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The detailed angular dependence of the Fermi radius kr, the Fermi velocity vy(k), the many-
body enhancement factor A(k), and the superconducting energy gap A(k), for electrons on the Fermi
surface of Nb are derived with use of the de Haas—van Alphen (dHvA) data of Karim, Ketterson,
and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization
scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is
a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the
muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously
unexplained «, a’, and a’’ orbits in the dHvA data. Comparison of the parametrized Fermi veloci-
ties with those of the empirically adjusted band calculation allow the anisotropic many-body
enhancement factor A(k) to be determined. Theoretical calculations of the electron-phonon interac-
tion based on the tight-binding model agree with our derived values of A(k) much better than those
based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap
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A(k) is estimated from our results for A(k), assuming weak anisotropy.

I. INTRODUCTION

Because of its high superconducting transition tempera-
ture (9.25 K), niobium plays a special role among the
transition metals. In any attempt to achieve a quantita-
tive, first-principles understanding of transition-metal su-
perconductivity, Nb is the logical element for study be-
cause it displays large electron-phonon effects leading to
high-T, superconductivity. Most theoretical effort has
focused on calculation of the transition temperature 7,
and its variation across the transition series. However T,
is but a single number and a calculation might fortuitous-
ly reproduce the experimental value but otherwise give a
poor representation of the overall problem. A quantity
providing much greater experimental detail is the aniso-
tropic electron-phonon enhancement factor A(k) defined
through

| vband( k) |
I vexpt( k) '

where Vyang and vy, are the band structure and the exper-
imental quasiparticle (dressed) velocities, respectively. A
first-principles theory which achieved full quantitative
agreement with A(k) and 7T, would have to be judged
quite successful. In carrying out a program of this sort
one must keep in mind that A(k) as defined above con-
tains certain electron-electron contributions which are not
adequately accounted for in a band-structure calculation,
along with the electron-phonon effects. However, for Nb,
with its high 7,, we may reasonably expect that the
electron-electron effects are relatively less important than

=1+Ak), (1
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for some other transition metals.

Traditionally, most experimental information on A has
come from tunneling measurements. Since these have sel-
dom been performed on single crystals, interest in A(k)
has been lacking and the theory is usually formulated
around the quantity a’F(w), where anisotropic effects
have already been averaged out. In addition to problems
associated with polycrystalline averaging, the tunneling
phenomenon itself is parametrized and little account of
the direction and Fermi-surface-sheet dependence of the
Fermi velocity is taken. Given this situation, experimen-
tal information on the sheet and direction dependence of
A(k) should be welcome.

In recent years quantities measured in de Haas—van Al-
phen (dHvA) experiments have achieved a level of accura-
cy and completeness that allows specific information on
A(k) and other electronic properties of interest to be de-
rived.! To accomplish this, rather sophisticated Fermi-
surface deconvolution (or inversion) programs are re-
quired along with a comparison of the derived Fermi ve-
locities with those calculated using first-principles band-
structure methods.>

Since it is anticipated that the results of this work may
be of interest to those not ordinarily interested in the fine
details of electronic structure, our methods for deducing
the quasiparticle velocity will be briefly reviewed in this
paper. Readers not interested in these details can skip
Sec. II.

The experimental quantities measured in dHvA experi-
ments are the angular dependences of the extremal cross-
sectional area and cyclotron-effective mass. Both of these
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quantities are averages of point properties of the Fermi
surface around a cyclotron orbit. The problem of decon-
voluting (or inverting) these orbital averages to deduce the
point properties has commanded much interest. The most
successful methods involve the parametrization of some
band structure calculation scheme such as the Korringa-
Kohn-Rostoker (KKR) or Green’s-function method.
Here one employs as disposable parameters the partial-
wave scattering phase shifts characterizing the muffin-tin
potential at the Fermi energy. Given a set of phase shifts
one can calculate Fermi radius vectors and thus extremal
cross-sectional areas. One can then vary the phase shifts
until a weighted root-mean-square (rms) error between the
calculated and measured areas is minimal.

By introducing the energy derivatives of the phase
shifts as a second set of disposable parameters one can
calculate the Fermi velocities which, when combined with
knowledge of the Fermi radii, allows the cyclotron effec-
tive masses to be determined. One can choose these
phase-shift energy derivatives so that a weighted rms er-
ror between the measured and calculated masses is
minimal. This procedure allows, in principle, a complete
determination of the Fermi surface and quasiparticle velo-
city from dHvA area and masses. The application of
these techniques to noble metals has been quite success-
ful.® Recently the relativistic form of this method, gen-
eralized to include nonspherically symmetric contribu-
tions to the muffin-tin potential, has been used to
parametrize the Fermi surface of the transition metals
Mo,* W,* Pt,° and Pd.%” Preliminary nonrelativistic pa-
rametrizations of the Nb Fermi surface have also ap-
peared.®® A general review of the procedure is given in
Ref. 2.

The availability of detailed and accurate Fermi radii al-
lows a stringent test of the accuracy of modern first-
principles band-structure-calculation methods. Given a
potential, the techniques for self-consistently solving the
band-structure problem are now highly developed and
very accurate. However, the problem of just how to con-
struct the proper one-electron potential is still not fully
solved. A number of schemes exist and the agreement be-
tween measured and calculated Fermi-surface dimensions
is generally within a few percent and sometimes consider-
ably better. The situation with Fermi velocities is more
complex since it is known that many-body effects reduce
the dressed quasiparticle velocity v, relative to the
band-structure velocity vy,,g through a quantity A(k) de-
fined such that Ve, =Vpana/[1+A(k)]. Very little is
known about the anisotropy of A(k), although its Fermi-
surface average can be determined from a comparison of
the densities of states determined from the electronic heat
capacity and the band-structure calculation, or from su-
perconducting tunneling measurements.

A determination of A(k) by comparing vy,,q(k) and
Vexpt(k) is only as good as the accuracy of the two veloci-
ties involved. For this reason it is best to initiate a pro-
gram to examine A(k) in metals where the many-body ef-
fects are particularly large. Two such metals are Nb and
Pd; in the former the electron-phonon mechanism dom-
inates while in the latter the paramagnon or spin fluctua-
tion mechanism is thought to be most important. Calcu-

lations of A(k) in Nb have been done by a number of
groups'®~!3 and will be compared with data to be present-
ed here. The A(k) reported in this paper are determined
by comparing the dHvVA velocities with those calculated
from a semiempirical band-structure calculation of Koel-
ling'* which was adjusted by artificially moving the p
states relative to the s-d states to give an excellent overall
agreement with the experimental radii. One might expect
that this semiempirical band structure, since it yields a
surface in excellent agreement with the experimental one,
predicts band-structure velocities that are also quite accu-
rate.

This paper is organized as follows. In Sec. II we briefly
review the phase-shift parametrization technique. In Sec.
III we present the Fermi radii and velocities in Nb deter-
mined by our procedure. The parametrization of the Fer-
mi surface geometry is used to interpret the previously
unexplained «, a’, and a’’ orbits observed in dHvA experi-
ments. The Fermi radii and velocities are numerically in-
tegrated to give the corresponding surface averaged prop-
erties, the number of carriers and densities of states, for
each of the three sheets of the Fermi surface. In Sec. IV
we present our results for A(k) and compare them with
theoretical calculations based on the rigid muffin-tin and
tight-binding approximations. Section V contains esti-
mates of the anisotropy in the superconducting energy gap
A(k) based on our values of A(k), assuming weak aniso-

tropy.

II. THE PHASE-SHIFT
PARAMETRIZATION TECHNIQUES

Since the KKR phase-shift parametrization technique
has been discussed in detail in earlier publications®>* we
will limit ourselves here to a brief outline. The KKR
band-structure formalism reduces to the solution of a
determinantal equation of the form

|| Apm;rm —84msrmVE cotmy(E)|[=0, @2

where the energy- and momentum-dependent quantities
Ajm.rm are the so-called “structure constants” which de-
pend only on the crystal structure and lattice constant.
The 1;(E) are the energy-dependent muffin-tin scattering
phase shifts which depend on the crystal potential and
thus differ between metals. When considering a constant
energy surface, e.g., the Fermi surface, the energy in Eq.
(2) is fixed and, for a given direction k, the magnitude
| k | may be varied until the determinant vanishes. To fa-
cilitate the solution of Eq. (2) and to easily generate
derivative information, it is better to regard the deter-
minant as a matrix, ﬁ, one or more of whose eigenvalues,
A'?, vanishes at a root. In the vicinity of the ith root we
can expand A'(k)

aA(i)

AV(kp+8k)=A"(k
(kr+8k) (kp)+ 3k

-6k

and determine how great a shift 8k in radius vector k is
required to locate a value kp which is on the surface. The
required derivative is given by
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an exact expression which follows from first-order pertur-
bation theory. V' is the eigenvector associated with the
ith eigenvalue of the matrix M. The matrix elements
9M /9k may be calculated by analytically differentiating
the various structure constant sums and evaluating these
in parallel with the sums for the structure constants them-
selves. In the same way other useful derivatives of the
eigenvalues may be derived:
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where the subscript 7; in Eq. (5) denotes that the phase
shifts are held constant so that the derivative accounts
only for the explicit dependence of the structure constants
on energy. To include the implicit dependence of the
eigenvalue on energy through the phase shifts, we use

aA(i) ,

aA(i) aA(i)
=S5 = 35 |t U
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where we define n;=dn,;/dE. These expressions can be
used to evaluate the Fermi velocities analytically:

1 3E 1 A" /3k

%ok % 9AV/E’

where the full expression Eq. (6) is used for A" /3E.
The areas A and effective masses m* are determined by

numerical integration

)

V=
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A=z [ Ky, (8)
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where k() is a radius vector in the plane of the orbit
making an angle ¥ with some convenient reference direc-
tion. To determine the phase shifts we minimize a quanti-
ty

2

Ai(calc)__Ai(expt)
— e | Wi (10)

a=Ls
4 Ni=l

where 4, and AP are a selected set of calculated
and experimental areas, N is the total number of areas fit-
ted, and the W, are weighting factors. Equation (10) is
minimized with respect to the phase shifts 7;, which re-
quires the derivatives

Ai(expt)

dA 2r_ dk
— = k-—dvy, (11)
any f" an, 4

where
3_1‘:_3’}“)_/8"_’ (12)
an, A /3k

Since the calculated areas are a nonlinear function of the
phase shifts, the minimization proceeds by choosing some

initial set of phase shifts (usually determined by a band-
structure calculation), linearizing the equations resulting
from the minimization condition, and iterating until a lo-
cal minimum is found in the error functional. Starting
from the band-structure values for 7; presumably insures
that the minimum found is indeed global. To determine
the parameters 7;, and thus the Fermi velocity, we mini-
mize the following function with respect to 7;

5 1 N (aAi(CalC)/aE)_(aAi(CXpt)/aE) 2
AM: N (expt) u/‘ (13)
N = A /3E
where
A4/ 34, s 94; . e
S + —_ .
3E 3E |n, " < oy,

This results in a strictly linear set of equations for 5;. In
addition to the band-structure contributions to 7;, we are
also absorbing many-body effects (electron-phonon in-
teraction, etc.) when we fit experimental effective masses.
The legitimacy of such a procedure has not been examined
theoretically to our knowledge; however, given the accura-
cy with which we are able to fit the highly enhanced
masses of niobium, any errors involved in such an approx-
imation are probably quite small. We offer some justifica-
tion for this procedure in Sec. III C.

Once a set of phase shifts and their energy derivatives
have been generated by fitting the areas and masses, the
number of carriers n(E) and density of states N(E) of a
given Fermi-surface sheet may be evaluated using

2
(E)=—"—YV;
P
and
2 dVi
N(E)= -,
(27)® OE

where V; and dV} /0E are the volume in k space and its
energy derivative, respectively. The techniques for per-
forming such integrations are outlined briefly in Appen-
dix B.

III. CALCULATED RESULTS

Since the detailed experimental results for the extremal
cross-sectional areas and cyclotron-effective masses in Nb

(a) (b)

FIG. 1. (a) bce Brillouin zone symmetry notation; (b) num-
bering system for the N-centered ellipsoid hole surface [after
Mattheis (Ref. 17)].
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FIG. 2. (a) I'-centered hole octahedron; (b) N-centered ellip-
soids and the JG surface [after Mattheis (Ref. 17)].

have been presented earlier in the work of Karim et al.,?
we will limit ourselves here to a discussion of those quan-
tities used as input for the Fermi-surface deconvolution
programs. In addition, a discussion will be given of some
experimental data, taken in the earlier investigation,
which can be better understood with the availability of the
detailed parametrization of the surface achieved here. We
refer the reader to the paper of Karim et al.® for a review
of the earlier experimental work of Halloran et al.!> and
Scott and Springford.'® Band-structure calculations have
been performed by Mattheiss,!” Boyer et al.,'® Deegan
and Twose,'” Euwema,?® and Anderson et al.?' Fully rel-
ativistic calculations employing a general non-muffin-tin
potential (nonspherical, nonflat) with an =2 exchange
correlation potential were carried out by Elyashar and
Koelling;*>** our experimental work was initiated in
parallel with this latter theoretical work. Calculations us-
ing the pseudopotential approach were made by Ho,
Louie, Chelikowsky, and Cohen.?*

Figures 1 and 2 (due to Mattheiss!?) show the bce Bril-
louin zone and Fermi surface of Nb. The band structure
as calculated by Elyashar and Koelling is shown in Fig. 3.
The surface contains a closed “octahedron” (OCT) hole
sheet in the second zone, and two sheets in the third zone:
the “ellipsoids” (ELL) which are centered on the N points
of the zone, and the “jungle gym” (JG) which is topologi-
cally equivalent to a set of cylinders extending in the
(100) directions and which intersect at the I' and H
points of the zone.

A. Fermi radii

dHvVA areas which are extremal with respect to orienta-
tion are least sensitive to sample misalignment and only
such data were used as input to our programs. In addi-
tion, in situ NMR calibration of the magnet assured high
absolute accuracy of the data. The following cross sec-
tions were employed in the fit: the I-centered (100),
(111), and (110) orbits on the hole octahedron, the (100)
N-centered electron orbit on the JG, the I'- and H-
centered (111) JG intersections, the (100) and the two non-
symmetry related principal (110) N-centered ellipsoidal
orbits, and the (100) JG arm. For a detailed description of
the togology of these orbits we refer to the work of Karim
et al.
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FIG. 3. The band-structure of Nb as calculated by Elyashar
and Koelling (Ref. 23).

Table I lists the ten orbits employed in the fit, the ex-
perimental and fitted areas, and the percentage error in
the fit. The overall rms error of the fit is 0.31%. Our
data was weighted so that the quantity

N 2

1
A= —
N igl

was a minimum, i.e., W;=1 in Eq. (10).

Table II gives a set of values of the quantities 34, /d7;.
These quantities are important in converting Dingle tem-
perature data to obtain point scattering lifetimes as dis-
cussed by Coleridge.?’> They also indicate the sensitivity
of a given area to a change in a specific phase shift. They
are more sensitive to the grid size used in tracing the orbit
than are the areas themselves. The phase shifts them-
selves resulting from the procedures of Sec. II are con-
tained in Table III.

With the phase shifts we may calculate the Fermi ra-
dius of any point on the Fermi surface. The radii of the
second zone surface in a plane passing through I'" normal
to the (100) and {110) directions are shown in Fig. 4.
Shown also are the corresponding radii calculated by
Koelling'* using the fully non-muffin-tin (nonspherical,

Ai(calc)_Ai(expt)

A'_(expt)

TABLE 1. Experimental and fitted extremal cross-sectional
areas in Nb. See Ref. 8 for orbit name conventions.

Experimental Fitted

Orbit area (a.u.) area (a.u.) Error
OCT I y,{100) 0.2798 0.2796 0.57%
OCT I y,(111) 0.1351 0.1351 0.01%
OCT T y,(110) 0.2092 0.2096 0.19%
JG N A(100) 0.4053 0.4047 0.16%
JG T y,(111) 0.2319 0.2315 0.16%
JG H n(111) 0.5192 0.5230 0.74%
ELL N v,,(100) 0.1790 0.1791 0.06%
ELL N v{110) 0.2131 0.2134 0.13%
ELL N v,{(110) 0.2409 0.2406 0.13%
JG a(100) 0.03873 0.03868 0.14%
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TABLE II. Phase-shift derivatives of extremal cross-sectional areas. Areas are in Brillouin units, phase shifts in radians, and ener-
gies in 27 /a units.

Orbi a4 94 04 94 34 1 |04
rbit o = — — P ===
9, 97, 9Mace,) Mdryy) 9y 7 |9E |,
OCT T y,(100) —0.42900x 1072 —0.13779 —0.16021 —0.736 89 —4.8785 —0.26000
OCT T y,{(111) —0.76000x 1073 —0.20490x 10~! —0.36800x 1072 —0.72399 —1.5863 —0.14000
OCT T y,(110) —0.23400x 102 —0.10115 —0.88230x 107! —0.702 49 —3.4543 —0.21000
JG N A(100) 0.3376 107! 0.518 82 0.10142 0.67012 5.8994 0.4000
JG T yp,(111) —0.48380x 10! —0.57908 —0.13732 —0.88509 —6.6003 —0.48000
JG H n(111) —0.8648 107! —0.31212 —0.30780x 107! —0.47218 —4.7876 —0.31000
ELL N v,(100)  —0.14757 —1.3232 —0.16338 —0.7586% 10~ 30343  —0.68000
ELL N v(100) 0.0000 —1.5539 —0.104 80 —0.95380x 107! —1.1565 —0.65000
ELL N v,(110) —0.16401 —1.6561 —0.49770% 107! —0.17056 —2.1400 —0.79000
JG a(100) —0.97721x 102 —0.13575 —0.29479x 107! —0.249 10 —1.8041 —0.12000

TABLE III. Phase shifts 17 and their energy derivatives ' derived from the KKR fitting procedure.

s P d(eg) d(ty) f
n —0.89602 2.7634 —2.1881 —2.0519 0.004 3267
7' 4.2002 —0.176 66 18.130 16.391 —0.17139
Er=0.695 [(27/a)? units] lattice constant=6.2286 (Bohr radii)

TABLE 1V. Surface averaged properties in Nb for each of the three sheets of the Fermi surface.
The band density of states is from the empirically adjusted calculation of Koelling (Ref. 14).

Ellipsoids
(total of six) Octahedron JG Total
Number of carriers —0.4118 —0.06919 —0.5224 —1.003
per atom (KKR fit)
Enhanced density of 1.249 0.547 1.573 3.360%
states (KKR fit)
states/eV atom
Band density of states 0.596 0.202 0.648 1.446
(APW calculation®)
states/eV atom
(A ) sheet 1.10 1.71 1.43 1.33
(A ) sheet /Ao 0.9 1.0 1.1

2Heat-capacity value of Ref. 26 is 3.320.
°From Ref. 14.

TABLE V. Derivatives of the volumes of the three sheets of the Fermi surface of Nb with respect to
energy and phase shifts. Volumes are in Brillouin units, energies in 277 /a units, and phase shifts in radi-
ans.

Sheet 14 v 14 14 14 v
an, an, 3nale,) 3maltzg) dany 9F |,

ELL —0.052 80 —0.7684 —0.05261 —0.05332 —0.9824 —1.1345

JG —0.08000 —0.9257 —0.1147 —1.153 —9.153 —2.181

OCT —0.001223 —0.062 62 —0.03927 —0.4162 —1.947 —0.3762
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FIG. 4. The parametrized radii of the second-zone octahe-
dron in a plane passing through I' and normal to the (110) and
{100) directions (O). Shown also are the corresponding Fermi
radii as calculated by Koelling (Ref. 14) ( + ).

nonflat) self-consistent, relativistic augmented-plane-wave
programs of Elyashar and Koelling?® with =3 used for
the exchange correlation contribution to the potential.
This calculation was empirically adjusted in that the p-
wave logarithmic derivative was shifted downward by
0.05 Ry and the Fermi energy recalculated; this correction
shifts the results in the direction of the pseudopotential
calculations of Ho et al.?*

The radii of the third-zone JG surface in planes passing
through I' and perpendicular to (100) (I'NH plane) and
(110) (' NP plane) are shown in Fig. 5; we again show the
corresponding radii of Koelling. Finally, the inverted and
calculated radii in the NTH, NHP, and NI P planes for
the N-centered ellipsoid are shown in Fig. 6. The rela-
tionships of all the symmetry-plane Fermi radii to the
Brillouin zone boundaries is given by the “house plot”
shown in Fig. 7.
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FIG. 5. The parametrized radii (O) of the third-zone JG sur-
face in planes passing through I' normal to (110) (the CNP
plane) and (100) (the T NH plane) and the calculated values of
Koelling (Ref. 14) ( 4 ).

ELLIPSOIDS

32 T T T T 4» T T 'riL - 1 T j

' T ‘ﬁ% 1

= 30L AR 3
g %’ pf? Q 0901
%c Br Q% o"o 1 %oa a’c ]
§ 26 % * Qo" I W 1
§ 24 [~ Gc%b ; dcfd T' -
g 22r Mj&jg I oKKR FIT ]
Z 0t : + ADJUSTED BAND-
& . ! T SauerRe ]

18+ + +

(I00) PLANE +  (Il0) PLANE + (IO} PLANE J
16 . 1 S I SR
20 40 60 80] 20 40 60 80| 20 40 60 80|

N-T N-H N-P N-T

FIG. 6. The parametrized radii of the N-centered ellipsoid
(0)in the NTH, NHP, and NTP planes, and the radii of Koel-
ling (Ref. 14) ( +).

The numbers of carriers in each of the three indepen-
dent sheets of the Nb surface were computed using the
techniques described in Appendix B. These are listed in
Table IV; note that the sum is —1.003, within 0.3% of
that required by the charge neutrality condition for this
odd valent metal. The values of 3V /d7,, the phase-shift
derivatives of the volume, are given for each sheet in
Table V.

B. Interpretation of x, a’, and a’’.

In this section we apply the parametrization scheme to
the interpretation of several unexplained features in the
Fermi-surface experiments on Nb. Figure 8 shows the el-
lipsoid and octahedron areas observed in the two symme-
try planes by Karim et al.® The branch labeled « at about

N P N

FIG. 7. “House plot” showing contours of the parametrized
Fermi surface in the (100) and (110) symmetry planes relative to
the Brillouin zone.
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FIG. 8. Observed cross-sectional areas for the ellipsoid and
octahedron surfaces [from Karim et al. (Ref. 8)]. The « orbit is
shown in the text to be a noncentral orbit on the octahedron.

30° from (001) in the (110) plane cannot be explained by
symmetry centered orbits on either of these sheets. We
have previously suggested® that « may be due to noncen-
tral orbits on either the octahedron or the JG. As
described below, the parametrization scheme confirms
that such a noncentral orbit exists on the octahedron.

We searched for noncentral orbits by choosing a field
direction, tracing several orbits at successively larger dis-
placements of the orbit center from I' along the field
direction, and looking for an extremal area. For the field
greater than about 26° from (001) in the (110) plane, a
noncentral maximal orbit on the octahedron appears. We
followed this noncentral orbit in the parametrization as
far as 54.7° from (001 ), where the search was terminated.
Physically we expect the orbit to continue for larger an-
gles and eventually rejoin the central orbit. Experimental-
ly the orbit is seen over a more limited range, perhaps be-
cause the mass or the curvature factor becomes unfavor-
able. Table VI shows the measured and calculated areas
and the displacement of the orbit center from I" for five
field directions. The agreement of the areas predicted by
the parametrization with those experimentally measured
for the k orbit is excellent, within 2% for all angles.

Another unexplained feature of the Fermi surface is the
origin of the a’ and a' branches for angles near {100) as
shown in Fig. 9. These orbits have been seen and dis-
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FIG. 9. Observed cross-sectional areas for the a, o', a', and
B orbits [from Karim et al. (Ref. 8)]. a is a noncentral orbit
around the JG arm. S has previously been shown (Ref. 8) to be
a quantum-interference orbit. a’ and a’’ are argued in the text
to be noncentral breakdown orbits between the JG and the oc-
tahedron.

cussed in all the experimental studies®!>!® of Nb. The «a
branch is well understood as a set of minimum-area non-
central orbits on the JG arm centered on the I'-H line.
The a’ and a” orbits have been attributed to noncentral
orbits on the protrusion of the octahedron in the (100)
direction,!® and to magnetic breakdown between the oc-
tahedron and the JG.® The parametrization scheme shows
the latter possibility is most probably correct.

Consider first the @’ orbit at (100). The relative posi-
tions of the octahedron and JG are shown in Fig. 7. In
our nonrelativistic description of the surface these two
sheets touch at three points in the irreducible 4th of the
zone: once in the 'HN plane and twice in the I'HP plane.
Spin-orbit effects lift these degeneracies and create a small
gap in k space across which magnetic breakdown may
occur. We have examined orbits on the octahedron and
JG for the field along the I'-H line which pass close to
the breakdown point in the "'HN plane. Figure 10 shows
the geometry typical of the two orbits for centers farther
from T than the breakdown point. In addition to orbits
on the JG and octahedron, there are three possible break-
down orbits whose areas differ by the crosshatched area 5:
JG-6, JG-28, JG-38. The areas of these orbits were calcu-

lated in the parametrization using a Simpson’s rule in-

tegration of the 8 area assuming the breakdown orbit
switches suddenly at the angle of closest approach from

TABLE VI. Calculated orbit centers and areas for noncentral orbits on the octahedron corresponding
to the experimentally observed « branch. Areas and lengths are in Brillouin units. Orbit center refers to

displacement from T along the field direction.

Angle from (001) Orbit Calc. Expt. Difference
in (110) plane center (bu) area (bu) area (bu)
27° 0.033 0.1857 0.1888 1.64%
30° 0.066 0.1794 0.1816 1.21%
35° 0.093 0.1758 0.1771 0.73%
45° 0.120 0.1752
54.7° 0.136 0.1783
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FIG. 10. JG and octahedron (OCT) orbits for the field along
(100), with orbit center displaced 0.3436 bu from I'. If break-
down occurs at the angle of closest approach, orbits correspond-
ing to JG-§, JG-26, and JG-36 appear.

one surface to the other. As the position of the orbit
centers was varied, a minimum was found in the JG orbit
area at 0.3359 Brillouin unit (bu) (see Appendix A for a
discussion of units) from I' corresponding to the observed
a orbit. The JG-8 orbit also displayed a minimum, at
0.3436 bu from I', whose area is within 1% of the mea-
sured a’ area. The JG-28, JG-358, and OCT orbits do not
have extrema for any position of the orbit center. Thus
we interpret the a’ orbit as a noncentral breakdown orbit
between the JG and the octahedron involving the near de-
generacy of the two sheets in the THN plane. The earlier
suggestion that a’ is a noncentral orbit on the octahedron
is not supported by the parametrization.

Given this interpretation of the a’ orbit, an interesting
question arises as to the condition determining the orbit
center. Normally the amplitude of quantum oscillations
due to a particular cyclotron orbit is a slowly varying
function of the position of the orbit center along the field
direction. This allows destructive interference between os-
cillations due to neighboring orbits to eliminate all oscilla-
tions except those whose frequency ( o orbital area) is ex-
tremal. For a noncentral breakdown orbit like JG-8 the
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FIG. 11. Variation of area and breakdown gap with displace-
ment of orbit center from I' for the JG-6 orbit, for the field in
the (100) direction.

amplitude of the oscillations is not a slowly varying func-
tion of the position of the orbit center. The oscillation
amplitude depends strongly on the breakdown probability
and therefore decreases rapidly as the orbit center is
moved away from the position where the breakdown gap
is smallest. This strong amplitude dependence effectively
eliminates the orbits not centered close to the minimum
gap position and they cannot contribute to the destructive
interference needed to give the extremal area condition. If
the amplitude dependence is very strong, the extremal
area condition may be irrelevant, the “orbit center” being
determined by the position where breakdown is most
probable. For this to be the case the amplitude would
have to lose most of its magnitude in a distance compar-
able to that over which the argument of the oscillating
term changes by 27. For breakdown orbits centered on a
symmetry point, the extremal area condition and the max-
imum breakdown probability condition are satisfied
simultaneously and there is no competition between them.

For the JG-8 orbit, the position of minimum area and
the position of minimum breakdown gap do not coincide,
as illustrated in Fig. 11. (Because our parametrization is
not relativistic, we find the breakdown gap going to zero
rather than to a minimum as would be the case if spin-

TABLE VII. Orbit centers and areas for the JG-8 and JG-25 orbits. The orbit centers were fixed by
the condition that the area be extremal. Orbit center column refers to distance of the orbit center from
T', along the field direction. Areas and lengths are in Brillouin units. NF means not found in the pa-

rametrization.
JG-& o' JG-28 a”
Orbit Orbit
Angle from (001) center Area Area center area area
in (100) plane (bu) (bu) (bu) (bu) (bu) (bu)
0° 0.3436 0.0346 0.0344 NF NF
3 0.3425 0.0351 0.0349 NF NF
7 0.3390 0.0359 0.0353 0.3415 0.0312
15° NF NF 0.3270 0.0350 0.0346
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orbit effects were taken into account.) The two conditions
give orbit centers which are about 2% different in their
displacement from I' and areas differing by less than
0.5%. This area difference is within experimental error,
so the measured area cannot be used to determine whether
the extremal area condition or the minimum breakdown-
gap condition is most important. However, if the
minimum breakdown-gap condition were dominant, we
would expect to observe orbits with areas JG-26 and JG-
38, since the breakdown probability for these orbits is the
same as for JG-§ if the field is along (100). The absence
of these orbits suggests that the extremal area condition is
dominant, though the orbit center may be shifted some-
what toward the minimum gap position. The areas and
orbit centers for the JG-6 orbit as a function of angle for
the field in the (100) plane assuming the extremal area
condition are shown in Table VII.

The disappearance of the a’ branch and the appearance
of the a” branch as the field is tipped off (100) can be
explained by our interpretation. As the field is tipped in
the (100) plane two of the breakdown gaps on opposite
sides of the orbits in Fig. 10 remain fixed, while the other
two move closer and farther from I', respectively. This is
illustrated in Fig. 12, for an angle of 7° from (100). This
means that the two breakdowns required for the JG-8 or-
bit can no longer both be close to the minimum gap posi-
tion. At some angle the gap at one of the junctions be-
comes so large that the orbit fails to complete, explaining
the disappearance of the a’ branch.

We interpret the a’’ branch as an orbit of the form JG-
28. Tipping the field does not adversely affect this orbit,
because the two breakdowns required are on opposite sides
of the orbit and can be simultaneously brought as close as
desired to the minimum gap value by adjusting the posi-
tion of the orbit center. Table VII shows that for angles
greater than 7° from (100) a minimum occurs in the JG-
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FIG. 12. JG and octahedron orbits for the field tipped 7°
from (100) in the (110) plane. The orbit center is 0.335 bu
from I' along the field direction.

28 orbit as a function of orbit-center position. This ac-
counts for the appearance of a'’ at angles away from
(100). The dHVA experiments do not observe the a’’ or-
bit for angles less than 13° from (100), possibly because
the breakdown probability in this region is too low. At
15° from (100) the predicted area of JG-28 agrees to
within 1.5% with the measured area of a’’. At this angle
the positions of minimum area and minimum breakdown
gap are nearly identical, as shown in Fig. 13.

The absence of a'’ oscillations in the (110) plane is con-
sistent with its being a breakdown orbit of the form JG-
28. For the field in the (110) plane the symmetrically
equivalent breakdown points are adjacent rather than on
opposite sides of the orbits as is the case in the (100)
plane. Therefore it is impossible to find an orbit center
where the two gaps involved in the JG-26 orbit are simul-
taneously small. Our interpretation also allows for the
unusual angular dependence of the dHvA amplitudes of
the a’ and a' orbits seen in the experiments.!>!® These
amplitudes depend strongly on the breakdown probability,
which may vary considerably with field direction as the
positions of extremal area and minimum gap move rela-
tive to each other.

In summary, we have argued that the «, a’, and " or-
bits may be interpreted via the parametrization scheme as
noncentral orbits due to local deformations of the Fermi
surface. We have previously interpreted the 3 orbit using
an earlier parametrization as a quantum interference or-
bit.>® We have thus interpreted all of the unexplained
features in the Fermi measurements of Nb, and get excel-
lent quantitative agreement between experiment and pa-
rametrization. The fact that the parametrization can ac-
curately predict the fine details of the Fermi surface
geometry responsible for these noncentral breakdown or-
bits, with only five parameters fitted to only symmetry
direction areas, demonstrates explicitly how powerful and
useful the KKR schemes can be.
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FIG. 13. Variation of area and breakdown gap with displace-
ment of orbit center from I' along the field direction for the
JG-26 orbit, for the field 15° from (100) in the (100) plane.
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TABLE VIII. Experimental and fitted cyclotron effective
masses for symmetry direction orbits in Nb (entries with a nega-
tive sign correspond to hole orbits).

Orbit Expt. Mass Fitted Mass Error
OCT T 7,(100) —49 —4.76 2.9%
OCT T 7,(111) —3.75 —3.86 2.9%
OCT T 7,(110) —4.20
JG N A(100) 4.28 4.18 2.4%
JG T y,(111) —5.57
JG H »(111) —2.69 —2.79 3.8%
JG a(100) —1.53 —1.50 2.1%
ELL N v,{100) —1.94 —1.97 1.6%
ELL N v,(110) —1.58 —1.60 1.2%
ELL N v,{110) —2.03 —1.98 2.6%

C. Fermi velocities

We now discuss our parametrization of the effective
masses through the energy derivatives of the phase shifts
using Eq. (13). The required parameters d4;/d7n,; and
0A4;/dE are to be found in Table II. Table VIII lists the
experimental and fitted values of the effective masses for
the eight orbits employed in the fit. The resulting rms er-
ror of 2.5% is quite satisfactory given the accuracy of ef-
fective mass data. At this point we note that by the above
procedure we implicitly assume that all many-body effects
can be absorbed in the 1;, which, in the theory, are intend-
ed to describe only the one-electron behavior. Empirical-
ly, the good quality of fit suggests that this is a reasonable
procedure. Furthermore, it is well known that phase-shift
parametrizations of Fermi surfaces are quite insensitive to
the chosen value of the Fermi energy parameter. There-
fore, we could equally well have fit our masses by
suppressing the structure constant term, (34/3E),,

entering Eq. (13). In this case a uniform mass enhance-

ANISOTROPY OF THE FERMI SURFACE, FERMI VELOCITY, ...

1737

ment, a commonly employed assumption, can be incor-
porated in the scheme simply by uniformly rescaling the
7’. The anisotropy in the many-body enhancement of the
Fermi velocities as derived below is much smaller than
that found in the bare band velocities (see Fig. 14). Thus
it is reasonable to expect that the many-body effects in the
velocities can be described by a small readjustment of the
7’ about a uniform rescaling.

With the availability of the 7; and 7, we can generate
the Fermi velocity at any point on the surface using Eqgs.
(3)—(7). Figure 14 shows, for all three sheets, the absolute
values of the Fermi velocity deduced from the fit, togeth-
er with the band-structure values of Koelling,14 and the
derived enhancement factor defined by Eq. (1). The
dashed lines on the ellipsoid curves are smooth interpola-
tions through regions of free-electron singularities (de-
fined as points, or more precisely, lines, where the free-
electron sphere for the chosen value of the Fermi-energy
parameter intersects the parametrized surface). At such
points the KKR formalism is singular and in the neigh-
boring region the convergence of the structure factor sums
is slow, resulting in a loss in accuracy. The sharp bumps
in the curves for the octahedron and JG are artifacts of
the fitting procedure where the two sheets touch (or inter-
sect) in the nonrelativistic approximation, resulting in a
discontinuity in the velocity.

With the availability of both Fermi velocities and radii,
we can calculate the density of states for each sheet using
Egs. (B2) or (B4). The density of states for each sheet for
the fitted surface and the APW calculations of Koelling
are listed in Table IV. The total electronic density of
states for Nb summed over the three sheets is 3.360
states/eV atom which we refer to as the quasiparticle den-
sity of states; this is to be compared with the thermal den-
sity of states extracted from heat capacity measurements
of 3.320,% in agreement to within 1.2%. The equality of
the density of states as determined by these two methods
is expected from modern many-body theory.
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FIG. 14. Fermi velocities derived from the parametrization of experimental masses and from the empirically adjusted band calcu-

lation of Koelling (Ref.
Alk)= | v(k)pana/V(K)expt | — 1 are also shown (right-hand scale).

14) for the three sheets of the Nb Fermi surface (left-hand scale).

The derived values of
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IV. THE ANISOTROPIC MANY-BODY
ENHANCEMENT

In addition to | v(k)|, Fig. 14 also contains the dimen-
sionless many-body-enhancement factor A(k) defined by
Eq. (1); the magnitude is displayed on the scale at the
right. We note that this quantity is clearly anisotropic.
The anisotropy in A(k) takes a particularly simple form
which simplifies comparison with theory. Within any
given sheet, the values of A shown in Fig. 14 do not devi-
ate by more than about 10% from the average value for
that sheet. In contrast, the average values show consider-
able variation from sheet to sheet. This means that most
of the anisotropy is very well described by the average
values for each of the sheets, the variation within any
sheet being much less important. These three average
values were derived by using the densities of states from
each sheet as obtained in the KKR fit and the band struc-
ture in the expression

< NKKR )sheet
——————=14(A) .
(N band ) sheet sheet

This is equivalent to averaging A(k) with a weighting fac-
tor 1/ | vband(k) ' :

fsheet [k(k)/ | vband(k) I ]dS
fsheet [1/ l vband(k) i ]dS

These sheet average values are shown in Table IV.

Three approaches to calculating the electron-phonon re-
normalization of the Fermi velocity in Nb have been ex-
plored. The most popular approach uses the so-called
rigid-muffin-tin approximation,?”?® where the nucleus
and surrounding charge contained inside the muffin-tin
radius are assumed to move rigidly during a lattice distor-
tion. This assumption allows the calculation to make use
of several quantities directly calculated by band theory
and has been shown to give reasonable results for many
elements. However, the approximation is unphysical in
that no allowance is made for deformation of the charge
cloud surrounding the nucleus when it moves off its
equilibrium position, an effect that is likely to modify the
interatomic forces.

The second approach is the tight-binding'? scheme,
where the band energies are calculated with linear com-

( A >sheet =

bination of atomic orbitals (LCAO) methods which con-
tain the nuclear position as an explicit parameter. The
dependence of the band energies on the atomic displace-
ment allows the effective interatomic potential to be ob-
tained without the rigid-muffin-tin assumption. The
tight-binding scheme is particularly appropriate for tran-
sition metals because the d electrons which dominate
many of the electronic properties are described by the
LCAO scheme much better than are the more extended sp
electrons in simple metals.

A further improvement!>?° on the tight-binding scheme
is made by explicitly allowing the Bloch states constructed
from atomic orbitals to be nonorthogonal. This flexibility
for the electronic wave functions is especially important
for calculating electron-phonon effects because Bloch
states which are orthogonal when the atoms occupy their
equilibrium positions become nonorthogonal when the
atoms are displaced.

Comparison of the anisotropy in A for these three
methods with the experimental results reported here pro-
vides the opportunity to test the ability of theory to
describe the electron-phonon effects for individual k
states. We take for comparison the three values of A ()
on the ellipsoids, octahedron, and JG because these sum-
marize the experimental results very well and can be cal-
culated in the theories more easily than can the point
values A(k). Table IX makes this comparison, showing
the sheet values and overall surface averages.

Table IX shows two important features. First, there is
a great deal of variation in the calculated values for the
Fermi-surface average of A. This is not unexpected, be-
cause A is proportional to the magnitude of the electron-
phonon coupling constant, a quantity which must be set
outside the calculation and for which there is no generally
accepted value. The calculated average value of A is not
related to whether the calculation was done by the rigid-
muffin-tin or tight-binding method. Both methods pro-
duced one low and one high value, with the average of the
two results by each method very close to 1.33, the result
of our work.

The second noteworthy feature of Table IX is the aniso-
tropy in the values of A for the three sheets of the Fermi
surface. This anisotropy is more clearly examined in the
normalized values of A shown in parentheses, where the

TABLE IX. Comparison of anisotropy in the electron-phonon enhancement factor A derived from
calculations using the rigid-muffin-tin (RMT) approximation, the orthogonal tight-binding (OTB)
scheme, and the nonorthogonal tight-binding (NTB) scheme with values derived in this work. The
numbers in parenthesis are normalized so that the surface average value is 1.00.

Method used Ellipsoids Octahedron JG Total
RMT from Ref. 10 1.85 1.28 1.37 1.58
(1.17) (0.810) (0.867) (1.00)

RMT from Ref. 11 1.17 1.09 1.08 1.12
(1.04) (0.973) (0.964) (1.00)

OTB from Ref. 12 1.35 1.92 1.90 1.69
(0.799) (1.14) (1.12) (1.00)

NTB from Ref. 13 0.80 1.10 1.14 0.99
(0.81) (1.11) (1.15) (1.00)

This work 1.10 1.71 1.43 1.33
(0.827) (1.29) (1.07) (1.00)
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normalization has been chosen to make the surface aver-
age value equal to 1.00. Our results show that the oc-
tahedron has the largest electron-phonon coupling, the el-
lipsoids the smallest coupling, and the JG intermediate
coupling. The range of anisotropy is 46% between the oc-
tahedron and ellipsoids. None of the calculations pro-
duces such a wide range, the anisotropies being ~35% in
three of them and only 8% in the fourth. There is a sys-
tematic difference between the rigid-muffin-tin and tight-
binding calculations with respect to the trends in the an-
isotropy: the rigid-muffin-tin calculations have the ellip-
soids with the largest coupling, while the tight-binding
calculations and our results have the ellipsoids with the
smallest coupling. The tight-binding results both have the
octahedron and JG approximately equal in coupling,
while our results show a 22% difference between these
two sheets. The average value of the coupling on the oc-
tahedron and JG in both tight-binding calculations is in
reasonable agreement with the average value for these two
sheets in our results. We conclude that the tight-binding
methods predict the anisotropy in A much better than do
the rigid-muffin-tin methods, although neither method
correctly distinguishes the anisotropy between the oc-
tahedron and the JG.

Empirically there is a correlation between the anisotro-
py of A and the anisotropy of the Fermi velocity as given
in either the band calculation or in our results. Table IX
and Fig. 14 show that A is large where vy is small and
vice versa. The size of vf is, in turn, correlated with the
fraction of d character in the electronic wave function:
The larger the d character, the smaller vz. The Fermi ve-
locities and amount of d character are considerably dif-
ferent between the ellipsoids and either the JG and the oc-
tahedron; the differences between the JG and octahedron
are much smaller. These observations suggest two con-
clusions: (1) the amount of d character in the wave func-
tion is one factor which controls the strength of the
electron-phonon coupling, and (2) the tight-binding calcu-
lations are more successful than the rigid-muffin-tin cal-
culations in predicting the anisotropy of A because they
are able to distinguish the difference between the defor-
mations of the d and sp charge densities when an atom
moves off its equilibrium position. Apparently, the
tight-binding calculations are not sensitive to the differ-
ence in d character between the octahedron and JG. It is
possible that the difference in electron-phonon coupling
between these two sheets depends on more subtle features
like the relative amount of e, and t,, character or the
directional character in the electronic wave function of
the relevant phonon displacements. The addition of
nonorthogonality does not seem to be a crucial improve-
ment in describing the electron-phonon anisotropy in Nb.

V. GAP ANISOTROPY

Our results for the anisotropy in A(k) can be used to
infer the anisotropy in the superconducting energy gap
A(k). The connection between A(k) and A(k) can be ob-
tained with the same methods used to derive the empirical
T, formulas of McMillan,® and Allen and Dynes.’! In
those derivations A and u* are assumed to be k indepen-

dent. If A and pu* are allowed to be weakly anisotropic,
the equations can be expanded about the average values of
A and p* keeping no terms higher than linear in
[A(k)—A] and [u*(k)—u*]. This gives the expression

Ak) 14+p*
=1 AK)—A
B im0 pnt ]
L prao—ptl, 15)
A—p

which was first derived by Butler and Allen®? in terms of
Fermi-surface harmonics, and later by Allen*® and
Askenazi, Dacarogna, and Allen.?* Ag is the value of the
gap averaged over the entire surface. At present there is
no experimental knowledge of the anisotropy in p*(k), but
calculations!>3* suggest that the second term in Eq. (15)
contributes about 30% to the gap anisotropy while the
first term contributes 70%. If we ignore the second term,
our data for A(k) gives a direct estimate of the variation
in A(k) over the Fermi surface. It is important to note
that a general direction in k space may intersect as many
as three sheets of the Fermi surface, so that three gaps
may exist simultaneously. Because the values of A(k) are
grouped close to the average values for the three sheets,
the values of A(k) will follow a similar pattern. The aver-
age values of A(k) for each sheet are shown in Table IV.

There has been considerable speculation in the literature
on the possibility of multiple gaps*® in Nb suggested by
specific heat,® ultrasonic attenuation,’® and tunneling
data.’’” These experiments required the existence of a
second gap about an order of magnitude larger or smaller
than the main gap in order to account for certain
anomalous features in the data. Many of these features
have since been attributed to problems in sample prepara-
tion,>® and are no longer taken as strong evidence for mul-
tiple gaps. A critical review of the evidence for anisotro-
py and multiple gaps in Nb and other materials has been
given recently by Bostock and MacVicar.® Our data
show no evidence for gaps widely separated from the
average value but do allow for anisotropy of order 20%.
We believe our results are more reliable than those of tun-
neling, specific heat, or ultrasonic attenuation experiments
because our measurements are based on an equilibrium
bulk property in well characterized samples. The data are
insensitive to impurities, strain, or surface imperfections
which affect many of the other experiments for measuring
gap anisotropy. In addition, the connection between A(k)
and A(k) is simple and direct, leaving little room for error
in interpretation.

VI. CONCLUSIONS

We have described a nonrelativistic KKR parametriza-
tion of the Fermi surface properties of Nb. Five parame-
ters corresponding to s, p, d(e,), d(ty), and f phase
shifts were fit to ten symmetry direction experimental
areas to determine the Fermi-surface geometry. Splitting
the d phase shift into ¢, and e; components allows for a
nonspherical potential inside the muffin tin spheres. The
resulting Fermi-surface geometry agrees very well with all
measured features of the Nb Fermi surface. The parame-
trization shows that the previously unexplained «, a’, and
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a’’ branches are due to a noncentral orbit on the octahed-
ron and to noncentral breakdown orbits between the oc-
tahedron and JG, respectively.

Comparison of the Fermi radii with an empirically ad-
justed band calculation due to Koelling and Elyashar
shows excellent detailed agreement on all three sheets of
the surface. We conclude that both the parametrization
and the band calculation describe the Fermi-surface
geometry very accurately.

The five phase-shift derivatives needed to describe the
Fermi velocities were adjusted to fit eight symmetry direc-
tion effective masses. Numerical integration of the result-
ing Fermi velocities predicted an enhanced density of
states which agreed with that measured in specific-heat
experiments to within 1.2%. This implies that the param-
etrization scheme correctly describes the enhancements
due to electron-phonon interaction and other many-body
effeé:gs. This conclusion also applies to Au’, Pt,’ and
Pd.”

The Fermi velocities from the parametrization were
compared to those of the empirically adjusted band calcu-
lation of Elyashar and Koelling to derive the anisotropic
many-body enhancement A(k). This quantity was found
to vary by as much as 60% from sheet to sheet on the
Fermi surface, but values within any given sheet were rel-
atively constant. We attribute most of the many-body
enhancement to the electron-phonon interaction, though
some contribution from the electron-electron interaction
cannot be ruled out.**> Comparison of our derived values
for the anisotropy in A(k) with those predicted theoreti-
cally shows relatively poor agreement with calculations
based on the rigid-muffin-tin approximation and better
agreement with tight-binding calculations. The trends in
A(k) from sheet to sheet are predicted about equally well
by orthogonal tight binding and nonorthogonal tight-
binding schemes.

Finally, we use our anisotropic A(k) values to estimate
the anisotropy in the energy gap A(k) in Nb. We find no
evidence for any gaps widely different from the average
gap, though there are variations of about +10% from
sheet to sheet.
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APPENDIX A

The experimental Fermi-surface work on Nb is reported
in an unusually wide range of units, including atomic
units, A, and nanometers. We report our results in Bril-
louin or 27/a (bu) units which are the most convenient
for the parametrization schemes. In atomic units the unit
of length in k space is the inverse Bohr radius 1/a4. In
Brillouin units the unit of length is the distance from T to
H, 27 /a, where a is the lattice constant of Nb, a=3.295
A.

A convenient unit of energy is the energy of a free elec-
tron at the H point, (#2/2m)(27 /a)?. The combination of
this unit of energy with Brillouin units of length is often
called 27 /a units. Velocities quoted in these units refer to
dimensionless values of dE/dk. To convert to labora-
tory units, these velocities must be multiplied by
#(2m/a)/2m =1.10X 10® cm/sec for Nb. Through an ac-
cident of nature, k space areas expressed in Brillouin and
atomic units are nearly the same for Nb, differing by a
factor (2ma,/a)*=1.0176.

APPENDIX B

The evaluation of the number of carriers, n(E), and
density of states, N(E), for the N-centered and I'-
centered sheets of the surface was accomplished by nu-
merical integration in spherical coordinates using the ex-
pressions

2

n(E)=
(2m)}

+ [k3sinodods (B1)

and

NE=—2 [k _Gpa0as (B2)
(27)* Y k-(9E /9k) ’

where here k is measured from the center. Integration of
the N-centered surface involved 90° integration in 6 and ¢
relative to the ellipsoid axes, i.e., + of the unit sphere; the
integrations for the I'-centered surface, which has full cu-
bic symmetry, involve only 4—18 of the unit sphere.>® The
most difficult integrations involved the open surface and
were performed using cylindrical coordinates in the form

2 1
(2m??

n(E)= [ k*d¢ dk, (B3)

and

2 k?
N(E)= (27)3 f k-(0E /9k)

dédk, (B4)

where k, is measured along the I'-H line which we desig-
nate (001). The 4y wedge of the zone to be integrated
over may be defined by the following four planes

£+2 1

et uk SR BS
k== (B5)
k-§=0, (B6)
-9

) - B7
k22t =0, (B7)
-2

) —0. BS
k225 =0 (B8)

For a given point in the integration defined by ¢ and k,,
one must locate the Fermi surface. If k is a vector near to
both the surface and the desired integration coordinates,
then solving the following three linear equations for 8k
produces a vector k’=k+ 8k which better satisfies these
conditions
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oE
— o5, B9
Er=E(k)+ ™ 8k, (B9)
k, + bk,
bt i S B10
k. 1ok, tang , ( )

(k+8k) 2=k, .

The integration over dk, includes parts of the surface that
intersect the zone face or the surface of the primitive

(B11)

wedge; these make a contribution only to the volume in-
tegral which may be done analytically by adding contribu-
tions +k2(1—k,) and +k1k, associated with the planes
defined by Eqgs. (B5) and (B8), respectively. The quanti-
ties k; and k,, which define the intersection of the surface
with the planes in question, are determined by substituting
k' for k in Egs. (B5) and (B8) and using Egs. (B9) and
(B10); this also determines the limits of the remaining nu-
merical part of the dk, integration.
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