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Working in the framework of stochastic mechanics we propose a simple model, based on the
hard-sphere gas approximation, for He II at T =0. The model seems to describe correctly the pecu-
liar hydrodynamical behavior of He II near absolute zero and also provides good estimates for the
critical velocities and the kinematic viscosity.

I. INTRODUCTION

As is well known, He liquefies at T=4.2 K and
remains liquid down to the lowest temperatures. Under
the critical temperature T~ ——2.17 K it also exhibits a
number of features highly unusual in normal liquids.
Under T~, He is denoted in the literature as He II ~

In this work we shall concentrate our attention on the
properties of He II that seem to be conserved near abso-
lute zero: We will be mainly concerned with the He II
viscosity and its behavior under rotation.

An unusual fact concerning the viscosity is that He II
seems to flow without any friction in narrow channels,
while a finite viscosity is observed in experiments with os-
cillating disks and rotating viscometers. The widely ac-
cepted explanation for this paradoxal behavior is that for-
mulated in the phenomenological two-fluid theory of Lan-
dau and Tisza, where He II is mathematically modeled
as a mixture of two noninteracting fluids: the superfluid,
ideal and irrotational, and the normal fluid, responsible
for all dissipative effects. The viscosity paradox is ex-
plained in the sense that only the normal fluid is expected
to interact with the walls, so that it does not flow in nar-
row channels while it is entrained by the oscillating disks
and the walls of the viscometers. The fraction of super-
fluid should be zero at T~ and increase to one as T is
lowered to zero.

As a consequence, one would expect to observe that the
viscosity goes to zero with T in the experiments with os-
cillating disks and rotating viscometers, which sometimes
is not observed.

An unexpected phenomenon also occurs in experiments
with He II in rotating buckets where, above some critical
angular velocity, the liquid helium rotates at every T as a
normal fluid, i.e., it exhibits the classical meniscus, typical
of rigid-body rotation.

The widely accepted means of overcoming this difficul-
ty is contained in the quantized vortex-line theory by On-
sager and Feynman, where the ideas of purely irrotation-

al flow and rigid-body rotation are reconciled by showing
how it is possible for a dense array of microscopic quan-
tized vortex lines (which individually give a curl-free velo-
city field) to simulate a macroscopic rigid-body motion.

An interesting aspect of this theory is that it predicts
that the circulation, as well as the angular momentum of
the He II near absolute zero, should be quantized. Actu-
ally the possibility of quantized circulations was first ob-
served in Vinen's classical experiment where He was ro-
tated to the equilibrium at T & T~ and then slowly cooled
under the A. point to T=1.3 K (where the percent of su-
perfluid is about 96%%uo), when the bucket was stopped.
Quantized circulation was observed for the most stable
states, corresponding to persistent currents. This result
was then confirmed by Whitmore and Zimmermann' and
Hess and Fairbank. "

Obviously we do not pretend to give here an exhaustive
description of the various phenomena observed in the
course of the wide experimental work on He II. We are
simply trying, referring the reader to classical and con-
firmed experiments, to roughly summarize the main
features of the strictly hydrodynamical behavior of He II
near absolute zero, emphasizing that the currently accept-
ed explanations of the observed phenomena are based only
on phenomenological and semiqualitative theories.

The aim of this paper is to show that it is possible,
working in the framework of stochastic mechanics, to
derive from first principles a hydrodynamical model of
He II at T=O which qualitatively describes the unusual
behavior sketched out above and which also gives good es-
timates for some typical hydrodynamical parameters,
such as the critical velocities and kinematic viscosity.

II. KINEMATIC AND DYNAMICAL ASSUMPTIONS

As is known, stochastic mechanics, starting from con-
ceptually simple assumptions, provides a description of
quantum phenomena in terms of stochastic processes. '
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The Brownian term (fi/m)'~ dw(t) represents a random
contribution to the infinitesimal displacement of the parti-
cle that models the effect of the quantum fluctuations,
while the drift v+ has to be determined by dynamical
constraints.

As in the classical case, dynamics can be introduced in
different ways: either by means of a generalization of
Newton's second law, as was originally introduced by Nel-
son, ' or by exploiting variational principles. ' '

In this paper we shall exploit the variational principle
formulated in Ref. 16. The particularity of such an ap-
proach lies in providing a class of solutions broader than
the corresponding one for the Schrodinger equation.

One of the main points in this work is that the noncon-
ventional solutions seem to nicely overcome some peculiar
difficulties in a self-consistent hydrodynamical descrip-
tion of He II near absolute zero.

In the method proposed in Ref. 16, the drift field v+ is
determined by the requirement that the average of the
discretized classical action over all possible sample paths
be stationary for a given class of admissible variations. A
variation 5q(t) is called admissible if q(t)+5q(t) is still a
diffusion with the same coefficient fi/m.

To be more precise, in the case of a scalar potential N,
the variational principle requires that, considering an
equipartition of an arbitrary interval [ t„tb], then

P

N
lim 5E

N~oo

—,m (q(t;+ b, ) q(t; ) )——N(q(t;), t;)

+p,,q(tb) =o(5q), 5q(ta)=0,
1

(2)

where b, =(tb t, )/N —and p, plays the role of a Lagrang-
ian multiplier.

The boundary term p, q(tb ) is added since the
mathematical properties of the class of admissible varia-
tions do not allow the further constraint 5q(tb ) =0.

The necessary and sufficient conditions in order that
q(t) satisfy (2), without any additional constraint on the
drift, can be written as follows (the details of the calcula-
tion are given in Ref. 17):

a
at

p= —V(pv),
(3)

In the case of a quantum particle of mass m, the basic
kinematic assumption is that its position q(t) performs a
diffusion process with coefficient A/m. That is, its sam-
ple paths are constructed by means of a standard Wiener
process w(t) by the rule

1/2

dq(t)=v+[q(t), t]dt+ dw(t) .
m

where p denotes the probability density of q(t); v its
current velocity, equal to v+ —(A'/2m)V lnp, and u, often
called the "osmotic velocity, " is a shorthand notation for
(R/2m )V lnp. '

Therefore, the subclass of solutions with the additional
constraint V'

&& v =0 corresponds to the solutions of
Madelung's fluid equations; that is, to the solutions of the
analogous Schrodinger equation with the positions
v=VS/m and f=p' e'

If N does not depend on t, one has nondissipative
behavior since, denoting by H the Hamiltonian operator,

E( —,—mv + —,mu +C)=—(g
~

H
~
P) =0 .

Equations (3), moreover, give rise to the possibility of new
solutions, corresponding to the case when V &v&0.

III. HYDRODYNAMICS OF He II AT T=O

Equations (3) are connected to a possible theory of
liquid helium at T=O through the old idea of London
that at T=O He II should be considered as an ensemble of
Bose particles that coherently move in the same quantum
state with a macroscopic de Broglie wavelength. ' The
conjecture was based on the belief that the basic
phenomenon involved in the k transition was something
analogous to the Bose-Einstein condensation for an ideal
Bose gas.

We shall first give a rough argument in order to show
how London's idea can be physically motivated by ex-
ploiting the explicit model of quantum fluctuations given
in the kinematic assumption of stochastic mechanics. In
fact, from the shape of the atom-atom interaction poten-
tial and from the estimate of the mean interatomic dis-
tance, it can be guessed that the effective potential "seen"
by the single He II atom at T=O is approximately that of
a hard-sphere gas (see, for example, Ref. 19). This guess
is also supported by the excellent agreement between the
numerical Monte Carlo simulations (see, for example, Ref.
20) of the structure factor for a quantum hard-sphere sys-
tem, and the same factor experimentally obtained for He
II.

Let us now consider two atoms, denoted by 3 and B,
and assume that at some time t they are in the same sta-
tionary quantum state, so that they have the same time-
independent drift v+. We will suppose that such a drift
does not appreciably vary on distances of the order of the
diameter of the hard sphere.

If, due to the Brownian fluctuation, they collide for the
first time at t, their mean velocities in the time interval
[ t *—b, t, t *] are, respectively,

a v+(v V)v-
at

V u+(u V)u2

2m VA =v+(x )+
Pl

1/2
w"(t*) w"(t' 4t) o (b,t)— —

ht At
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where x is the "point" of collision and w and w are
two independent standard Wiener processes.

Now, justified by the fact that during the collision the
actions are much greater than A, we model the scattering,
considering the hard spheres as perfectly smooth, in pure-

ly classical terms. Therefore, denoting by (r, y, z) an
orthogonal frame, where r is parallel to the line joining
the centers of 3 and B, we have that the mean velocity of
the atom 2 in the interval [r", t*+b,t] is approximately
given by

v„=v+(x )+
m

1/2

I fw (t*) w(t*—bt)—]„r+[w (t*+bt) w"(t*—)] y

+ [w "(t*+At) w(t*)—],zI +
At

That is, the two hard spheres exchange their mean Brownian velocities along r.
But this is the same as saying that

]. /2

q„(r*+b t) q„(t*)—=v+(x *)br +
m I [w (t*) w(t* —bt)],r—+[w"(t*+bt) w"(t")]~y—

+ [w (t*+At) w "(t* )],z —j +o (b t), (6)

so that one can see that the only difference in the law of
constructing the sample paths of the atom 3, with respect
to the case of no collision, is in replacing
w"(t*+bt) w"(t*) with —w (t*) w(t* b,t)——

Thus, since the probability density of the increments of
a Wiener process is independent of t, and w and w have
the same probability density, we can conclude that not
only is the drift v+ unchanged after the collision, but also
that the transition probability from x* at time t* to x at
time t*+ht remains the same.

The argument shows that it is possible for all He II
atoms to be in the same quantum state, provided the cor-
responding drift field does not appreciably vary on the di-
mension of the "hard spheres. "

So motivated, we shall take London's idea as a working
assumption and extend the notion of quantum state to any
couple [p, vI that is a solution of (3). For our purpose, 4
in (3) merely represents the external force acting on the
single He II atom. In the course of this work we shall as-
sume that the only external field is gravity.

Let us now face, in the framework of the tentative
model put forth above, the problem of describing the flow
of He II at T=O in a capillary and its behavior under ro-
tation. To this end, we must keep in mind that (3) are the
equations for the density and the current velocity fields
common to the "unperturbed" atoms, i.e., to the atoms
which have interacted only with other atoms having the
same drift.

The equations are considered "macroscopic" in the
sense that, if London's assumption holds, the number of
atoms having in common at T=O the fields p and v is ap-
proximately, at any time, the total number of atoms in the
container. In addition, possible solutions of (5) that ap-
preciably vary on distances of the order of the diameter of
the hard spheres ( =2 A) are not taken into account.

Consider first the flow in a capillary: denoting by
(r, O,z) a suitable set of polar cylindrical coordinates, we

shall neglect the effects of the gravity acceleration in any
direction perpendicular to the longitudinal axis of the
capillary, so that VN=[(B/Bz)@]z. Since, of course, 4 is
independent of time, it is clear that, provided the
boundary conditions allow it, there exists the possibility of
purely nondissipative motions, described by solutions in
the subclass with V& v=0. Therefore, the main problem
is giving physically meaningful conditions at the walls.

In the phenomenological two-fluid model the superfluid
is assumed not to interact with the walls. This can in fact
be accepted since, in such a model, the superfluid com-
ponent of the He II is a mathematical object and not a
physical fluidt

But in our case we deal with the physical fluid, so the
assumption that it does not interact with the walls is not
tenable: actually He II "wets" the walls (as is quite clear,
for example, in the formation of superfluid films).

Therefore, we shall assume that the walls of the pipe
are actually coated by helium atoms and that atoms flow-
ing in the pipe will occasionally interact with them. Due
to Brownian Auctuations, also an unperturbed atom, drift-
ing parallel to the pipe, will interact with the atoms that
coat the walls and, in conclusion, due to collisions with
other atoms which now do have a different drift, the dis-
turbance will propagate to all regions of the pipe. As a
consequence, the picture with all the drifts parallel to the
pipe is no longer stable. The situation is even worse in the
case when the unperturbed drift is not parallel to the
walls.

Since all collisions, in our simplified picture, are as-
sumed perfectly elastic, we can try to make some guess as
to what happens, observing that we could consider the
component of the velocity drift along the longitudinal axis
of the pipe as "unperturbed" if the fluctuations of the
components in the orthogonal plane are smaller, or at
most, of the same order as the quantum ones.

In order to make this statement more precise, let us
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now consider a Brownian displacement of length s in the
radial direction; that is, such that, for some time interval
p„one has

1/2

(w, +p —w, )=s .

Since (w, +&
—w, ) is of the order of (iM, )'~, one can esti-

mate p, =s m/A. Therefore, the quantum fluctuations of
the positions of the atoms inside the capillary in the radial
direction are approximately of the same size as those pro-
duced by the walls in the time interval p, if

~
5v„~ =R/ms.
If we now observe that the minimum value of A/ms

corresponds to s =d, where d denotes the diameter of the
capillary, and that the maximum possible value of

~
6v„~

is the maximum absolute value of the unperturbed drift,
we expect, reasoning in the same way for 6U&, that liquid
helium flows as if the walls were perfectly smooth, provid-
ed the maximum absolute value of the drift does not
exceed A/md.

Assuming that the density is approximately constant in
a relevant region of the capillary, so that the drift coin-
cides with the current velocity in this region, we get, for
small d, a rough estimate of the critical velocity as

Remarkably enough, (8) is quite the same formula as
that deduced from the result of the first experiments of
He II flowing in narrow channels. ' So, we can conclude
that, under v„He II at T=O can flow in a capillary as an
ideal frictionless fluid.

Following our assumptions we must now study the case
when V'Xv&0. The equations are now quite unfamiliar
and more complicated, but we can get some physical in-
formation considering the fluid as approximately in-
compressible. Putting u=O and divv=O in (3), we find,
for the flow in a capillary, the Navier-Stokes —type equa-
tion

it has been proven (see Refs. 22 and 23) that a thermal
quantum mixture can be modeled in stochastic mechanics
as a mixture of Markov processes with random drifts.

Finally let us study the case of liquid helium at T=O
rotating in a cylindrical bucket of radius R. In the case of
V')&v=O the problem of searching the steady-state solu-
tions is reduced to that of solving a stationary
Schrodinger equation in cylindrical symmetry. The solu-
tions are then of the type

P tk(r, 8,z) =Jt(kr)e' Zk(z) (l =0, +1,+2, . . . ), (10)

where JI are suitable Bessel functions.
We immediately find that the current velocity is

v=ve(r)8=(h/m)V(18), =l(fi/mr)8 corresponding to an
(irrotational) flow around a vortex of quantized strength
ltd/m. Since the ve1ocity goes to infinity for r=O we
shall assume, as is usually done in the literature, that the
vortex has a hollow core. Consider now the case of
Vinen's experiment, where He II still rotates after the
container has been stopped.

Repeating for the annular flow the rough argument we
used for the flow in a capillary, we get that the wall of the
cylinder can be considered "perfectly smooth" if the
current velocity of the atoms near the wall, relative to the
wall itself, is less than fi/[m (R —a)], where a denotes the
radius of the core. Consequently, we have the constraint
1 &R/(R —a). Thus, in our rough estimate, we expect
persistent currents with quantized circulation at least for
l= l.

Still considering Vinen s experiment let us study the sit-
uation when liquid helium is cooled under the A point,
keeping the bucket in rotation with angular velocity A. In
this case the most natural boundary condition at the
equilibrium is vs(R) =BR, which is not compatible with
'(7 &v=0.

To get an approximate solution with V'& v&0, we con-
sider again the fluid as nearly incompressible and neglect
the external field, reducing the problem to finding a
steady-state solution of the familiar equation

1 (3N—v+(v V)v= V' v —— z
at 2m m Bz

(9)
—v+(v V)v=(A/2m)V v .2

at

The problem of finding a steady-state solution of (9) in
a cylindrical symmetry is then reduced to that of solving
the ordinary differential equation (fi/2m )(d v, /dr)
=const, whose solutions, for any physically meaningful
condition at the walls, exhibit the classical velocity profile
with a maximum for r =0 and a minimum at the wall.

Therefore, we conclude that the steady-state solutions
of (9) model some dissipative effect by the wall and then,
at least in the incompressibility approximation, we dis-
card, in order to describe the flow in a capillary, the solu-
tion of (3) with VXv&0, for current velocities less than
the critical one. Of course this does not mean that (9) is
correct for velocities greater than U, since in that case the
assumption that all atoms are in the same "quantum
state" does not hold.

Conversely, to the authors' opinion, the situation of
liquid helium over the critical velocity has some analogies
with that of a normal fluid at finite temperatures. In fact, 2mR

(12)

As is well known the energetically preferred solution of
(11) in the approximation of neglecting the effects of cen-
trifugal force, is v=vs(r)8=Qr8, corresponding to the
rigid-body rotation, that is in fact observed. Qf course,
this is also the case of the celebrated Osborne experiment,
where the rigid-body rotation of He II was first observed.
In this experiment He II, initially at rest, was then en-
trained into rotation by the walls of the container.

Since this procedure was wholly performed at the
lowest temperature, one would perhaps expect that the
motion of He II could be described at every time by some
solution of (3). This is not true. We can only say that,
under some critical angular velocity, surely no rigid-body
rotation can be observed. By the same argument exploited
above, such an angular velocity is roughly estimated as
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corresponding to the angular velocity necessary to the
wall in order to produce a disturbance of the same order
of the quantum one in all the regions of the bucket.

Assuming (8) as experimental evidence, the same for-
mula was also derived by London through a more compli-
cated argument. ' '"'

For values of A greater than 0, we expect that the
atoms begin to have nonzero random drifts. As observed
above, the state of liquid helium is then somewhat similar
to that of a normal liquid at finite temperature and we ex-
pect that it can be entrained by the walls. Indeed, to the
authors' knowledge, in no Osborne-type experiment has a
rotation for 0 (fL, been observed.

The steady-state solution of (11) corresponds only to the
equilibrium situation, on the assumption that in this case
approximately all drifts are "ordered, " if the temperature
is kept constant at the lowest values.

To confirm this picture let us return to Eq. (11): we ob-
serve that it directly gives the value fi/2m for the
kinematic viscosity of the He II near T=O under (forced)
rotation, which actually, through the observation of the
depth of the meniscus, is a measurable parameter.

It is notable that the order of magnitude of such an es-
timate agrees with experiment. (The observation that
the order of magnitude of kinematic viscosity of He II
was the same as iil jm is due to Onsager. )

In addition, one can also guess from (11) that there
should exist, for He II near T=O, under forced rotation, a
second critical angular velocity, corresponding to the tran-
sition to turbulent motion, as well as other types of phe-
nomena such as creation of vorticity at the boundary and
instabilities.

Indeed from the dimensionless form of (11) one gets the
(quantum) Reynolds number

R, =L, V, (13)
2m

where L, and V, are, respectively, a length and a velocity
characteristic of the experiment, so that we could expect,
in analogy to classical hydrodynamics, a transition to a
turbulent behavior for high Reynolds numbers.

Leaving out of consideration a detailed analysis of this
phenomenon, we only stress that superfluid second-critical
velocities always seem to be observed and that the corre-
sponding quantum Reynolds numbers, that we have de-
duced from (13), for experiments with rotating viscome-
ters (see Refs. 27 and 28), approximately lie in the range
10 —10", which is comparable with that of a classical
fluid.

IV. CONCLUSIONS

Considering the whole emerging picture, we feel that
our tentative simplified model seems to work both from a
qualitative and a quantitative point of view. In particular,

both London's conjecture and the proposed extension of
the notion of quantum state seem physically meaningful.

To theoretically confirm London's conjecture we have
also given a simple argument that is uniquely based on the
peculiar shape of the atom-atom interaction potential for
He and the kinematic assumption of stochastic mechan-

ics. The argument actually stems from a simplified mi-
croscopic model of the liquid helium at T=O that, in
spite of crude approximations, has the notable property of
directly providing sensible estimates of the critical veloci-
ties for various experimental situations.

It is worth stressing that the result is not achieved by
the previous theories: in Landau's two-fluid model the es-
timated critical velocity for the superfluid in a narrow
channel is orders of magnitude greater than the observed
ones and the quantized vortex theory provides a formula
somewhat similar to (8), but containing an unknown pa-
rameter (for a discussion on this point see, for example,
Lane" ' and Putterman. "I)

As far as the extension of the notion of a quantum state
is concerned, the first thing to say is that it naturally
comes from the variational principle and it seems con-
firmed by the experiment on He II. Moreover, such an
extension looks necessary in order to make the whole
theory self-consistent.

Were we restricted only to the standard states, we
should have to insert some "ad hoc" mechanism to ex-
plain the rigid-body rotation. If we exploit the conjecture
of the microscopic quantized vortex lines, we could not
explain the experimental value of the kinematic viscosity.
In addition, one should stress that the quantitative predic-
tions of the superfluid second-critical velocities given in
the framework of such a theory do not agree with experi-
ment [see Refs. 6(b), 27, and 28].

Anyway, it is also worth noting that the formation in
rotating helium of microscopic quantum vortex lines is in
principle not forbidden by our proposed model, since the
velocity fields we have considered are in fact macroscopic.

A number of mathematical problems has been left aside
in the course of this work, the main one perhaps concern-
ing the stability properties of the solutions of (3). This
will be the subject of further work, as well as the exten-
sion of the model to finite temperature.
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