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Many-polaron theory for superconductivity and charge-density waves
in a strongly coupled electron-phonon system with quasi-two-dimensionality:
An interpolation between the adiabatic limit and the inverse-adiabatic limit
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The phase diagram of a two-dimensional ¹ite¹lectron system (X&&1) with site-diagonal
electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the com-
petition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fer-
mi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type insta-
bility in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the stan-
dard "strong-coupling theory" for superconductivity breaks down. Phonon clouds moving with elec-
trons as well as a frozen phonon are taken into account by a variational method, combined with a
mean-field theory. It covers the whole region of three basic parameters characterizing the system:
the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy co.

The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and co. In
the adiabatic region co « (T,S) near the T-S line of the triangle, each electron becomes a large pola-
ron with a thin phonon cloud, and the system changes discontinuously from the SC state to the
CDW state with a frozen phonon as S/T increases. In the inverse-adiabatic limit co&&(T,S) near
the co vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC
state is always more stable than the CDW state, because the retardation effect is absent. Thus, the
polaron radius decreases and the SC region expands in the triangle as T/co decreases. It is found,
for the first time, that the energy gap of the SC state for a given T and S becomes maximum at the
intermediate region co- T, indicating the importance of the polaron effect. The collective excitation
within the gap of the SC state is also studied by the random-phase approximation, and is found to
change its nature continuously from the pair-breaking type to the superfluid type as S/T increases.

I. INTRODUCTION

An electron coupling with phonons in a crystal forms a
polaron, composed of the original electron dressed with a
phonon cloud that moves along with the electron. This
concept was born of experimental and theoretical studies
on the electron transport in ionic crystals and semiconduc-
tors, ' and afterwards was extended to molecular crys-
tals. ' At present, we already have a well-established
knowledge of its nature. When the electron phonon (e-
ph) coupling is of short range, it is determined by three
main quantities: the intersite transfer energy of electron
T, the e-ph coupling energy S, and the phonon energy co.

In most inorganic materials the e-ph coupling is nearly
adiabatic, in the sense that T and S far exceed co, and
hence quantum effects for the phonons are relatively
small. In this case the nature of the polaron is determined
through the competition between S and T. When the
coupling is weak, S && T, the electron becomes a large po-
laron whose phonon cloud is very thin but extends over a
wide region. The increase of its mass due to this cloud is
also very small. When the coupling is strong, S» T, on
the other hand, the electron becomes a small polaron,
whose cloud is very thick and is always in the same site as
that of the electron. Its mass enhancement also becomes
considerable.

As co increases, however, the differences between the

large and small polaron become obscure, because of the
quantum effect of the phonon. Furthermore, when co far
exceeds T and S, the electron always becomes a small po-
laron with no mass enhancement, because, in this limit,
the phonon can follow the motion of the electron without
delay. This situation, called the inverse-adiabatic limit
hereafter, is expected to be realized in some molecular
crystals. In these materials the motion of an electron
from one molecule to the other is a kind of tunneling with
small T, while the energy of intramolecular vibration as-
sociated with a carbon or hydrogen atom is relatively
large. ' Moreover, if an electron couples with a quasi-
boson such as an exciton or a plasmon through the
screened Coulombic interaction, the situation is almost
inverse-adiabatic.

As is well known, an attraction acts between two pola-
rons through the overlap of their phonon clouds. The
range and the strength of this attraction also change with
changes in the cloud. If this attraction exceeds the direct
Coulombic repulsion, the two electrons make a bound
state, called a singlet bipolaron. This bipolaron, once
formed, can give rise to a spinless conductive charge, as is
observed in amorphous solids, conducting polymers, '

Ti407, " and Nao 33V205. '

Thus, the one- and two-body natures of polarons have
been well clarified, and the purpose of the present paper is
to extend these concepts to many-body systems. As is
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well known, a metallic state of a many-electron system is
always unstable with respect to the e-ph coupling and be-
comes a superconducting (SC) state. In this state, accord-
ing to Schrieffer, ' the electrons only around the Fermi
level make singlet bound states, called BCS pairs, through
the attraction mediated by phonons. However, most of
the theoretical studies for this problem are restricted to a
weak-coupling region where perturbation theory works
well. Even the so-called strong coupling theory' has not
included such a strong region that the polaron effect be-
comes very important.

If we restrict ourselves only to the limit of strong cou-
pling, S~~T, on the other hand, the perturbation theory
with respect to T works well, and several theoretical stud-
ies have been devoted to this case. ' ' According to their
results, the many-polaron system, in this limit, is in a
superfluid-type state rather than the BCS state. However,
it is still uncertain how the state changes its nature from
the BCS type to the superfluid type. For this reason, we
are especially interested in clarifying the interrelation be-
tween the two types of states as a function of T, 5, and co.

There is another candidate for the ground state of a
many-electron system coupling strongly with phonons.
That is, the e-ph coupling can make a certain phonon-
mode to be a frozen lattice distortion. It can raise and
lower the energy level of electrons at each lattice site
periodically. In this state, two electrons with opposite
spins tend to occupy lower-energy sites, resulting in a
crystalline order of bipolarons. If this order is sufficiently
strong, it causes a metal-insulator transition. This is
nothing but the charge-density-wave (CDW) state with a
structural change of the crystal.

In the SC state, the phonon clouds will move from site
to site according to the motion of electrons so as to keep
them in a bound state, resulting in no frozen phonons.
The crystalline state of bipolarons, on the other hand, has
a frozen phonon that is not greatly influenced by instan-
taneous motions of individual electrons, but is dependent
mainly on the average static charge density.

As Chakraverty conjectured, ' these two states are al-
ways competing with each other, and this reflects the
competition between the adiabatic nature and the inverse-
adiabatic one of the e-ph coupling. In the adiabatic limit,
the frozen part of the phonon will be dominant, since the

motion of the phonon is too slow to follow the electron,
while in the inverse-adiabatic limit, the moving part will
be dominant, because the phonon can follow the electron
without retardation. One of the main purposes of the
present paper is to clarify this competition.

There are several kinds of superconducting materials
wherein the e-ph coupling is so strong as to be in the criti-
cal region. In BaPbi „Bi„03(x =1-0), the breathing
motions of oxygen atoms around a bismuth atom are in-
ferred to contribute both to the pairing order and the
structural change involving the metal-insulator transi-
tion. ' According to the recent theoretical studies' on
315-type compounds, it is shown that the e-ph couplings
in these materials are too strong to be described even by
the standard "strong-coupling theory. "' Typical exam-
ples for the material with the crystalline order of bipola-
rons are the transition-metal oxides such as Ti407 (Ref
11) and Na033V205 (Ref. 12), wherein the metal-insulator
transition occurs at low temperatures.

In the present paper, we will study the competition be-
tween the SC-type pairing order and the CD&-type crys-
talline order of bipolarons in a two dimensional %-site
X-electron system (N »1) with a site-diagonal e-ph cou-
pling. We will assume that the Fermi surface of nonin-
teracting electrons is a complete circle with no nesting-
type instability in the case of weak e-ph coupling, so as to
focus mainly on the strong-coupling region. Phonon
clouds moving with the electrons as well as a frozen pho-
non will be taken into account by a variational method,
combined with a mean-field theory. It will cover the
whole region of T, S, and co, and the resultant phase dia-
gram will be shown in a triangular coordinate space
spanned by these three quantities. The nature of the col-
lective excitation within the energy gap of the SC state
will also be studied by the random-phase approximation,
so as to clarify the crossover between the BCS type and
the superfluid type.

II. MANY-PQLARON SYSTEM

Let us consider a two-dimensional square lattice com-
posed of X sites ( K» 1), and of X electrons interacting
with each other and with phonons. Its Hamiltonian
(=H) is given as (iri= 1),

H = —g T(l —I )7llagl'e+ U g BlaB!P+(S~/2) g(gl +Pl )nlcr™g klgl

T(/ —1') denotes the transfer energy of an electron be-
tween two lattice sites specified by l' and l, where l
denotes a two-dimensional position vector, 1=—(I„,I» ),
I& ly 1 2 . , 1V', represented in a Cartesian coordi-
nate space spanned by two crystal axes of square lattice.
The unit of the length is the lattice constant. r)i (gi )
denotes the creation (annihilation) operator of electron at
site 1 with spin o (=a,p), where a and p denote up and
down spin, respectively. U is the energy of intrasite

Coulombic repulsion, and n& =g& g& . S is the site-
diagonal coupling energy between an electron and a site-
localized phonon with an energy co. gi (gi) is its creation
(annihilation) operator. This phonon mode corresponds to
the intramolecular vibration in the case of molecular crys-
tals, and in the case of inorganic solids it corresponds to a
breathing mode of a ligand around a metallic atom with a
conducting electron.

To focus our attention mainly on the strong region of
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e-ph coupling, we assume that the Fermi surface of
noninteracting electrons is a complete circle, with no
nesting-type instability in the case of weak e-ph coupling.
Hence, we assume that the transfer energy between
nearest-neighbor sites is T, that between the next-nearest-
neighbor sites is gT (g =0.35), and zero otherwise. This
provides us with an almost completely round Fermi sur-
face, and its density of states has no singularity around
this Fermi level, as shown in Fig. 1. Although we are
concerned with only the two-dimensional square lattice
throughout this paper, we tacitly assume that there is a
small interlayer interaction which makes long-range order
stable.

It is expedient to cast all quantities into dimension-
less forms: h =H/cu, t (I —I')—:T(l —I')/~, u—:U/co,
s =—S/co, where h becomes
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FIG. 1. The density of states of the noninteracting electron
(solid line), and of the bipolaronic insulator (dashed line).

h= —g t(l —I')tl~ Rt +u gnI nrtt+(s/2)' gni (gt+gI)+ ggigi . (2.2)

As mentioned in Sec. I, the state of the phonon can be
qualitatively divided into two parts: the frozen part that
follows only the static charge density, and the moving
part that follows the instantaneous motion of each elec-
tron. In the adiabatic limit the frozen part will be dom-
inant, while in the inverse-adiabatic limit, the moving one
will be important. Our main idea of describing the inter-
mediate region is an interpolation between these two lim-
its. That is, the two parts are assumed to coexist with a
ratio determined by a variational method. For this sake,
we introduce a displacement operator (—:M) for the pho-
non:

bt =M 'gtM=gt+(s/2)' q I+ g bq(1 I')n—
~

1I I

(2.5)

Here, q1 denotes the frozen displacement of phonon at site
I, being not directly related to the occupation n1, while
bq(I —I'), assumed to be an even function of (I —I'),
denotes the moving displacement of phonons at site 1

created by electrons at site I'. g1 is now transformed into
a creation operator of localized polaron a1 with a phonon
cloud whose spatial extent is given by b,q(I). b~ denotes
the creation operator of a new phonon whose equilibrium
position is already displayed by aforementioned two parts.
Although the original e-ph coupling is of short range, we
cannot assume b,q (I) =5~O, because the electron is moving
through the effect of T (I —I '). Moreover the degree of
the spatial extension of b,q(l), usually called the polaron
radius, plays very important roles as is seen in following
sections.

Substituting Eqs. (2.4) and (2.5) into Eq. (2.2), we get

M:—exp is'~ Q—Pt q I+ g b,q(I I')nl—
1 1', cr'

Pi= i(PI 4)/2' —', — (2.3)

(2.4)

which can transform g~ and gl as

a&~=M 'gI~M =exp is' 'g hq(I I')P, —
1'

h = —g t(l —I')exp is' g—[bq(I —I")—bq(I' I")]P&- a~ aI—
1,1',a 1"

—s g qtn~~+s g (q I/2)+u g ni~n~tt sg [bq(l ——I') Aq2(I I')/—2]nl~nI ~—

+ g b, b, +(s/2)' ' g (bi +bi)[5a —bq(I I') Z/&]«— —
1,1', cr

(2.6)
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where we have assumed the orthogonality between two
parts of displacements

Pqt ~q(I' —I) =0 for any I, (2.8)

so that their roles do not entangle with each other in the
variational method. The first term of Eq. (2.6) denotes
the transfer of a polaron, the second one is the potential
given by the frozen part, and the third is its elastic energy.
The fifth one is the attraction between polarons, subtract-
ed by the increase of elastic energy to create the phonon
cloud: b,qz(1 —I')/2. The sixth one is the Hamiltonian of

the new phonon, and the last one denotes the interaction
between the polaron and the new phonon. If we assume
b,q(I)=5to and qt

——0, this interaction term disappears.
However, such a transformation will be useful only in the
inverse-adiabatic limit where each electron always be-
comes a small polaron with no frozen phonon.

Since the displacement of the equilibrium position of
the phonon has already been taken into account by Eq.
(2.5), the new phonon vacuum [=—~0))] becomes our
reference state. Using this state, we define an averaged
reduction factor (—:X) of the transfer energy, including
the overlap integral between phonon clouds localized at
each site [here, (( ))—= ((0

~

. .
~
0))],

X = g t (I —I') exp is —'~ g [b q (I —I") —b q ( I' —I") ]P~
1, 1' 1"

gt(l —I') . (2.9)

It ean be easily calculated and we get

X = g t(l)exp[ —s [Aqua(0) —bq2(I)]/2j Ig t(l) .
1 1

(2.10)

We should note that X ' is nothing but the mass

enhancement. In terms of X, thus obtained, we can
rewrite h and divide it into four parts as,

h =ho+ gb, b, +Ah, +Ah, . (2.1 1)
1

h p is the Hamiltonian of the many-polaron system whose
transfer energy is replaced by its averaged value as

ho =——X g t(l I')a~~—~~ sgq~—n~ +s g (q ~/2) —g [s[2bq(I —I') —bq2(I —I')] —u5~~ ]n~~n~tt

—s g [[2bq(l I') bq2(I ——I')—]—[2hq (0)—bq2(0)] ]nt~n& ~/2 sN [2hq(0—) —Aq2(0)]/2,
1, 1', (y

where the last term is the self-energy of the polarons. b,h
&

is the linear interaction term mentioned before,

b, h, =(s/2)' g (b~ +bi)[on —~q(i I') qt/&—]ni—

(2.12)

(2.13)

and Ah2 is the difference between the true transfer and the averaged one,

hh2= —g t(l —I') exp is' g [A—q(l I") bq(I' —I")]P& ——X—a~ at (2.14)

qt
——q cos(Q.I)+1, Q = (~,m. ) . — (2.15)

Here, q ( &0) denotes the amplitude of this frozen dis-

It is not our purpose to study all possible ground states
brought about by the model Hamiltonian h, but rather to
clarify the nature of the competition between the SC type
pairing order and the crystalline order of bipolarons in the
region where the e-ph coupling is strong and the Coulom-
bic repulsion U is weak enough to play only a minor role.
Since our system is the square lattice with N sites and X
electrons, the crystalline phase of bipolarons in the strong
coupling region, s ~&t, is inferred to be such that the
frozen displacement occurs with twice the period of the
original square lattice, both in two directions of the crys-
tal axes,

placement, Q denotes its wave vector with two dimen-
sions, and the constant term denotes the uniform displace-
ment corresponding to the uniform charge density. q~
raises and lowers the site-energy of the electrons alternate-
ly along the two axes, and two electrons with opposite
spins from each other tend to occupy lower-energy sites.
This is the bipolaronic crystal with twice the period
schematically shown in Fig. 2. We can also think of other
possibilities such as Q =(n, O) and (O,vr), w. hich result in
an array of bipolarons with the original period in one
direction and with twice the period in the other direction.
This state, however, is more unstable than the former one,
because Pauli's exclusion principle acts between two bipo-
larons in neighboring sites, through the second-order per-
turbation of T.

In the case of weak e-ph coupling, t &~s. On the other
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hand, a frozen displacement will occur with such Q that
two parts of the Fermi surface can nest, so long as this is
possible. As mentioned occasionally, however, the Fermi
surface is a circle, any two parts of which, cannot nest
with each other so efficiently as to make this CDW state
more stable than the metallic one. For these reasons, we
assume that the frozen displacement only of the type
given by Eq. (2.15) can occur, so long as the frozen dis-
placement can occur.

Let us now approximate that the total wave function
( =—

I y & ) of our system is composed only of the new pho-

non vacuum as

(2.16)

where
I pro» is the wave function of the polaron part. We

should note
I po» or IO)) is an operand on which only a~

(ar ) or bi (bI) acts, respectively, and hence this approxi-
mation is equal to hold only ho in Eq. (2.11), by neglect-
ing Ah& and Ah2. The effects of the neglected parts will
be studied in later sections.

The wave-vector representation of hp is given by

ho= —g ekak~ak~ sq g—ak+~~ak~+(sq N/2) —g g N [s(2bqk k bqk k
—) —u]

—1 2

k, cr k, o. k,p k'(&k)

k +p /2, a+ —k +p /2, gP —k '+p /2, P+k ' +p /2, a

+~ g g gN ' (2b.qk „b,qk k ) g—N '(2b—,qp Aqp )—
k,p k'(~k) o P

Xak+p/2 ~ak pn ~ak pn ~ak +pn ~ —(sN/2)+(uN/4) —s g (2hqp —bq p)/4,
2

P

(2.17)

tk =—g e '"'r(l), ek =Xtk .
1

(2.18)

The quantity tk, thus defined, is the Fourier component
of the transfer energy t (1) which is given as

tk 2t[cos(k„)+cos(k» ) +2g cos(k„)cos(k» )], t:T/co, —

(2.19)

where k„and k» are two components of k; k =(k„,k»).
We should also note that there is a relation gk ek
= gk tk =0, since t (0)=0.

where k, k', and p are two-dimensional wave vectors in
the first Brillouin zone shown in Fig. 3, and ak, Aqp, and
ek are defined as

1 /2e lk Ia Pq g Pq ( l)e ~P I

I I

In Eq. (2.17), all uniform interactions are eliminated
from fourth and fifth terms and are summarized in the
last three terms. The attraction between two polarons
with a same spin is also rewritten in a form of exchange
repulsion in its appearance. We should also note that

Aqp ——0 and Aqg ——0, (2.20)

X= g t(l)exp —s g N 'b,
qp [1—cos(p l) ]/2

I P
tP

(2.21)

where we can see that the frozen displacement has no ef-
fect on X.

which come from Eq. (2.8). In terms of b,qp and tk, X
can be rewritten as

FIG. 2. The schematic nature of the crystalline bipolarons.

FIG. 3. The first Brillouin zone of the square lattice. The
shaded area is occupied in the metallic state. The square sur-
rounded by dashed lines is the half zone (HZ) defined in relation
to Eq. (3.13).
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III. MEAN-FIELD THEORY ber (
—= b,nk) as

Let us calculate the energy of the ground state of a
many-polaron system characterized by hp, within the
mean-field theory for interpolaron interactions and by a
variational method for q and Aqp. So as to reduce the
two-body terms of hp into one-body terms, we define the
partial amplitude of the SC type pairing order ( = fk), the
crystalline order ( =1k ), and the average occupation num-

fk «ak~ kit &&, dk = &&ak+g, ak ))

~nk = «ak(Taker ))
(3.1)

where « . . ))—:«pp ~

' '
~ happ)) and gk b, nk ——0.

These quantities are also expected to be even functions of
k. In terms of them, hp can be reduced as

(3.2)

h p = —g ekakWk~ —sq g ak+p ~ak~+(sq N/2) —g N [s (2hqz —
Aqua ) —u]fk+t, (ak~a k ted+a k yak~ fk)—2 2

k, a k, o. k,p

+ g N '[u +s(2bq~ —hq~)]dk+~(ak++~ak~ dk/2—)
k,p, o.

+s g N '(2bq~ bq~)b—nk+~(ak~ak~ Ank/2—) (sN/—2)+(uN/4) sg —(2bq~ bq~)/4, —

where there is no two-body term. However, fk, dk, b,nk, q, and b,q~, as well as
~
pp)) are unknown at the present stage,

and should be determined later self-consistently.
The condition of energy extremum B« hp )) /Bq =0 combined with the Feynman-Hellman s theorem gives the relation

q =2+N 'dk,
k

(3.3)

which is the balance equation between the static charge density and the frozen displacement. Substituting this into Eq.
(3.2), we can rewrite hp as

hp g Ekak ak g +k(ak a king+—a , k, t3ak ) Q— Dkak+Q, ak
k, o k k, a

+ g [+kfk+(Ek ek )~nk+Dkdk] (sN/2)+ (uN/4) sg (2bq~—hq~ )/4, —
k p

Ek =—ek —s g N '(2hq~ bq~ )hnk+~, —
P

Fk —= g N '[s (2b qq Aqua ) u]fi, +q,——
p

Dk =—g N '[(2s u) —s (26q~ bq—~ )]dk+~, —
P

(3.4)

(3.5)

(3.7)

where Ek is an effective one-polaron energy including the
interactions between polarons, Ek is the off-diagonal mix-
ing due to the SC type pairing order, and Dk is the mixing
between k and k +Q due to the crystalline order of bipo-
larons. From Eqs. (3.6) and (3.7), we can see that u con-
tributes to suppress both kinds of orders, while Aqp con-
tributes positively to Fk, but negatively to Dk. That is,
the moving displacement is the origin of the SC type or-
der, while in the crystal phase of bipolarons, it contributes
to partially cancel the energy difference between the sites,
sq, coming from the frozen displacement. This is a typi-
cal aspect of the competition between the adiabatic nature

and the inverse-adiabatic one of e-ph coupling.
From Eq. (3.4) we get the total energy as

« "p » = —g [Ikfk+(Ek+ek)«k+Dkdk]
k

—(sN/2)+(uN!4) —s g (2b,qz
—hqz)/4,

P

(3.8)

and the condition of energy extremum B«hp))/Bhq~ =0
for fixed b nk, dk, and fk gives

b, q = 1+4(tp t )tp
' gN 'ink—ek

k
I +4g N '(fk+t fk ~nk+p ~nk —dk+, dk )

k
(3.9)

In this derivation we have used the same approximation as we did in Eq. (2.12). That is, the reduction factor of the
transfer energy, which appeared in BX/Bb, qz, is replaced by its average as
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ax
BhqP

= —2sN 'Aqua gt(l)sin (p.l/2)exp —s gN '[&q,sin(p' l/2)]2
I P

tp )

sN—'Aq~X(tp t —)/tp .

Thus we have described q and AqP in terms of ink, dk,
and fk, and in the next step, we must derive a self-
consistency equation for these three. For this purpose, we
first define the Fermi level (—:Ez) of this many-polaron
system by the following equation, assuming Ek is a con-
tinuous function of k,

f dE QN '5(E Ek) =——,
' (3.10)

F k

Using E~, we redefine the one-polaron energy (:EE«)—
from the Fermi level as

AEk —Ek —EF )

From the equation

M(k)V;(k)=g;(k)V;(k), i =1, . . . , 4 (3.16)

g, (k) & $2(k) & gp(k) & $4(k) . (3.17)

However, from the mathematical nature of M(k), we can
infer that

we get eigenvalue g;(k) and eigenvector V;(k) of M(k),
where i = 1, . . . , 4 is the index of eigenvector, numbered
according to its energy,

and transform the present electron picture into an asym-
metric electron-hole picture, wherein up-spin electrons are
represented by the electron picture, while down-spin elec-
trons are represented by the hole picture as

Ak =ak, B k =akP . (3.11)

$4(k)—:—g)(k), $3(k) = —$2(k) .

V; (k) in Eq. (3.16) is a four-dimensional row vector

V, (k)=( V*„(k),V2;(k), V3;(k), V4;(k)), (3.18)

In terms of Ak and Bk, hp can be written as

hp = —g EE« (A«A« —B«B« ) —g Fk ( A«B« +BkA « )

k k

—g Dk(A«+g Ak B«B«+g )—
k

where V';(k) (m =1, . . . , 4) denotes its component cor-
responding to the four operators in Eq. (3.14). The uni-
tary transformation W(k) that diagonalizes M(k) is given
by

+ X[ «fk+( k
—k)«k+Dkdk]

k

K'(k)=(V, (k), . . . , V (k)), (3.19)

—(sN/2)+ (uN/4) —s g (2hq —Qq )/4,
P

(3.12) and a new vector operator Zk, defined in terms of g (k)
as,

where we have used the relation gk Ek ——0 which comes
from the formula gkek ——gk An«=0. Restricting the
summation over k within the half of the first Brillouin
zone (HZ) written by dashed lines in Fig. 3, and denoting
such k as k E.HZ, we can rewrite h p in a 4 X4 matrix
form as

hp ———g A«M(k) Ak
keHZ

+ g [Fkfk+(Ek —ek)bnk+Dkdkl
k

Zk = Ak W(k),

can diagonalize hp. Thus we get our final form

hp ———g [(i(k)(Z i«Zik —Z4«Z4«)
k KHZ

+g'2(k)(Z2«Z2« —Z3«Z3k)]

+. g [Fkfk+(Ek —ek)bnk+Dkdk]
k

(3.20)

(sN/2)+(uN/4—) —s g (2&q~ —&qp/4
P

where Ak is the four-dimensional row vector

Ak =(A«, B«,Ak+g, B«+g ),
and M(k) is the matrix

(3.13)

(3.14)

(sN/2)+(uN/4) sg (—2bq~ —bq~ )/4, —(3.21)
P

where Z;k (i =1, . . . , 4) is the ith component of Zk.
Since gi(k) and $2(k) are positive, our ground state can
now be written as

Fk
M(k) =

k

Fk Dk

0

—Dk Fk+ g

0 AEk+g

—Dk

Fk+g
—AEk+g

(3.15)

lq'. »- II z' z' Il 't IO»
k KHZ I

(
l

0»~true polaron vacuum) . (3.22)

From Eqs. (3.22) and (3.1), we can obtain a set of self-
consistency equations as
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b, nk= g ~
V,i(k}

~

—1/2, ink+~ ——g ~
V3J(k)

~

——, , (kEHZ),
j=1,2 j=1,2

fk = g V)J(k) V21(k), fk+g ——g V31(k) V4J(k), (k e HZ),
j=1,2 j=1,2

dk = g V)J(k) V3J(k) .
j=1,2

(3.23)

What we have to do hereafter is to solve a set of equa-
tions for X, bqp, ink, fk, and dk, that is, Eqs. (2.21),
(3.5), (3.6), (3.7), (3.9), (3.16), and (3.23). Although it is
complicated, we can solve it numerically making use of an
iteration procedure, and the total energy can be obtained
from Eq. (3.8). We can easily see that Fk at the Fermi
level gives a half of the energy gap due to the SC-type or-
der, while Dk gives a half of the energy gap due to the
crystalline order of bipolarons if bEk bEk+~, a——nd when

Dk is large enough to open up the energy gap all over the
Fermi surface, we get the bipolaronic insulator.

Generally speaking, the two order parameters Dk and
Fk may coexist, however, if one of them is zero, we can
simplify Eqs. (3.15), (3.16), and (3.23):

(a) In the case of the SC state; dk ——0, M(k) is decou-
pled into two 2 X 2 matrices, which can be diagonalized by
the following unitary transformation,

V»(k) = V22(k}=cos(pk), V33(k) = V44(k) =cos(pk+~),
—V)p(k) = Vp) (k) =sin(Pk ), —V34(k) = V43(k) =sin(Pk+& ),
pk =arctan[( Yk b.Ek)/( Yk—+KEk)]', Yk =(AEk+Fk)'

Other elements in Eq. (3.19) are zero. In this case, ink, fk, and g;(k) are given by

b nk bEk/2Y—k—, fk =Fk/2Yk, g&(k) = Yk, $2(k) = Yk+Q

(b) In the case of the bipolaronic insulator with fk ——0, the unitary transformation is given as

V))(k) = V22(k) = V33(k) = V44(k) =cos(8k), —V»(k) = —V24(k) = V3~(k}= V42(k) =sm(8k),

8k=arctan[(Bk Rk2)/(Bk—+Rk2)]', Rk; =(bEk —( —1)'bEk+&)/2, (i =1,2)

Bk —=(Rk2+Dk)

(3.24)

(3.25)

(3.26)

(3.27)

Other elements in Eq. (3.19) are zero. In this case, ink,
dk, and g;(k) are given as

I

will be concerned with Ah1, which denotes the interaction
between the polaron and the new phonon. In this case, h

becomes
g](k) =Rk]+Bk, g, (k) = —Rk]+Bk,
b, nk ——Rk 2/26k, dk ——Dk /2ek,

(3.28)
h~ho+ gbpb +Ah,

P
(4. 1)

where g~(k) corresponds to the up-spin electron and gz(k)
corresponds to the down-spin hole.

IV. EFFECT OF POLARON-PHONON INTERACTION

Let us reinforce the method developed in Sec. III by in-
cluding effects coming from b.h& and b,h2. At first, we

where bp is the Fourier transform of bi

y ~—I /2 —&p.lb

1

and b,h
&

can be rewritten in terms of bp as

(4.2)

b. h& ——(s/2)' g X ' (bp+b p)(1 bqp) p ak+p/2, ~k p/2—uq~p—g,
p(+0) k, o.

(4.3)

In the adiabatic limit, it gives a perturbation to the
many-polaron system due to the quantum fluctuation of
phonons around the frozen displacement, and its effect
will be small because of the great difference between the
velocity of the electron and that of the phonon. In the
inverse-adiabatic limit, on the other hand, the electron be-

I

comes a small polaron bqp-1, and b,h1 denotes a small
residual part of e-ph coupling not included in this polaron
effect, as seen from the factor (1—b,qp) of Eq. (4.3). For
these reasons, we take effects of Ah

&
into account within

the second-order perturbation theory. Our theory for
describing the intermediate region between these two lim-
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I q &
I q o»+ g I q, »bp (4.4)

its is an interpolation in this sense, too.
Assuming that our ground state is composed not only

by the new phonon vacuum but also by a fractional one
phonon state, we can write

I p ) as

new total energy, and within the second-order perturba-
tion,

I y~ )) is given in terms of
I yp)) as

lq ))=—(ho+I —«ho))) '((b, b,h, )) Iqo)) . (4.5)

From this, we can eliminate
I p~ )) and reduce h into an

effective Hamiltonian (ho+Ah, ) which acts only on
I qo)) as,

where
I y~ )) is the wave function of the polaron part as-

sociated with the one-phonon state. What we must now
do is solve the equation h

I y) =E
I
y), where E is the

I

bh, = —g [(hh, b~)](ho+1 —&&ho)) ) '[(b~hh))]
P

(ho+5, h, )
I
q)o)) =E

I
q)p)),

where Ah, is defined by

(4.6)

T

= —s g N '(1 hq~ —) g ak p/g ~ ak +p/2, cr' qopQ (ho+ 1 &&ho )& ) g ak+p/2, ~k p/2, o— q~pQ
p(~0) k', cr' k, o.

(4.7)

This equation gives a solution for
I yp)) which is different

from the previous one obtained by Eq. (3.22). However,
the effect of hh, can be estimated on the basis of the pre-
vious solution. For this sake, we introduce a new
particle-hole picture taking the ground state given by Eq.
(3.22) as our new vacuum. In this picture, ho given by
Eq. (3.21) is rewritten as

hp =—g g(k)(Z kZk +ZkZk ) + « hp ))
k

where

(4.8)

g(k)—:g)(k), Zk =Zlk

Zk =Zonk (k &HZ),

g(k) =—gP(k —Q), Zk =—Z2 k Q,
Zk =—Z3 k Q (k &HZ),

and Z k (Zk ) is the creation operator of a hole (particle)
above the new vacuum. This new particle-hole picture
should not be confused with the old one defined by Eq.
(3.11). When the gap due to two kinds of orders is very
small: (Fk and Dk) « t, our system is almost same as the
noninteracting metallic system with g(k) —

I
EEk

I

. In
this case, ak is described in terms of Zk and Zk and
a kp is described in terms of Zk and Zk. Hence,
(hp+ 1 —«hp )) ) 'ak ak

I yp)) aPPeared in Eqs. (4.6)

and (4.7) can be denoted by a linear combination of fol-
lowing four types of terms

( I+/(k)+g(k )) z kzk'
I
'tpo)) i

(1—g(k) —g'(k')) 'Z kZk I yo)),
(4.9)

( I+((k) —pk')) 'z kzk'
I eo» i

(1+((k)—g(k')) 'ZkZk'
I po)&

They correspond to a particle-hole pair creation, a pair
annihilation, and scatterings of a hole or a particle. How-
ever, all four of these parts are equally important only in a
narrow region around the Fermi level; (g(k), g(k')) =0,
and hence we can replace all energy denominators by
[1+/(k)+g(k')] ' without serious numerical errors.
When the gap is very large, Fk or Dk &&t, on the other
hand, we can also rewrite

("o+I—« "o») 'ak~k'rr
I yo)&

by using similar terms as shown in Eq. (4.9). In this case,
however, only the particle-hole pair creation term is im-
portant because of the large gap, and g(k) becomes almost
independent of k. For these reasons we can replace
(hp+ 1 —« ho )) )

' in Eq. (4.7) by

I[i+/(k'+p/2)+g(k' —p/2)] '+[1+/(k+p/2)+g(k —p/2)] 'I/2 .

After this replacement, we apply the mean-field approximation to ho+Ah, and can get a very similar form to Eq.
(3.4) as,

ho+Ah, = —QEkak~ak~ QFk(ak~a ktt+—a kt3ak~) —QDkak+Q ~ak~+ g [Fkfk+(Ek —ek)bnk+Dkdk]
k, o k k, a k

—(sN/2)+(uN/4) —s g (2hqz —Aqua)+ gN 'G(k,p)(4nk+1)
P k

4, (4.10)

G(k p)=(1 bq~) /[1+/(k)+g(k+p)]—, (4.1 1)
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where Ek, Fk, and Dk are defined as

E» —=e» —s gN '[(2hqz —Aqz)+G(k, p)]An»+z,
P

F»—= gN 'Is[(2bq~ —hq~)+G(k, p)] —u If»+~,
P

D» —= gN 'I(2s —u) —s [(2hq~ —bp~)+G(k, p)]Id»+~ .
P

The total energy of the system also becomes different from Eq. (3.8), and it is given by

«hp+~h &&
= —y [I'»f»+(&»+e»)~n»+D»d»]

k

(4.12)

(4.13)

(4.14)

(sN/—2)+(uN/4) —s g (2bq~ —Aq~)+ gN 'G(k, p)
P k

4. (4.15)

From Eqs. (4.12), (4.13), (4.14), and (4.15), we can easily
see that the effect of Ah

&
is almost same as that of the

moving displacement bqP, but makes its role more com-
plete, since it contributes positively to Fk and negatively
to Dk. Using these results, we can determine q, bqP, Ank,
f», d», E», F», and D», using the almost same procedure
as we did in Sec. III. The main difference between the
previous case and the present one is that we must prepare
g(k) in Eq. (4.11) beforehand by solving relevant equa-
tions given in Sec. III. However, we omit the detail of
this procedure. After numerical calculations according to
this theory, we can finally complete our phase diagram.
These results will be shown in the following section.

Incidentally, we can also estimate the effects of Ah2
which comes from the difference between the averaged
transfer and the true one. However, its contribution to
the total energy is smaller than that of Ah ].

V. NUMERICAL RESULTS
AND EXTREME CASES

In this section, we will be concerned with extreme cases
at first, and after that, we will proceed to more general
cases.

In the adiabatic limit; (t,s) »1, we get Aqua « 1 and
X =1, as seen from Eq. (3.9), since in this equation b,n»,
f», and d» are the quantities of the order of unity, while
ek is proportional to t. Thus, the electron is almost bare
with only a thin phonon cloud, and moving in a potential
due to the frozen phonon, so long as the frozen part can
exist. Since the Fermi surface is a circle with no nesting-
type instability, the region with small S/T is the SC state
with a very small gap. In this case, our gap equation Eq.
(4.13) gives the same result as that of the standard BCS
Theory. ' As S/T increases under the condition
( t,s) »1, this state changes to the crystalline phase of bi-
polarons with a frozen phonon, at a certain threshold
value of S/T.

In the inverse-adiabatic limit, (t,s) «1; on the other
hand, we can regard the first three terms of Eq. (2.2) as a
perturbation to the eigenstates given by its last term. In
this case, the e-ph coupling can be eliminated by the
second-order perturbation theory, and it results in an at-
traction between polarons as

h = —g t(I —I')at at (s ——u) g nt nttt sN/—2 .
1, 1',a

(5.1)

In other words, we can put b,q~ =1 [or b,q(1)=5tp] and
X = 1 in Eqs. (2.12) and (2.21). That is, the electron is al-

ways a small polaron with no mass enhancement. Since
the Fermi surface is a complete circle we always have the
SC state except the special case with t =0.

For other general cases, we have solved the equations
derived in Secs. IV and III numerically, and the resultant
phase diagram is shown in Fig. 4. Because of the great
mathematical complexities, we have assume that U =0.
However, the calculation is performed for all combina-
tions of T, S, and co. We can see that the phase diagram
is separated into the SC state (d» ——0, f» &0) and the bipo-
laronic insulator (d» &0,f» =0). Although we have
solved the equations for d» and f» under the coexistent
condition, we could not obtain a new energy gain due to
this coexistence. This is mainly because our Fermi sur-
face is perfectly round. We should also note that the SC
state, just on the T-S and T-co lines in the triangle, is the
same as the metallic state.

In the adiabatic region, the boundary between the two
phases is given by S/T =1.47 (point C), while, as cp in-
creases, the region of the SC phase expands in the phase
diagram, and becomes dominant in the region around the
~ vertex except on the S-co line. In Figs. 5—8, we have
shown how the state changes according to the change of
cp/S (or cp/T) when S/T is fixed at 5/3. As seen in Fig.
5, the bipolaronic insulator becomes more unstable than
the SC state at co/S-0. 3. This is mainly because the
moving displacement b,q (I) increases according to the in-
crease of cp/S (or cp/T) as seen from Fig. 6, and hence the
bipolaronic crystal is forced to melt. In fact, q also de-
creases as co/T increases. It is also very interesting that
the reduction factor X, being unity in both limits, is re-
duced most distinctly in the intermediate region, where
the velocity of the electron is of the same order as that of
the phonon. In Fig. 7, we have shown half of the energy
gap (D~&z)cp/S and (F» )cp/S(, kp denotes the Fermi level

on the OQ line in Fig. 3). In the region of bipolaronic in-
sulator, (D&&2)cplS decreases as co/S (or cp/T) increases.
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Strictly speaking, this energy gap is somewhat larger than
the half of the true energy gap written in Fig. 7 by the
dashed line, which is obtained after calculating such a
density of states as shown in Fig. 1. However (D&/2)to/S
and the true energy gap have a same (co/S) dependence.

As for (Fk )co/S, it increases rapidly according to the
0

increase of co/S (or co/T). However, it takes its broad
maximum in the intermediate region S-ai (T-co). This
maximum, although it depends on S/T, always appears in
the intermediate region, as far as the SC state is more
stable than the bipolaronic insulator.

In Fig. 8 we have shown the b,qp as a function p, where
we can see that the electron becomes a large polaron in the
adiabatic limit, since 4qp is finite only when

~ p ~

&&n.
As co/S (or cu/T) increases, however, the components
with large

~ p ~

increase, and finally they become b,qp
——1.

That is, the polaron shrinks its radius as co/T increases.
We have also clarified how the state changes along the

line (S+T)/co= 1. As shown in Fig. 9, the transition
occurs at S/T-2. 1. According to the increase of S/T,
Fk and bq(0) increase, and X decreases as shown in Figs.

0
10 and 11. However, it is stopped by the phase transition.

VI. COLLECTIVE EXCITATION IN THE GAP

BCS

SUPER-
C CONDUCTO

( 8IPOLARONIC
f INSULATORS"'Al I [ I Pirl, - (g

BIPOLARON IC
SUPERFLUID

where the first and second terms are the Hamiltonian
within the mean-field theory and the last one is the fluc-
tuation therefrom. Since Aqp =1, Fk becomes indepen-
dent of k, as seen from Eqs. (3.6). From Eqs. (3.25) and
(3.26), it is given by the following gap equation, (when
u =0),

FIT&. 4. The phase diagram on the "T-S-~ triangle". The ra-
tios between the three parameters are denoted by the lengths of
the perpendiculars from a given point to three vertices.

In this section we study the nature of the lowest collec-
tive excitation in the energy gap of the SC state, by mak-
ing use of the random-phase approximation (RPA). For
simplicity we consider this problem in the region around
the co vertex of the phase diagram, where h can be ap-
proximated as given by Eq. (5.1). Using the notation in-
troduced in Eq. (4.8), we can write h as

h = g g(k)(Z kZk+ZkZk)+ ((ho ~~+(h —ho) (6 1)
k

1=( /2}QX '/(bE +F )'/
k

The energy of the particle or the hole becomes

g(k)=(&& +kF )'

while the fluctuation ( h —ho) is given by

(6.2)

(6.3)

—1
(h —ho) = s g X ak+p/2, aa —k+p/2, II k'+p/2 yak +p/—2 ~+s ~ X fk(ak ~ k p+a k pak ~ —fk )

k, k', p k, k'
(6.4)
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FICJ. 5. The total energy per electron, (H )/NS as a function
of co/S calculated by Eq. (4.15). S/T =5/3, U =0.

FIG. 6. The reduction factor X, the frozen and moving dis-
placements, q and hq(0), as a function of co/S. S/T =5/3,
U =0.
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FIG. 8. The Fourier component Aq~ as a function of p and
60/S. U=0. S!T=5/3. p =(p„,p„).

where fk =F/2((k) Wha.t we will now calculate is the
lowest energy of the particle-hole pair creation above the
ground state given by the mean-field theory. Hence we
introduce the pair creation operator (—:

pkp ) as

pkp k+p/2 —k+p/2 I

where k and p correspond to the momenta of the relative
I

I

motion and the center-of-mass motion of this pair, respec-
tively. According to the spirit of RPA, we rewrite (h-ho)
in Eqs. (6.1) and (6.4) in terms of Zk and Zk and take up
to the second order with respect to pkp's. This calculation
is somewhat lengthy, but it is straightforward. We also
rewrite the first term of Eq. (6.1) by using pkp and finally
get an effective Hamiltonian (—:hRp~) within the RPA as

hitp~ = g K(k p)pkppqz —s g N '[A (k,p)A (k',p)+A+(k, p)A+(k', p)
k,p k, k'p

+1 (k,p)I (k',p) —1 (k,p)I (k',p)]p„p l2

—s g X iI [1" (k,p)+I (k,p)][I (k',p)+I (k',p)]
k, k', p

[A (kyP) A+(ktP)][A (k ~P) +A+(k ~P)] I (PkpPk' p +Pk pPk'p ) l4 l

K(k, p) =g(k+p/2)+g(k —p/2),
A (k,p)—:cos(Pk+p/2+/k p/2), I (k,p) =»n(Pk p/2 Pk /2), — —

(6.5)

(6.6)

(6.7)
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where the first term of Eq. (6.5) comes from the first term
of Eq. (6.1), while the second and the third terms of Eq.
(6.5) come from ( h-ho). The second term gives the attrac-
tion between the particle and the hole, resulting in a
bound state within the gap. The third term denotes the
spontaneous creation and annihilation of pairs due to the
fluctuation. Since our true ground state is such that many
pairs are spontaneously created above the mean-field-
theory ground state through this fluctuation, the corre-
sponding true excitation operator (:~p ) is a—lso the linear
combination of pkz and pk z, and it can be written as

&p = g [V+(k,p)pkp )'pV (k p)pk p
—l/(1 —)'p')'" .

k

(6.g)

Here p+(k,p) and p, (k,p) are the normalized wave func-
tions that denote the internal motions of pairs and yz is
the factor that denotes the strength of the spontaneous ex-
citation. This is nothing but the generalized form of the

Bogoliubov transformation. The energy of this excitation
(
—=Sip ) is determined by the following equation of motion

0 r =[hapA, r ], (6.9)

combined with the boson approximation for pkz.

[Pkp ~Pk'p'] = okk'opp ' . (6.10)

The details of the calculation are shown in the Appendix
A, and the numerical results are shown in Figs. 12 and 13.
In the case of small T, T/S »1, the problem becomes
simple since we can use the second-order perturbation
theory with respect to T, and can get an analytical solu-
tion based on the pseudomagnon approximation. ' The
details of this approximation are shown in Appendix B,
and its result is as follows:

FIG. 13. The energy of the collective excitation Q{ )co/T
and the gap energy 2Fco/T as a function of S/T. U =0.
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FIG. 12. The relative energy of the collective excitation in
the gap of the SC state, Q~/2F. p =(p„,p„), U=0.

where p„and p~ are the components of p.
As seen from Fig. 12, Qz ——0 at p =0, and it has a

sound-wave-like dispersion in the region of small
~ p ~.

In the case of weak coupling S/T »1, as is well known,
the sound velocity is almost equal to the Fermi velocity.
As S/T increases, however, the velocity gradually de-
creases, and in the strong coupling case; S/T »1, Az be-
comes an order of magnitude smaller than 2F. Moreover
it has a rotonlike dispersion at around p -vr, peculiar to
the superfluid type state. According to the criterion due
to Landau for the critical velocity of the persistent
current, the energy gap relevant to the superfluidity or the
superconductivity is Q{ } or Q[ o} and not 2F. As
shown in Fig. 13, the two excitation energies, 0[ „] and

2F, are almost same if S/T(3. However, they become
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come quite different with each other, since 2F increases
while Q~„~ decreases as S/T increases. In the very limit
of strong coupling, all electrons make singlet pairs (bipo-
larons), resulting in a Bose condensation. 2F, in this case,
corresponds to the pair breaking excitation, while A[
corresponds to the excitation that breaks only the coher-
ence between pairs without changing its internal state.
The results of our calculation show that this change from
the weak limit to the strong one is continuous. The possi-
ble region of pairing, being limited only around the Fermi
level in the case of weak coupling, gradually expands all
over the energy band as the coupling increases. That is,
the BCS-type state gradually changes to the superfluid-
type state. This is consistent with the results by Pincus
et al. ,

' Leggett, ' and Nozieres et al. However, they
did not explicitly show how the collective mode changes
its nature as S/T increases.

It should be noted that the region of the aforemen-
tioned superfluid-type state is very small as marked in the
phase diagram, since it appears in the SC region with
S/T) 3. Thus, we have clarified the interrelation be-
tween the BCS type state and the superfluid type state, as
well as their competition with the bipolaronic insulator.
That is, the strong coupling in the inverse-adiabatic limit
results in the superfluid type state, while the strong cou-
pling in the adiabatic limit results in the bipolaronic insu-
lator, as summarized in the phase diagram.

VII. CONCLUSION AND DISCUSSION

We have thus clarified the competition between the
SC-type order and the crystalline order of polarons in a
two-dimensional system composed of N sites and X elec-
trons, and the resultant phase diagram is given in the tri-
angular coordinate space spanned by T, S, and co. This
triangle is shown to be divided into two regions; the SC
region and the bipolaronic insulator region. In the adia-
batic region near the TS line of the triangle, each electron
becomes a large polaron with a thin phonon cloud, and as
S/T increases its SC state changes discontinuously to the
bipolaronic insulator with a frozen phonon. As the sys-
tem approaches the co vertex of the triangle, however, the
polaron decreases its radius and the region of SC state ex-
pands in the phase diagram. It is also found, for the first
time, that the mean-field-theory energy gap of the SC
state for given S and T becomes maximum at the inter-
mediate region, ~- T.

The collective excitation within the energy gap of the
SC state is also studied by RPA, and it is shown that the
lowest excitation changes its nature continuously from the
BCS-type pair breaking excitation to the superfluid type
one as S/T increases.

Because of the mathematical complexities, we did not

take the effects of intrasite Coulombic repulsion into ac-
count; however, this effect will be clarified in the near fu-
ture. The reason why we have chosen the two-
dimensional lattice is only to shorten the computation
time, and hence an extension to the three-dimensional sys-
tem is trivial.

Since Chakraverty' has conjectured about the possible
ordered states of a many-polaron system, various theories
have been published concerning the very strong e-ph cou-
pling in metallic systems. ' ' However, most of these
theories do not take into account three main characteris-
tics of the e-ph coupling; the possibility of the frozen dis-
placement, the possible change of the polaron radius, and
the residual interaction between the polaron and the new
phonon. According to our theoretical results, all three of
these parts are indispensable in order to cover the whole
region of the T-S-m triangle.

In the present calculation, we have fixed g in Eq. (2.19)
at 0.35, in order to make the Fermi surface completely
round. In the case of g =0, the Fermi surface becomes a
square as denoted by the dashed lines in Fig. 3, and the bi-
polaronic insulator will be always more stable than the SC
phase because of the perfect nesting of the Fermi surface.
This situation will be almost same as that of the one-
dimensional case which has already been clarified.
Hence, we can easily infer that the adiabatic phase boun-
dary, denoted by C in Fig. 4, will move toward the T ver-
tex as g decreases.

Since our theory is concerned only with the absolute
zero of the temperature, the thermodynamic nature of the
system is left unclarified. However, we can infer that the
transition temperature T, of the SC state is of the same
order as that of Q~ ]. We are planning to extend our
theory to the finite temperature region, by including the
softening of the phonon as well as it possible anharmonici-
ty. ' Effects of the long-range Coulomb interaction on
the excitation spectrum of the collective mode should also
be studied in detail, but we leave this problem to a future
study.
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APPENDIX A

In this appendix, we solve Eq. (6.9), using Eqs. (6.8) and
(6.10). Substituting Eqs. (6.8) and (6.5) into Eq. (6.9), we
get the equation for p+(k, p) as

p+(k,p) =(IC (k,p)+Qz ) 'sN '~ ( A (kp) [ [& (p)]+ y
—+'[A (p)]

+I (kp}[[l (p)] +y '[I (p)] —
] }/2,

where [ . . ]+ is defined as

(A1)
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[ . . l =$N '"S «p)(. . )
k

(A2)

In this derivation we have neglected I (k,p) and A+(k,p) in Eq. (6.5), assuming that p, +(k,p) is an even function of k
with no node. Equation (A 1), multiplied by p+(k,p)(K (k,p)+ Qp } and integrated over k, gives (note that

g„p+(k,p)'= 1),

[[K(p}]] +0 =s([A (p)] [[A (p)] —}'-'[A (p)]—]+[r (p)] [[I (p)] +7-+'[r (p)] —))/2,
where [[ . . ]]+ is defined as

[[K(p)]]+—= g N 'p+(k, p)K(k,p) .

(A3)

(A4)

From Eq. (A3) we obtain

1 p =( j[I+(p)+I (p)]' —40'(p)l' ' I+(p)—I (p)—)/20(p),

&p=([[I (p)+I (p)]' —40'(p)l' '+I (p) —I (p))/2,

(As)

(A6)

where

I+(p}—=[[K(p)]]+—s [ [A-(p)]'++ [r (p)]'+] /2

0(p)=—s [[A (p)] [A (p}] —[r (p)],[r (p)1

(A7)

(A8)

where ( ) denotes the expectation value of . . . . In
the SC state, the averaged pseudo-spin-density (Si') is
uniform and zero with no spatial order of spin, and hence
we tilt the z axis of spin 90' in the zx plane, and
transform Si', St", and Sf into S i, S i, and Si as

These equations for p+(k,p), yp, and Qp can be solved nu-
merically, by making use of an iteration procedure. In the
case of p =0, we can easily prove that pp= —1 Op=0,
and iM+(k, o) ~K '(k, o), by using the gap equation for F;
Eq. (6.2).

APPENDIX B

Si= —Si', Si —=Si", SPi=Sf . —

By this transformation h is given as

h = —sN —N gt (1)s
I

+ g 4t'(1 —1')s

(83)

In this appendix, we calculate analytically the excita-
tion energy Qz in the limit of S/T &&1, by making use of
the pseudomagnon approximation. ' ' In this limit all
electrons make stable singlet pairs (bipolarons), and hence
the excitation is concerned with the center-of-mass
motion of the bipolaron with no change of its internal
state. In this case the freedom of the system is only the
presence or the absence of a bipolaron at each lattice site.
It can be described by a pseudospin assigned to each site,
where the up-spin state corresponds to the presence, and
the down-spin one to the absence. Thus, we can rewrite h

given by Eq. (5.1) as

X [ S iS i +—(S iS i +S i S i )/2], (84)

S,=—S, +Esyl, S-l—=Sl —lsyl (Bs}

Within the linear pseudomagnon approximation after the
Holstein-Primakoff transformation for Si+—', we can re-

place pseudospin operators as

S i —+Ci, S i ~Ci, S i~(0.5 —Ci Ci),z (86)

where Cl and Cl are boson operators with the following
commutation relation

h = —sN —g 2t (1 —1')s '( [(0.5+St')(0.5 Si')—
+ (o.s —s,*)(o.s+s,*. ) ]

+2[Si"Si"+SOS}]l, (81)

where Sf, Si", and Sj are the Pauli spin matrices. The
first term of Eq. (Bl) denotes the energy of the localized
bipolarons. The first bracket [ . ] in the second term
denotes the virtual transfer of a bipolaron through the
second-order perturbation of t(1 —1'), while the second
bracket [.. . ] denotes the real transfer. Since our system
is composed of X sites and N electrons, there is no total
pseudospin

(82}

[Ci Ci l=&ii .

Thus h can be rewritten as

H= sN 2N g t (1)s——

+ +4t (1 —1')s

X [Ci Ci+(CiCi +Ci Ci )/2] .

After the following Fourier transformation

y N —1/2C —iP.l

I

(87)

(88)

(89)
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h = —sN N—J(0)+ Q Ap(spry+ —, ),
k

(810)

where

we can diagonalize h by using the Bogoliubov transforma-
tion and we finally obtain (811)

(812)

From Eq. (89), J(p) is given as shown in Eq. (6.12).

Q (J2(0) J2(p))1/2

rq =(Cq —yqC q)/(1 y—p )'~2,

yt, = Isgn[J(p)/J(0)][J'(0) —J'(p)]'~' —J(0)]/J(p) .
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