to the free energy from the zero-point spin-
density-wave fluctuations in the region of the instability, a
random-phase-approximation (RPA) —like term needs to
be added. As the magnetic phase boundary is approached,
this contribution turns out to affect the saddle point Eqs.
(6) and (7) in a singular way. There are also corrections of
O(1/N) which do not reflect the spin density wave insta-
bility and which we ignore for the purposes of this discus-
sion. '

Within the ladder-diagram approximation (using the
Tzp «1 limit outlined in the Appendix), we write, fol-
lowing Brenig et aI."
b,F= —Q f dlv[ —,'+n(co)]

q

V. EFFECT OF SPIN-DENSITY-WAVE FLUCTUATIONS
ON THE SADDLE-POINT EQUATIONS

dc 2 dc
dEf dE) g~ dE)

(23)

and bF' is defined by d(bF)/d(dc/dEi). It will turn
out that LF' is positive, so that the effect of AF' is to in-
crease the effective Kondo temperature of the system at
T =0, i.e., to reduce the heavy-fermion specific-heat
enhancement via (20). There is also a paramagnon-type
mass enhancement from the T term in the low-
temperature expansion of ~. This will also be propor-
tional to I/Tz. To estimate bF' in (22) we expand
u (Q, lv) about its maximum at Q=2kFe to obtain, for
small q =

~ Q —2kFe ~,

and

u (q, ~) =W [1 a(q/k—F )'+b(Tp)'+ . ]
dc
dE

dc
v (q, lv) -=Beep

(24)

(25)

1/2
v'(btb)

N

]. /2
TED

L

Writing ~o——(1 J,rrAde/dE)=1 ——J,rr which tends to
zero as the magnetic phase boundary is approached, the
leading contribution to AF' is found to be

b,F'=g 2/2[1 —a (q/kF) ]lnI I+X [1+Y(q/q, „)] I

(26)

where 3 and B, a and b are constants, and e is a unit vec-
tor spanning a subband Fermi surface (note B ~kF/Q).
In performing the integration over co, we need to cut off
the integral at frequencies above which electron-hole pair
density of states contributing to v(q, co) loses its heavy-
fermion mass enhancement. These will be determined by
values of E& beyond which the hybridization crosses over
to the bare conduction-band density of states, determined
from Eq. (4) to be

jeffV

arctan
effu

Jeff V (21) where

L

where J,rr=[(v /ef ) p/N ]1nN is the effective magnetic
coupling constant [corresponding to the spin-spin cou- 2' Ko kF Ko



1818 S. DONIACH 35

We now work in a limit where X/Y~(Tz/ND)' && l.
In this limit AF' has the asymptotic form

mF2- — T /Tx. (T) I (31)

AF'-X /Y / Ix:
2 (tv, „/kF)

Kp
(27)

where m*/m includes the effects of paramagnon mass
enhancement, we have

Jeff

Jeff

Substituting co,„=v /N(b b ), we find for the modified
saddle-point equations

R
1(b b)- 1/2

U P

C/T= —d F
(0) 1

2T ir T
(3T Trt, BT T BT

T ~ Trc

2T2 aT2
(32)

and (28)
Substituting the exponential dependence from (28) thus
leads to

T~ -D exp

0 0Ef+c/—Nb p
1 —J,ff

gp

1/2 c

c 2~4
+ 232 (1+t')'

C/T =y(0) 1+—5
( 1+t2)3/2

ct43
(33)

4 1( 1+t2 )5/2

= Tg expp C Jeff

1 —J,ff

1/2

Thus the limit X/Y « 1 is justified provided Kp is not too
small. Equation (28) shows that the effect of precursor
zero-point spin-density-wave fluctuations is to increase
Tz, i.e., to reduce the heavy-fermion effective mass as the
magnetic phase boundary is approached.

VI. TEMPERATURE DEPENDENCE OF THE
I.O%'-TEMPERATURE SPECIFIC HEAT

The principal effect of finite temperature will be to
weaken the spin fluctuation effects by driving the system
away from the SDW instability via

m 1 T2

Tir(T) [1+(T/T, ) —(T/Tt)]
(3 la)

where Tk(T) is defined using Eqs. (28) and (29). The tem-

where we have set t = T/T„c =C/N[J, tf/(1 —J,ff)]'
Thus remarkably, the low-temperature y value is predict-
ed to increase with increasing temperature (Fig. 3). More-
over, the shape of the curve looks strikingly linear at
T & T„ in agreement with experiment. As the tempera-
ture increases, the decrease of F due to explicit T and
higher terms will be expected to take over, leading to a
maximum in C/T versus T at low temperatures. To
model this behavior, we need to include an explicit depen-
dence of the free energy T and higher-order terms A.
five-parameter fit to the data' for CeA13 (Fig. 4) is given
by the following somewhat arbitrary model for the free
energy:

Kp( T)= 1 J~tt( T) Kp(0) + ( T/Tg ) + (29)

from (24). Here T, is introduced as a scale temperature.
From (24) we may write

J,ff(T)=J,ff(0)[1—(T/Ti) + . ],
1.8

meter fit

where T1 is a temperature scale set by the Fermi-liquid
properties of the heavy fermions, excluding spin-density-
wave fluctuations. Hence

1.4

T =KpTi = [ 1 —J tt(0)] Ti (30)

defines a new, reduced, temperature scale, relative to that
appropriate for the "normal" heavy-fermion Fermi liquid.
Because this temperature dependence occurs in the ex-
ponential in (28), it should dominate the low-temperature
behavior relative to explicit T terms in the low-
temperature expansion of F. Hence at low temperatures
we expect to see the dominant temperature dependence of
the specific heat come from the temperature dependence
of T&. Setting

I I I I I I I I I ! I I I I I I

0.2 0.4 0.6
I I I l I I

0.8

FIG. 3. Three-parameter fit of the low-temperature formula
for C/T from (33) to data (Ref. 12) for CeA13. The spin-
density-wave fluctuation scale temperature is found to be 0.361
K, and C=0.381. A similar fit (not shown) can be made to
data for CeCu2Si2.
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1.7

1.8

I I I I

i

I I ture of the sample. However, this discrepancy does point
to a quantitative limitation of the present approach.

VIII. EFFECTS OF APPLIED MAGNETIC FIELD,
PRESSURE, AND DISORDER ON THE

LOW- TEMPERATURE SPECIFIC HEAT

0
2

1.5

1.4

1.3
I I I I I I I I I I

0.2 0.4 0.8 O.S

FIG. 4. Fit of the five-parameter formula for C/T derived
from (31a) by differentiating twice, to data (Ref. 12) for CeA13.
In this fit T, is found to be 0.365 K, while T~ and T2 are 1.53
and 2.25 K, respectively.

perature dependence of the specific heat is obtained by
differentiation of (31a) as in Eq. (32). Using the fitted pa-
rameters and Eq. (30) we find Ko 0.055 for CeA13. In
this interpretation of the data, the observed low-
temperature increase is due to a washing out of the inci-
pient SDW fluctuations (which tend to suppress the
heavy-fermion mass) with increasing temperature, while
the decrease in C/T at higher temperatures is due to tem-
perature dependence of the normal heavy Fermi liquid pa-
rameters (excluding the magnetic fluctuations). ( b b &

= [1——,
' (h/Tk) B2] .

Tk(0)
(37)

In the X~ oo limit, an applied magnetic field will alter
the saddle-point equations by splitting the degeneracy of
the hybridized Fermi surface. Because of spin-orbit cou-
pling, this will in general complicate the simple model as-
sumed for the hybridized bands in this paper. In order to
get a qualitative idea of the effects of the field, we ignore
these complications and simply take the bare f-orbital en-

ergies to be Ef =Ef+hm, where h =gpsH (for zero
crystal-field splitting). The N~ oo saddle point is ob-
tained from

F=g ln z +(cf—Ef)((b b &
—Q),pv'(b b&

N &fm

(35)

where ef ——Ef +hm. Deriving with respect to (b b & and

ef and expanding to order (h/TK ), we find

Ef —TK(0)[1+ —,
' (h ITK ) B2] (36)

where B2 ——(1/N) g m, Tk(0)=Dexp( 6, I
l Ef l

), —
and

VII. LOW- TEMPERATURE BEHAVIOR
OF THE SUSCEPTIBILITY

Tsc( T) TK( T)+ c"
(34)

The low-temperature suppression of the specific heat by
SDW fluctuations will also be expected to show up in the
susceptibility. However, since higher lying crystal-field
multiplets will contribute significantly to X, particularly
for anisotropic compounds such as CeA13 and CeCu2Si2,
where the susceptibility transverse to the c axis will in-
volve mixing of different crystal-field-split pieces of Fer-
mi surface, the temperature-dependent effects discussed in
the last section may be expected to show up considerably
weakened in the susceptibility of a polycrystalline sam-

13

Close to T =0, for G along the c axis, we approximate
X by

(giL1,pm )
X.axis [T (T)+E ]

o b
f 1,p+Q, m f 1,p, —mf(E1 ) —f(E1 )

ff & g E (39)

For small h, the principal field dependence Xff in a
given m channel comes from the asymmetry in the
heavy-fermion density of states on going from the —m to
+ m subbands. This leads to

In this limit, the specific heat is given by the density of
states at the Fermi level:

CIT=+v ~ z
—— [1+—,(h/Tk) B2] .2(bb& 1 1

N (sf~ )' T„(0)
(38)

Thus the effect of the applied field is to increase both the
effective Kondo temperature and the zero-temperature
specific heat.

Turning now to the effect of the magnetic field on the
SDW instability, we note that this involves a transfer of a
heavy fermion from one side of the Fermi surface, spin-
orbit index m, to the other side, spin-orbit index —m.
This results in

where we have taken the ground-state doublet to be
m = —, and the excited state doublets (treated as degen-
erate) to be m = —, and —,. Although the resulting tem-
perature is generally like the measurements for CeA13, the
overall increase between 0.03 and 0.5 K is predicted too
high (of order 18%) compared with the measured values'
which show only a 2%%uo increase between these tempera-
tures. This may be partly due to the polycrystalline na-

2dE/«
l h=a

X (Q, h) =X (,0)
dE'dc,

l

+dE'/de
l

=off (Q, 0)
(b'b& l, /(b'b& l,

1+2(hmITK)

[1——,(h /TK)] B2
=off (Q, 0)

1+2(hm /TK)
(40)
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IX. EFFECTS OF THE MAGNETIC INSTABILITY
ON SUPERCONDUCTIVITY

OF A KONDO LATTICE SYSTEM

The same boson fluctuations which lead to the SDW in-
stability via particle-hole coupling, will induce supercon-
ductivity in the particle-particle channel. The effective
electron-electron coupling energy involves excitation
across the hybridization gap into conduction electron
states above the heavy-fermion hybridized bands, leading
to

jeff" el-el =
2

v 1 J p
2Egap 2%

(41)

In computing the particle-particle propagator, care must
be taken to avoid putting two fermions on the same site.
This tends to favor the antisymmatic (p-wave-like) super-
conducting state (Czycholl and Doniach' ).

To make a very rough comparison between the magnet-
ic and superconducting ground state energies we set

EBcs —TK exp( —T~/V,'~,
~ )

and compare with the RKKY energy

(42)

Hence an applied magnetic field pushes the system away
from the SDW phase boundary. This is consistent with
the discovery of a field-driven phase transition in CePb3
by Lin et al. ,

' where a transition is seen from a SDW
phase at low fields to a Kondo phase above 5 T. It is also
consistent with data of Bredl et al. ' on the field depen-
dence of the low-temperature specific heat of CeCu2Si2
and CeA13 where the effect of an applied field is to in-
crease C/T at T =0, but to diminish the rate of increase
of C/T with T as the field is increased. As Kp increases
due to the applied field, the spin-fluctuation-induced in-
crease in Tz derived in Sec. VI is diminished, thus leading
to a less rapid rise in C/T versus T in an applied field.

The SDW Kondo lattice phase boundary should also be
pressure dependent. The general effect of pressure will be
to increase the hybridization matrix elements, v, hence to
increase the basic Kondo temperature Tz. This will have
the effect of simultaneously decreasing the heavy-fermion
density of states, hence decreasing C/T at T=0, and
pushing the system away from the SDW phase boundary.
As with the applied field, the latter effect will tend to di-
minish the 1ow-temperature increase of C/T versus T,
but in contrast to the case of the applied field, the T=0
intercept for C/T will be expected to fall with increasing
pressure, rather than to rise. This appears consistent with
data of Brodale et al. ,

' although the data do not yet ex-
tend to low enough temperatures (or to small intermediate
pressures) to verify the T =0 decrease of C /T.

Finally, the introduction of a small amount of lattice
disorder by alloying may be expected qualitatively to lead
to a broadening out of the quasi-one-dimensional peak in

Xff ( Q) at Q =2k+. This will also push the system away
from the SDW phase boundary, hence diminish the low-
temperature rise of C/T. The heavy-fermion density of
states will be expected to be less sensitive to disorder, so
that the basic T~ should not vary so rapidly with mean
free path.

J2p
ERKKY = (43)

Since we have shown that the magnetic instability condi-
tion ER«z & Tz is qualitatively justified by the more de-
tailed discussion of the SDW character of the instability
given in this paper, we conclude that the sma11 gain in en-
ergy due to Bardeen-Cooper-Schrieffer (BCS) pairing will
always loose out in the end to the magnetic energy as cf is
made more negative ( Jp decreasing). However, one can-
not exclude a small region of the phase diagram, close to
the SDW-Kondo phase boundary ~here the two instabili-
ties may be in competition.

X. DISCUSSION AND BREAKDOWN
OF THE LADDER APPROXIMATION AT THE

MAGNETIC-NONMAGNETIC PHASE BOUNDARY

As the SDW phase boundary is approached, Kp~O, the
spin fluctuations start to compete strongly with the
heavy-fermion mass renormalization: from (28) this
occurs for Kp(1/(lnD/TI, ). Under these conditions the
neglect of infrared phase fluctuations of the boson field
(Sec. III) clearly becomes unjustified since the SDW fluc-
tuation energies are now approaching zero and a con-
sistent treatment of both the Kondo renormalization and
the spin-density-wave critical point (at T =0) is needed.
This presents an interesting problem in that the argu-
ments of Beal-Monod and Maki' and Hertz' that the
upper critical dimension of a Hubbard-type system is
reached at T =0 (3 space and 1 time dimensions) may be
invalidated by the existence of the Kondo fluctuations
which are inherently of a two-dimensional character for
individual f sites. What happens in the Kondo lattice is
not clear, but the above argument suggests that the Kondo
fluctuations will remain relevant in this case.

Away from the phase boundary, on the SDW side, we
expect that a saddle-point treatment analogous to that
given in this paper will still work, and that the system will
exhibit a combination of SDW and heavy-fermion charac-
ter. Close to the phase boundary, the f moments will be
reduced, ' but will increase with decreasing J, along with
a corresponding reduction in heavy-fermion mass (in-
creasing T~) as the Fermi surface becomes reduced in
area due to the SDW gap.
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APPENDIX

The purpose of this appendix is to discuss the approxi-
mations leading to the SDW instability criterion Eq. (11).
Because of the hybridization term in the N~ oo limit ef-
fective Hamiltonian, the electron-hole pair propagators
are not diagonal in the original f and c representation but
also contain off-diagonal or "anamalous" contributions.
For this reason, the susceptibility function defined in Eq.
(9) is in general 4)&4 matrix X p(q) in which the suffix a
denotes four possible particle-hole channels:

I f f ),
I f c),

I
c f), I

c c). Because of our basic assumption
that the dominant spectral weight for boson-fluctuation
exchange between the particle and hole may be treated as
co and k independent, the ladder diagrams may be
summed by the simple RPA equation

2

X p(Q)=X p(Q)++X r p srsXsp,
r~

where c ~ is the anti-unit-matrixr

0001
0010
0100
1000

resulting from the form of the original Anderson hybridi-
zation coupling. The SDW instability is now determined
by the criterion that the smallest eigenvalue of the matrix

2
U 0

p g Xirsssy
Ef

equal unity. Since we are interested in the heavy-fermion
limit

I cf I «6p we can classify the matrix elements of
the particle-hole response function g p in powers of
(Tlap), where p is the unhybridized conduction-band
density of states. Estimates for the diagonal elements
denoted by Xff and X,, in Sec. III are given in Eqs. (10)
and preceding Eq. (11). There are also diagonal elements
Xf f and Xgf gf which may be estimated to be of order p
u»ng

I q' I =(Ef sk) I) =NTxp. —Off-diagonal ele-
ments Xf ff Xff f are of order pl(NTzp)' and
Xpf p Xpp +f are of order p(NT~p)' . In the limit
Tzp « 1, the matrix A corresponding to the exchange of
two bosons illustrated in Fig. 1 has diagonal elements
which dominate over the largest off-diagonal elements by
a factor of order 1/(Tzp)'~. Therefore, in this limit
(1—A) '=(1—A2) '(I+3) may be represented in
terms of the approximately diagonal matrix 2 2, leading to
the criterion in Eq. (11).
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