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Interfacial structure and kinetics of ordering in weak ferromagnets
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The kinetics of domain growth in weak ferromagnets is studied by use of an appropriate set of
Langevin equations. Because of the coupling between the order parameters, which arises from the
Dzyaloshinsky-Moriya anisotropic interaction, the time evolution of the various correlation func-
tions is coupled even in the linear theory. An analysis of the late stage of the evolution, following a
critical quench, in terms of the motion of the interfaces is shown to lead to a t' domain-growth
law. We have also studied the growth following an off-critical quench from a very high tempera-
ture.

I. INTRODUCTION

The dynamical growth of an ordered structure from a
disordered one in thermodynamic systems is a subject of
considerable current interest. Although the physics of
pattern formation in systems in quasiequilibrium is quite
well understood in terms of universal features revealed by
renormalization group techniques, the evolution of equi-
librium structures from metastable or unstable states to
stable equilibrium states remains much less under-
stood. ' Approximate theories of several simple models
have been complemented by Monte Carlo computer simu-
lation to gain insight into the universal as well as the
nonuniversal aspects of the "growth laws" in different
time regimes.

In the case of simple systems with one-component non-
conserved order parameters (e.g. , the Ising model) the sys-
tem is unstable against long-wavelength fluctuations at
very early times (near t=0) following a critical quench
from a high temperature to a temperature below the two-
phase coexistence curve. At later times order develops,
with the dynamical evolution driven by the curvature of
the interfaces separating the phases. The velocity v of
these interfaces is proportional to the corresponding local
mean curvature. In the latter regime the average linear
size R(t) of the domains grows as R(t)-t'i .

The phenomenon of spinodal decomposition in binary
alloys is concerned with the decay of unstable states, such
as those created by quenching the system at a critical con-
centration. Similar phenomena have been studied also for
several other systems with conserved and with non-
conserved order parameters. However, most of the
theoretical attention has been focused so far on systems
with a one-component scalar order parameter, although
there are some exceptions, such as He- He mixtures and
metamagnets, the n-vector model in the large-n lim-
it ' and the clock model. " The most crucial feature of
the n-vector model that makes it more interesting, albeit
more difficult, is the continuous symmetry of the Hamil-
tonian that leads to the Nambu-Goldstone modes. In this
paper we shall study the growth of ordered domains in the
so-called weak ferromagnets' ' (referred to as WFM
hereafter) which are described by multicomponent order

parameters. Examples of such WFM are e-Fe203, rare-
earth orthoferrites, etc. , which have important industrial
applications

and

M = (M t+ Mz) /(2Mo )

L={Mt—M2)/(2Mo) .

The condition that the magnitude of the individual sublat-
tice magnetizations are constant, viz. , M i =M2 =Mp im-
plies the constraint M +L = 1. The free-energy func-
tional for a WFM is, in general, given by

F =Fr. +FR+F1.~
where FL and F& are the contributions from L and M,
respectively, and FL~ represents the coupling between L
and M. The coupling term in this model arises from the
anisotropic exchange interaction and its explicit form de-
pends on the symmetry of the crystal. The
Dzyaloshinsky-Moriya (DM) anisotropic exchange in-
teraction plays a crucial role in the WFM and is respon-
sible for the appearance of a finite (albeit small) spontane-

II. FREE-ENERGY FUNCTIONAL AND
THE EQUILIBRIUM STATES OF THE WFM

The magnitude of the spontaneous magnetization in a
WFM is very small (about 10 —10 of the normal
value in comparable ferromagnets). This magnetization
arises from the special feature of the anisotropy in these
systems. The magnetizations in the two sublattices are
nearly, but not exactly, antiparallel to each other as we
shall see later. The general approach in the continuum
theories of spinodal decomposition consists of two essen-
tial ingredients, namely, a coarse-grained free-energy
functional and the corresponding Langevin equation for
the dynamical evolution of the correlation functions.
Substitution of the former into the latter leads to the
equation(s) of motion, the solution(s) of which give the
growth laws. We shall also follow this basic scheme here.
Let M

&
and Mz denote the magnetizations of the two sub-

lattices and define
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ous magnetization in these systems in which the true
exchange-driven transition is antiferromagnetic. The con-
tribution to the microscopic Hamiltonian from the DM
anisotropic interaction is given by

A DM= —d;J (S;XSJ)
where d;J determines the strength of the anisotropic in-
teraction and S; and SJ are the spin vectors at the ith and
jth lattice sites, respectively. Note that the latter interac-
tion favors an orthogonal orientation of the neighboring
spins. For a-Fe203, the coarse-grained Landau-Ginzburg
free-energy functional is given by'

F= f d"r[(A /2)L +(al2)L, +(B/2)M +(P/2)M,

(D/4)(L ) +K(L My LyM )

+(«/2)
I
~L

I
'+(g2/2)

I

~M
I
') (1)

where A, B, a, P, D, g &, and g2 are phenomenological
parameters and I( is the measure of the strength of the
anisotropic contribution to the free energy, where the cor-
responding term arises from the DM interaction. Symme-
try arguments originally presented by Dzyaloshinsky'
show that there is no M term in (1) which rules out the
possibility of any exchange-driven ferromagnetic transi-
tion. In the absence of an external magnetic field the
term proportional to g2 is small compared to that propor-
tional to g&.

Let us first briefly summarize the main features of the
static equilibrium state(s) possible for the free-energy
functional (1). Minimizing (1) for constant

~

L ~, we get'
two sets of solutions. The first set of solutions is given by

M My M 0 L Ly

as stated earlier. Note that in the WFM phase

~

L
~

= I
—[A (K—/B)]/DI' (4)

Therefore, the transition temperature is given by
[A —(K /B))=0, i.e., the coupling of L with M shifts
the transition temperature by a term proportional to E .

III. EQUATIONS OF MOTION

For simplicity, let us introduce the notation

L

Ly

My

M,

where the six components of L and M constitute the six
components of a generalized order parameter Q. The sto-
chastic equation of motion (Langevin equation) is

8 Q„(r, t) = —I (5F/5Q„(r, t))+g(r, t)
Bt

for @=1,2, . . . , 6,
where for simplicity we have assumed the same kinetic
coefficient I for all the six components and 5/5Q&
denotes the functional derivative with respect to Q„. All
the subsequent equations in this paper can be easily gen-
eralized to different 1 for different Q&. The white noise
in (5) is assumed to satisfy

and

L,&0,
(2)

and

(g(r, t) ) =0 (6a)

which corresponds to a pure antiferromagnet. The second
solution is ( g( r, t)g(r', t ') ) =21 5(r —r')5(t —t ') .

Let us define the equal-time correlation functions

(6b)

M, =0=L„M„=(K/B)Ly, My ———(K/B)L„ (3)

and corresponds to the weak ferromagnet. The latter
solution is the stable state of a-Fe203 in the temperature
range 250'( T (950'. Thus, the nonzero magnetization
in the state (3) arises from the coupling K. In other
words, the WFM state is a consequence of the absence of
the M term and of the special form of the anisotropy.
Since ~K~/B —10 —10, ~M ~/~L

~

—10 —10

C„,(r —r') = ( Q~(r, t)Q„(r', t) )

D p r r'I', t, 7

where fD [Q] denotes a functional integral over the
fields IQ], and P satisfies a Fokker-Planck equation.
Generalizing the standard techniques for models with
single-component order parameters to the model (1) with
a six-component order parameter, we get

8 C„„(r,t) = —I f D[ Q]P( Qt) IQ&(0)( F5/5Q)+Q (0)[5F/5Q„(r)]I+21 5(r)5„at

IV. LINEAR THEORY

For the computation of the specific elements of the ma-
trix C we need to use the particular expression (1) for F.
Note that the nonlinear terms in the equations of motion,
which arise from the quartic term in the free-energy func-

tional, play a very important role in the time-evolution of
the system. It is these nonlinear terms that suppress the
instabilities in the n-vector model. ' However, in order
to get an insight into the nature of the instability during
the very early stage of the evolution, we shall carry out a
standard linear stability analysis. The formal structure of
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the time evolution of the correlation functions for the
WFM turn out to be more interesting, even in the linear
theory, than those for the n-vector models (including
n = 1) because of the dynamic coupling of the various ele-
ments of C in the former. We first expand the free energy
around L=0 and M =0, and keep terms up to the second
derivative, i.e.,

a2
F=Fp+(1/2) g g Q&gp

BQ Bgp

+ (higher-order terms) (9)
where Fo is the free energy at L=O, M=O, and the first
derivative of F vanishes because of the extremization con-
dition. Using (9) we get

BC)((r,t)
at

8 C55(r, t)

at
BC,5(r, t)

a
Bt

(L„(r)L„(0)) = —2I [—g, C»(r, t)+AC»(r, t)+KC»(r, t)],

at
(M~(r)M~(0) ) = —2I [ gzC—»(r, t)+BC5q(r, t)+KC»(r, t)],

(L„(r)M~(0) ) = —I [—g~ C&z(r, t)+AC»(r, t)+KC»(r, t) —g2C»(r, t)+BC&5(r, t)+KC»(r, t)],
at

(10)

(12)

C„(k,co)=(1/2~) f drexp(ik r cut)C„(.r,—t),
we get

Cii(k, t =0)
M C5g —— Cgg(k, t =0)

C&s(k, t =0)
(13)

where

(tp+G, )

0 (~+G~)
ran

2I K

2I K

(co+ G3)

(14)

with

where

C»(r, t) = (L„(0)V„L„(r)),
C (r, t)=(M (0)V„M (r)),
C»(r, t) = (M„(0)V„L„(r)) .

Note that the equations of motion of the three elements
C», C55, and C» are coupled to each other but not to
those of the other elements of the matrix C. The equa-
tions of motion for the three elements C22, C44, and C24
form another closed set. However, we shall focus our at-
tention only on the set (10)—(12). Upon taking the
Fourier-Laplace transform

out the eigenvalues of the matrix

G, 0 2I K

G2 2I K
rz rz 6,

N= 0

[or, equivalently, the values of cp satisfying the equationde™(tp ~] )(tp k2 )(cl) A3 ) =0], for various values
of k. Note that negative value of an eigenvalue indicates
an instability of the corresponding correlation function.
To get an insight into the orders of the magnitudes of the
quantities involved let us carry out an elementary analysis
of the eigenvalues of ¹ Let us compute the eigenvalues
cp in the units of I (i.e., I = 1) and the energy in the units
in which g& ——1. We shall also assume gz-O(l). A is
negative and of O(1). B is assumed to be positive and of
O(1). Since K/B —O(10 —10 ) we assume
K —10 ~—10 . Then, G& —O(1), G2 —O(1), and
G3-O(1) for a wave number k-O(1); but
I E —10 —10 ' . Therefore, in the weak-coupling ap-
proximation, the terms involving r K can be dropped
from the determinant M. More precisely, we assume that
I K -O(e ), where e is a small number, whereas G2G3
and G& G3-0 (1). We shall retain terms up to the order e
but neglect higher-order terms. Note that the condition
G]G3 &&2r It would not hold very close to the transi-
tion temperature because G~ ~0 for k ~0 at T, . There-
fore, in this section we shall focus our attention on tern-
perature regimes not too close to T, . Under this approxi-
mation (see Appendix A),

and

G, =2I (g, k +A),
G, =2r(g, k'+B), (16)

detM =(cp+G~ )(~p+Gq)(~+G3),

and therefore,

g, = —6), k2 ———G2, A3 ———G3 . (18)

G3 ——r((g]+g2)k +(A +B)) . (17)

We cannot, in general, solve Eqs. (13) analytically, al-
though it is, of course, possible to write formal solutions
as shown in Appendix A. However, in order to obtain the
explicit form of the early-time growth (or decay) of the
correlation functions C~&, C55, and C» we need to find

Also note that under this weak-coupling approximation
the transition temperature is given by A =0. Therefore,
for sufficiently small values of k, 6& is negative. More-
over, depending on the relative values of A and B, G3 can
also be negative. But G2 is always positive provided B
remains positive. Substituting the values (18) of A. ~, A.q,

and A, 3 into (A 1), (A2), and (A3) we get
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Cll(k, t)=[[(61+62)(61+63)]/[(61—G2)(61 —G3)]}e ' Cll(k, t=0)

+[[262(62+63)]/[(62 63)(62 61)]}e Cll(k

+ [[263(62+63)]/[(G3—61)(63—G2)]}e ' Cl, (k, t =0)

+[2I K/(63 —61)](e ' —e ' )C15(k, t =0),
Cgg(k, t)= [[261(61+63)]/[(61—62)(G1 —G3)]}e ' C5g(k, t =0)

+ [ [(61+62 )(62+63 )]/[(62 63 )(62 —61)]}e Cog(k t =0)

+ [[263(6,+63)]/[(63 61)(63 62)]}e ' C5~(k, t =0)

+[2rK/(63 G2)](e ' —e ' )C15(k, t =0)

C»(k, t) = [[261(61+62)]/[(61—62)(61 —G3)]}e ' C»(k, t =0)

+ [[262(G, +62)]/[(G2 —63)(G2 —Gl )]}e ' C15(k, t =0)

+ [[(61+63)(62+63)]/[(63—Gl )(63—62)]}e ' c»(k, t =0)

+[IK/(63 —61)](e ' —e ' )Cll(k, t =0)+[IKI(63 —62)](e ' —e ' )C55(k, t =0) .

(19)

(20)

(21)

Note that the solutions (19)—(21) reduce to the correct
t =0 limits. Now let us examine the signs of G~, G2, G3,
and that of the time-independent amplitudes of the vari-
ous terms in (19), (20), and (21). We are interested in the
regime where 3 is negative. Therefore, for sufficiently
sma11 k, we have G

& & 0, thereby signaling long-
wavelength instabilities of the correlation functions. In
order to determine the signs of the amplitudes we have to
specify the signs and the relative magnitudes of G], Gz,
and G3 For simplicity let us focus our attention only on
the k =0 modes. First of all, we shall not consider tem-
peratures too close to the transition temperature where 3
is very small, because in this regime the weak-coupling
approximation will be violated and the solutions (19)—(21)
cannot hold there. Thus, we are interested in the tempera-
ture regime where

~

A
~

&&B (indeed, the condition

~

3
~

&2B is sufficient). In the latter regime, G3 &0, and

1611 & 62 I 61
I

&
I
631 1631 & 62 .

Therefore, taking the inequalities into account (together
with the fact that I K is small in the weak-coupling ap-
proximation), one can easily check that the amplitudes of
the dominant instability are positive for both Cll(k, t) and
C55(k, t), as they should be.

Thus, the linear stability analysis shows an expected in-
stability of the system for sufficiently small k and the sys-
tern does not exhibit any mechanism for equilibration.
However, the linear stability analysis neglects a crucial as-
pect of the evolution, namely, the well-known feedback ef-
fect of the nonlinear terms which tames the instability
and drives the system toward equilibrium. This feature of
the theory is also shared by one-component systems as
well as the n-component systems in the absence of aniso-
tropy. ' However, what makes the WFM more interest-
ing is the coupled nature of the instability of the correla-
tion functions. In the next section we shall carry out an
approximate analysis of the late stage of the growth

which takes these nonlinearities into account.
We note in passing that the linear theory of the spino-

dal decomposition in He- He mixture predicted a "flick-
ering of the instability" introduced by the two second-
sound modes, which arise from the conservation of entro-
py. Our linear theory predicts no such flickering during
the ordering process in the WFM, since there is no conser-
vation law in our model.

V. GROWTH IN THE LATE STAGES:
NONLINEAR THEORY

M (K IB)Ly My (K/B)L M 0 (22)

The linear stability analysis that led to (19)—(21) holds
only for very early time. As stated in the Introduction, in
the late stages one gets a t' power-law growth for
models with a scalar nonconserved order parameter. We
shall show now that the same power law holds also in the
WFM, although the analysis is more complicated in the
present case. This result is due to the fact that the
dynamics of the interfaces determine the late-stage
growth. In order to investigate the latter problem one
usually first finds the inhomogeneous steady-state solu-
tion which describes a situation in which different phases
are separated from one another by interfaces. For simpli-
city, we shall assume that the gradient term in M is negli-
gibly small. This assumption is quite reasonable in the
absence of external field, as explained earlier. So far as
the term proportional to g& is concerned, we shall keep
only (gl /2)L, and drop the inhomogeneities along x and
y directions. Moreover, since we are now interested in the
evolution of the nonuniform steady-state solution to the
equilibrium solution (3), we drop the terms involving L,
in (1) for the subsequent discussion. Following the ap-
proach of San Miguel and Gunton we minimize the total
free-energy functional (1) with respect to M„, M», M,
keeping L„, L~, L, fixed, to obtain
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Substituting (22) into (1), we get

I' = J d r[(A /2)(L„+Ly )+(D/4)(L„+Ly )

+(gi/2)
I
VL

I

'] (23)

where

BL
AL +D(L +Ly )L (gi/2) 0

az2

BL
ALy+D(L2+Ly2)Ly (g i /2—) 2' ——0 .

Bz

(24)

(25)

However, since M &~L =1, we should have L„+Ly =1.
Moreover, the static solutions summarized above lead to
M =(KIB) L The.refore, we impose the boundary con-
dition L„=+1 at z= ao and Ly =0 at z= oo. Under
these conditions, we have' (see Fig. 1 for a schematic pic-
ture)

A/2=[(A +K)/2] (K—/B),
which reduces to ( A +K)/2 in the weak-coupling approx-
imation. Minimizing (26) with respect to L„and Ly, we
obtain

negative below the transition temperature). The physical
implication of this set of solutions is very simple. Since L
and M are, respectively, the sum and the differences of
the two sublattice magnetizations,

I L„ I
is maximum

where
I M„ I

is minimum and vice versa.
Let us now introduce a new set of coordinates

(qi, q2, q3). We divide space into surfaces of constant L„
and choose q~ to be orthogonal to this surface. Carrying
out a transformation from the old coordinate system to
the new coordinate system, we have

0 L„ BL„
V L„= —(Ki+K2)

Bg Bg
(28)

(3L„
at

af a'L„ BL„= —r —g, ,
" —(K, +K, )

QL gg2 Bg

where dg =h ~ dq ~
denotes the displacement normal to the

interface such that

BL
VL„= g,

Bg

and K
&

and K2 are the two principle curvatures of the in-
terface. Hence, the equation of motion for L reduces to

and

L„=tanh(z Izp )

Ly
= 1/[cosh(z Izp )] .

(26a)

(26b)

where f is the free energy excluding the gradient term.
Since

df d L„
aL.

Therefore,

M = (K /B) I 1 /[cosh(z Izp ) ] )

and

(27a)
yields the kink solution (26a), we finally have

M. 8L= —I gi(Ki+Kq)
g ag

(27b)My ———(K /B )[tanh(z /zp )],
where zp ——(2/a)' where a= —A (remember that A is

for locally planar interfaces. (This equation was first de-
rived for a scalar order parameter with nonconserved
dynamics by Allen and Cahn. '

) Therefore, the velocity
of the interface is given by

BgU=
c)t

~(Ki+Kq) .

Since U —(dR/dt), where R (t) is the characteristic linear
size of a domain, (dR /dt) ~ (1/R). Hence, finally,
R -t ' is the growth law for the weak ferromagnets.

VI. GROWTH OF DROPLETS FOLLOWING
AN OFF-CRITICAL QUENCH

FIG. 1. Schematic representation of the geometrical structure
of the interfaces described by Eqs. (26a)—(27b).

So far we have investigated the kinetics of domain
growth in the WFM following a critical quench from a
very high temperature. In this section we shall briefly dis-
cuss the kinetics of domain growth in the WFM following
an off-critical quench from a very high temperature. For
the theoretical description of an off-critical quench one
must rewrite the free-energy functional in terms of the
quantities L„-U~, Ly Uyy Lzy M„V~& My Vyy Mzy where
U» Uy, V» Vy are the equilibrium values of
L& p Ly p M& p My respectively. This introduces linear as
well as cubic terms, in addition to the quadratic and quar-
tic terms, in the free energy functional. Therefore, the
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"double-well" structure of the free energy becomes asym-
metric. This feature changes the physics of the problem.
Now droplets of one of ordered phases, surrounded by the
disordered high-temperature phase, are formed. Under
such circumstances one can easily show' that the inter-
face profile maintains an approximately constant shape
during its propagation, i.e., the kinetic equation of evolu-
tion remains invariant under the translation in time
t~t'=t+At, and in space r~r'=r+Ar. Thus, choos-
ing a reference point R(t) on the moving interface, one
can say that the if a spatial translation r~X=r —R(t) is
applied, the order parameter appears the same at all times.
Consequently, the components L~, L~, M~, and M~, are
functions of r —R(t). From this general feature of the in-
terface structure one can show' that the growth is dom-
inantly linear in time. This is in contrast to the t'
growth law in the case of a critical quench described
above.

and

=CO +@CO+V,

M2i ———2I E

M3) ———2I K(co+Gal),

detM =co +a2co +a&co+ao3 2

= (co —A, ()(co—A, p)(co —A.3),
where

C), (k, t)=W '((M))/detM)C))(k, t =0)
—(M2~/detM)Cq5(k, t =0)

+(M3)/detM)C)5(k, t =0)),
where W ' denotes the inverse Laplace transform and

M„=co +co(G2+G3)+(G263 —2I K )

VII. CONCLUSION

In this paper we have investigated the time evolution of
the spin correlation functions from an unstable low-
temperature state of weak ferromagnets following a
quench from a high-temperature equilibrium state. Be-
cause of the coupling of the order parameters, introduced
by the Dzyaloshinsky-Moriya anisotropy, the correlation
functions are shown to form a few separate sets where ele-
ments belonging to each set evolve in a mutually coupled
manner even in a linear theory. The geometrical structure
of the interfaces separating the different phases is richer
than that in the isotropic n-vector and Ising models. The
analysis of the late-stage growth, following a critical
quench, in terms of the motion of the interfaces leads to a
t ' domain-growth law. A linear-growth law is obtained
in the case of an off-critical quench.
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APPENDIX A

The formal solutions for C»(k, t), C55(k, t), and
C,5(k, t) can be written as

a2 ——G) +G2+63,
a ] ——G ) G2+ G2 G3+ G3 G )

—4I K

Qp=G]G263 —2I K (G&+G2)

C»(k, t)=W '( —(M,2/detM)C»(k, t=0)

where

+(Mz2/detM)C5, (k, t=0)
(M32 IdetM )C» ( k, t =0 ) )

M]2 ———2r E
M22 ——(co+G) )(co+G3)—2I K =co +p'co+v',

M3p ——2I K(co+ G) ),
C,5(k, t) =W '{(M )3/detM )C) ) (k, t =0)

(M23 /detM ) C55 ( k, t =0)

+(M33/detM)C»(k, t =0))
where

M(3 ———I K(co+ G2),

M23 —I K( +G) )

M33
——( co +G

~ )( co +G 2 ) =co +p co +v"

Taking the inverse Laplace transform, the formal solu-
tions for C»(k, t), C»(k, t), and C»(k, t) are given by

C) ( (k, t) = [(k) —pA, , +v)/A )]e ' C), (k, t =0)

+[(A2 —@f2+v)/A2]e ' C~~(k, t =0)+[(k3—@f3+v)/A3]e ' C~~(k, t =0)

+(21 ~K /A~)e ' C5q(k, t =0)+(2I K /Aq)e ' C~&(k, t =0)

+(2I K /A3)e ' C~5(k, t =0)—[[2I K(A~+G2)]/A~]e ' C~~(k, t =0)
—[[21K(A2+G2)]/A2je C~5(k, t =0)—[[21K(A3+G2)]/A3]e ' C~q(k, t =0),

where

(A1)
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and

A) ——[(A.) —kq)(A. ) —A3)],

Az ——[(A,z —t{,3)(A.3—iL) ) ]

A3 ——[(A,3 —A, ))(t{.3 —A.P)] .

Similarly,

Css(k, t)=[(2I K )/A&]e '
C&&(k, t =0)+[(2I K )/A2]e '

C&&(k, t =0)+[(2I K )/A3]e ' C~~(k, t =0)

+[(kt —p'A. ~+v')/A~]e ' Css(k, t =0)+[(A2—p'A2+v')/A2]e ' Css(k, t =0)

+[(X3 p X3+v')/A3]e 'C, s(k, t =0)—{[21K(X, +G, )]/A, je ' C„(k, t=0)
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