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Model Fermi liquid interacting via a hard core repulsive potential and an attractive tail
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In this paper we present an extensive microscopic study of the collective and single-particle prop-
erties of a model Fermi liquid whose particles interact Via a repulsive hard-core potential and an at-
tractive tail. The model system is intended to simulate liquid He. The study is based on an approx-
imate theoretical scheme of Singwi, Tosi, Land, and Sjolander, which was devised to treat correla-
tions in Coulomb Fermi liquids. The primary aim of this study is to learn how far the model system
is capable of reproducing some of the salient features observed in normal liquid 'He, and about the
role of the repulsive and attractive parts of the bare potential in the determination of the properties
of 'He. We have calculated the Landau parameters Fo and Fo and their variation with pressure, the
wave-number and pressure dependence of the spin-symmetric and spin-antisymmetric polarization
potentials, pressure dependence of the dispersion of the zero sound, the static structure factors, and
the quasiparticle mass. It is our belief that this study has provided us with some physical insight
into the nature of liquid He although much remains to be done for its quantitative understanding.

I. INTRODUCTION

A low-density Fermi gas whose particles interact via a
repulsive hard-core potential has been a subject' of con-
siderable interest over the years, since it forms the basis
for studies of nuclear matter and liquid He. In this
model the physical quantities of interest such as the
ground-state energy are expanded in terms of a small pa-
rameter c =kFao, ao being the hard-core radius and AkF
the Fermi momentum. Unfortunately, in real liquid He
no such small parameter exists, and, therefore, any pertur-
bation approach is doomed to failure from the start. On
the other hand, there are no exact mathematical schemes
to treat a dense Fermi liquid. Recourse, has, therefore, to
be taken to approximate schemes even to treat simple
model systems.

During recent years, numerica1 techniques of the
correlated-basis-function approach have yielded promis-
ing results as far as ground-state properties are concerned.
A Green's-function Monte Carlo method to treat Fermi
systems has just begun to be used, although there are some
problems. These schemes involve heavy numerical work,
and the role of dynamic correlations is not very clear. Of
the several phenomenological theories of liquid He,
perhaps the most ambitious and successful one is the
polarization-potential approach of Aldrich and Pines.
Notwithstanding the fact that the latter involves some pa-
rameters which need to be adjusted by appealing to experi-
ment, it has some very attractive features. What is now
needed is a microscopic understanding of these potentials.

The purpose of this paper is to present (i) a detailed mi-
croscopic study of the collective and single-particle prop-
erties of a model-Fermi liquid whose particles interact via
a repulsive hard-core potential, and (ii) what is the effect
of an attractive tail on these properties. This model sys-
tem has the virtue that it incorporates two most essential

physical features of real liquid He: (i) The fermion na-
ture of the atoms and (ii) the hard-core repulsion between
the atoms. The approximate scheme that we use to study
this model system is the one proposed some years ago by
Singwi, Tosi, Land, and Sjolander (STLS) to study corre-
lations in electron liquids. This scheme has been tested
and found to give very good results for many of the prop-
erties of the e1ectron and the electron-hole liquids. It
has, hitherto, not been applied to the study of a Fermi
liquid interacting via a hard-core potential. Since the
model possesses only some resemblance to liquid He and
since the STLS scheme is only an approximate one, we
make no quantitative claims when comparing theory with
experiment. We are only striving to know whether the
model is capable of reproducing some of the very salient
features observed in normal liquid He. For example, one
would like to know what are the predictions of the model
for the magnitude of the two most important Landau pa-
rameters Fo and Fo and their variation with pressure.
What is the wave-number and pressure dependence of the
spin-symmetric and spin-antisymmetric polarization po-
tentials? What is the nature of the dispersion of the zero
sound, and how does it vary with pressure? How do the
density- and spin-fluctuation static structure factors S(k)
and S(k) look, and how do they vary with pressure? How
does the quasiparticle mass vary with pressure and parti-
cle momentum? What is the effect of adding an attractive
tail to the hard-core potential on the above-mentioned
properties'? Questions like these have been studied in this
paper within the frame work of the STLS scheme. Our
broad conclusion is that the present study has provided us
with some physical insight into the nature of liquid He,
although much remains to be done for its quantitative
understanding. Since the theory is nonperturbative, it
should be possible to compare its results, in the low-
density limit (c «1), with the exact results based on the
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perturbation theory for a hard-core Fermi liquid. The
present theory, albeit approximate, is self-consistent and
parameter free and is dynamic in nature. The only input
is the bare potential.

II. THEORETICAL CONSIDERATIONS

and a similar expression is obtained for V,tt(k) with
g(ap) replaced by g(ap).

The numbers g (ap) and g(ap) are obtained by using the
fluctuation-dissipation theorem according to which

S(k)= —
3 f des ImXd(k, co) (6a)

kF'

and

S(k)= —
3 f dco imX, (k, co) .

kF'Xp(k, co)
Xd(k, co) =

1 —V',tt(k)Xp(k, cg)
(»)

Now

In the STLS scheme, the density and spin response
function are written in the form of a generalized random-
phase approximation:

(6b)

and

pgXp(k, co )
X,(k, co) =—

1 —V',tt(k)Xp(k, ~)
(lb)

and

g(r) =1+ 3 f k dk sin(kr)[S(k) —1],
2kF'r

(7a)

and

dV(r)
V ff(r) = — g (r) dr

r dr
(2a)

where Xd and X, are, respectively, the density and spin
response functions and Xp is the usual Lindhard function.
V ff and V',~f are, respectively, the effective spin-
symmetric and spin-antisymmetric particle-hole interac-
tions. pz is the Bohr magneton. The crucial point in the
STLS scheme is that the latter are related to the pair-
distribution functions through

g(r) =
3 f k dk sin(kr)[S(k) —1] .

2kF'r
(7b)

With r =ap, Eqs. (1), (5), (6), and (7) constitute a set of
equations for the numbers g(ap) and g(ap), which have
to be solved self-consistently. Let us first consider the
equation for g(ap). Writing x = Vpg(ap), Eqs. (la), (5),
(6a), and (7a) can be written in the form

x/Vp F(x), ——
where

V',tt(r) = — g(r) dr,dV(r)
r dr

(2b)

where g (r) =g»(r)+g»(r) is the ordinary pair-
distribution function, and g(r)=g»(r) g„(r). V(r) —is
the bare potential. Notice that the effective interaction in
the STLS scheme is static. It is not a parameter of the
theory, but arises as a result of an ansatz made on the
two-particle Wigner distribution function in the equation
of motion for one-particle Wigner distribution function in
order to truncate the heirarchy of equations.

In the present case, we consider a bare potential of the
form

3 oo

F(x)=1+ 3 f k dk sin(kap)[S(k;x) —1],
kF3a p

S(k;x)=—,f ImXd [k,co;x]dao,
k~3

Xp(k, to)
Xd(k, co;x) =

1 —V tt(k;x)Xp(k, co)

and

4m.x
V,tt(k;x) = [sin(kap) —kapcos(kap)] .

(8b)

(8c)

(8d)

(8e)

Vpg(ap), r (ap
V,tt(r) =,

0, r &ap. (4b)

Notice that V', f~ and V',ff differ only by a constant factor.
The Fourier transform of V',tt(r) is

V ff(k)= f d r e'"'V', ff(r)

4~Vpg (ap)
[sin(kap) —(kap)cos(kap)], (5)

k

Vp, r (ap
V(r)=

0, r ~ap,
where ap is the radius of the hard core and Vp is a posi-
tive number. Clearly, for a hard-core potential Vp~on.
Using (3) in (2), we have

Vpg (ap), r (ap
V',tt(r) =.

(4a)0, r &ap

and

Equation (8a) is a nonlinear equation which can be
solved without much difficulty. It is worth pointing out
here that an iterative procedure to solve (8a) will diverge
for large enough Vp although a solution of the equation
exists. This point is discussed in detail in Appendix A.
In the limit Vp ~ ao (hard-core limit), we expect
g(ap)~0, and the effective interaction V', tt(k) is deter-
mined completely by the equation F(x)=0. A similar
equation can be set up for the case of the spin response.
Writing y = Vpg(ap), the spin-antisymmetric effective in-
teraction is obtained by solving an equation of the form

=G(y),
Vp

where it can be seen easily that

G (y) = F(y) 1. —

(9a)

(9b)

We have solved Eqs. (8a) and (9a) in the limit Vp~oo
numerically using Newton's method for various densities.
We find that solutions exist only at densities below a cer-
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TABLE I ~ Solution of the STLS equation for various densi-
ties for a pure hard-core potential.

C(aokF) n /no Vog (ao) —Vog(ap )

tain critical value. In the density-response case, the criti-
cal density is given approximately by apky 2.0, and in
the spin case by aok~=2. 6. Values of x =Vog(ao) and

y = Vog(ao) are given in Table I for various values of
C =apkp.

The absence of a solution beyond a certain critical value
of the density suggests that something drastic may be
happening in the vicinity of the critical density. In fact,
an earlier study of a Bose liquid interacting via a hard-
core potential by Hansen et al. ' suggests that the system
may solidify at roughly the density apk+-1. 9.

The Landau parameters Fo =X(0)V', rr(k =0) and

Fo N(0——) V,'rr(k =0), where X(0) is the density of states,
are shown in Figs. (1) and (2) as a function of density. We
have expressed the density in terms of a fixed density np
given by no

' ——(4~/3)ao. Notice that no is just a
mathematically convenient quantity which has no particu-
lar physical meaning. It is clear from a comparison of
Figs. 1 and 2 (solid curve) that Fo changes much more
rapidly with density compared to Fp in the region of high
density, c & 1. In fact in the density region
0.3&n/np &0.7, Fp changes by almost a factor of 10,
whereas Fo changes by only 30%. It is interesting to
point out that a similar result has also been obtained by
Pfitzner and Wolfle" using a semiphenomenological ap-
proach similar to the approach of Babu and Brown. '

This result is, in general, in qualitative agreement with
what is observed in liquid He under pressure. Absolute
values of Fo and Fo of the model obviously do not com-
pare well with those observed in He. Moreover, we find
that Fp becomes less than —1 at c=1.74, so that the
model predicts a ferromagnetic transition at this density.
Also, we find (see Fig. 1) that Fo decreases with increas-
ing density in the vicinity of the critical point (c =2)
where no solution to our equation exists. This behavior of

3QO

S
0

20.0

10.0

0.0 0.25 O. 5 0.75 I.O

0 C

n/no

FIG. 1. Landau parameter Fo vs n/no. Solid curve, hard-
core potential; dashed curve, hard core plus attractive tail.

Fp is not trustworthy, since our theory may not be valid
when the system is close to its solidification point.

III. DILUTE HARD-CORE FERMI GAS ( e & 1)

(10)

This is the region of density where perturbation theory
is valid and has been extensively studied. The perturba-
tion theory results for c « 1 can be considered almost ex-
act, and this makes it possible to compare some of our re-
sults with the previously known results. The calculated
Landau parameters Fp and —Fp are shown in Fig. 3 as a
function of c (c&1). Notice that —FO~Fo as c~0.
This result is a consequence of the fact that as c~0, the
interaction becomes essentially pointlike thus rendering
the Pauli exclusion principle very effective. The compres-
sibility ratio K/Kf in our theory is given by

1

1+Fp
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

0.39
0.48
0.58
0.69
0.82
0.97
I.13

159.31
42.98
20.94
13.12
9.51
7.62
6.59
6.06
5.91
6.10
6.69
7.86

10.14
15.31
26.55
37.27
38.96
36.45
31.81
26.88

157.88
41.56
19.44
11.50
7.73
5.64
4.34
3.48
2.87
2.42
2.07
1.80
1.57
1.38
1.22
1.07
0.94
0.82
0.72
0.64

since m /m =1. This ratio is shown in Fig. 4 (curve 1)
as a function of c and is compared with the corresponding

O.O 025.J. g.5 O,75 I.O
n/n o

C

FO0

-I.O

- I.5—

FIG. 2. Landau parameter Fo vs n/no. Solid curve, hard-
core potential; dashed curve, hard core plus attractive tail.
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I.o

0.5-

0.0 0.5

F

a
Fo

I.O

exact result in the electron gas case. %'e have not at-
tempted here at present such a refinement of the theory.

We have also examined the static structure factor S(k)
for several values of c. We find that it is quite structure-
less at these low densities. The same is true for the spin-
structure factor S(k). The corresponding pair correlation
functions g (r) and g(r) have also been examined, and it is
found that g (r) is nonzero inside the hard core, although
g(ao)=0. This unphysical feature is found throughout
the whole range of density we have studied and should be
considered as the defect of the theory. This is a manifes-
tation of the bad behavior of our theory for large values of
k. This bad behavior may be slight and may even be not
perceptible in a plot of S(k), but it can lead to unphysical
behavior of g(r) for small value of r. The same is true
for g(r)

The effective mass m'/m on the Fermi surface is cal-
culated as a function of density by calculating the self-

energy. The latter is calculated by using an approximate
formula derived' by us earlier. A brief summary of the
underlying theory is given in Appendix B. An exact re-
sult' for I*/m based on small c expansion is given
below:

FIG. 3. Calculated Landau parameters Fo and —Fo vs c for
small values of c.

ratio obtained from the exact small c expansion of the
ground-state energy (curve 2).' ' The agreement between
our result and the exact result is only fair, a result which
is not totally unexpected, since similar quality of agree-
ment is also obtained in the case of an electron liquid. In
a later refinement of the STLS theory, Vashishta and
Singwi' were able to get a very good agreement with the

m*/m =1+ (71n2 —1)c +.O(c ) .
8

15m

In Fig. 5 our calculated values of m '/m as a function of
c are compared with those given by Eq. (11). The agree-
ment is quite satisfactory in the small c region where, Eq.
(11) is valid.

IV. HIGH-DENSITY HARD-CORE
FERMI LIQUID e & 1

The high-density region c & 1 is of considerable in-
terest, since liquid He in a first approximation can be
considered as a Fermi liquid interacting via a hard-core

Kf

I.O

I.2—

0.5

O.O
l

0.5 I.O

I.O
0.0 0.5

C

FIG. 4. Ratio K/Kf of the interacting to the free-particle
compressibility as a function of c. Curve 1 our results; curve 2,
exact result.

FIG. S. Effective mass m /m on the Fermi surface versus c.
Curve 1, exact result of the perturbation theory [Eq. (11)] and
curve 2, present calculation.
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0

otential. Taking ao —2.56 A and k -0.78 A, corre-
sponding to the normal liquid He density, one finds
c -2. Notice, however, that real liquid He interacts via a
softer potential with an attractive tail (6-12 Lennard-Jones
potential), and, therefore, the effective c for liquid e
should be smaller than 2. We shall see in what follows
that an appropriate value of c for liquid He is
c -1.5—1.7.

1.7

1.5

I.O

1 —V tt( k)Xp(k co ) =0 (12)

A. Zero-sound dispersion

The dispersion of the collective mode of the density
fluctuation is obtained in our model by solving the equa-
tion

Q5

0.0 2.0 4.0 6.0
kco

8.0
!.6

12.0

A sharp collective mode exists only for a density greater

particle-hole continuum. In the present model this critica
density is c-0.9. The calculated dispersion for the col-
lective mode for several different values of the density is
shown in ig.F' 6 There is a remarkable similarity, a-
though qualitative, between the dispersion curve for
c —1.7 and the one observed by Skold et aI. ' from ine as-
t' tron scattering experiments. WhatWhat is more interest-ic neu

on the den-ing is the dependence of the dispersion curves on e
sity of t e iqui orf h 1 d the pressure. With the increase in
density, t ere is eh

'
th flattening of the dispersion curve.

Such a flattening has been observed experimentally an
was indeed predicted by Pines et al. ' on the basis of their

p ehenomenological theory. When the density is ig
enough, a pea in ek the dispersion curve builds up at around
k -3. A similar prediction has also been made byao —. s
Gl de and Khanna' based on their phenomeno ogica
h . The question of what happens to the dispersion

curve when a small attractive potential is added
~ ~ ~

hard core will be examined in Sec. VI.

B. The static-structure factors

The static structure factor S(k) for three different den-
sities is shown in Fig. 7. As expected, the peak in the

~ ~FIG. 7. Static structure factor S(k) vs kap for densltles
c =1.5, 1.7, and 1.9. The inset is the magnified version of S{ )

for small values of kap. The dashed line represents the slope of
S ( k) for kap ~0.

structure factor increases in height with the increase in
density, but the position of the peak remains unchanged at
around kao —5.0. Notice also that a small plateau that is

d ' ' in S(k) at small k-0. 3 A ' in liquid He is
absent here. A more detailed discussion on this point wi

n in Fi . 8The magnetic structure factor S(k) is shown in Fig.
for two different densities. The appearance of a sharp
spike in S(k) for c =2.0 is an indication that the normal
state is no longer the stable state in the present model. In

f =2 0 I"' —1 so that the system should be al-
vior of S(k),rea y errd f romagnetic. In contrast to the be avior o

we find that the overall shape of S(k) in the norma s a e
e t that theis quite insensitive to the density change excep a

position of the tiny peak in S(k) shifts towards arger
values of k as the density increases.

8.0
nits *I.I3 (C=2.0)0

0.97 (C=I.9)

0.69 (C = I.&)
I.5—

6.0o
U

4.03

0.48 (C=I.5)

I.O

C= 1,6

2.0 0.5

0.0 I.O 2.0
f

4.0
ka,

FIG. 6. Dispersion of the zero-sound mode cu(k) g, p(k„E,n ) vs
kap for for different values of the density.

0.0 2.0
ko,

I

4.0

FIG. 8. Structure factor S(k) vs kap for c = 1.6 and 2.0.
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C. Effective mass

The effective mass on the Fermi surface is defined by
20

CRI.2

1 — ReX(k, co)
a

Bco

1+ ReX(k, co)
a

BE,k
k =kF
CO O

(13)
I.O

Figure 9 shows the results of our effective mass calcula-
tion on the Fermi surface over a range of densities when
Fo & —1, i.e., the normal state is the stable paramagnetic
state. Notice that a rather large mass renormalization
coming from spin fluctuations is found over the entire
density range (see also Ref. 1 1 where a different approach
is used). A divergence in the effective mass is found for
c=1.74 which is the result of the paramagnon effect.

We have also calculated the quasiparticle spectrum in
the "on-shell" approximation:

-I.O

FIG. 10. "On-shell" quasiparticle energy E(k)/E~ vs k/kz
for c =1.2 and 1.3. gk is the free-particle energy measured
from the Fermi energy.

Ek=Ek+ReX(k, ek), (14)
V. EFFECT OP AN ATTRACTIVE TAIL

where Ek is measured from the Fermi energy and ReX is
the real part of the self-energy. The results for two dif-
ferent densities are shown in Fig. 10. These curves for
quasiparticle spectrum exhibit qualitative similarity to the
corresponding curves calculated by Fantoni and Pandhari-
pande. The momentum-dependent effective mass

' —I
m*

(Ic)
m BEk

(15)

is shown in Fig. 11 for the same two values of density.
The shape of these curves is similar to the shape calculat-
ed by Friman and Krotscheck. The second peak around
k/k~ ——1.65 is due to the zero-sound contribution. Notice
that the on-shell value =7.3 of m*(k)/m on the Fermi
surface is much larger than the corresponding value of
1.22 as read from curve1of Fig. 9. The latter is based on
the definition of the effective mass as given by formula
(13}. This large difference is an artifact of the on-shell
approximation, which cannot be trusted when
(8/Bco)ReX(k, co) is large and negative.

0 r &ao

V(r)= —E, ao&r &al

0, aI(r .

(16)

In real liquid He the interatomic potential is not a
hard-core potential but a potential of the Lennard-Jones
kind with an attractive tail. The latter plays an important
role in determining the properties of hquid He. In fact
the stability of the system depends entirely on the ex-
istence of such a tail. Hitherto, in the absence of any mi-
croscopic theory of liquid He, it has not been possible to
say even qualitatively what the effect is of the attractive
tail of the potential on physical quantities such as the
structure factors S(k) and S(k}, the zero-sound disper-
sion, and the Landau parameters Fo and Fo. In this sec-
tion we shall examine the effect of such an attractive tail
with an approximated model. We shall see that some very
interesting results emerge.

For simplicity, we consider a model interaction which
can be solved easily:

2.0

O.O
I

0,25
I

0.5

I

I

I

I

I

I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

II
0.75

I

1.0

8.0-

6.0-

FIG. 9. Effective mass m /m on the Fermi surface versus
n/no. Curve 1, combined contribution of density and spin fluc-
tuations; curve 2, contribution of density fluctuations only.

0.0
L.

I.O
k/ I(

I

2.0

FIG. 11. "On-shell" effective mass m (k)/m as a function
of k/k+ for c = 1.2 and 1.3.
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The parameters a I and E of the attractive tail are fixed by
requiring that

VLJ rr dr= —cr dr (17a)

and

=Gi(yi yz)
Vo+ E

3'2
G2(3 I y2)

E,

where

(23a)

(23b)

al
rVLJ(r)r dr= r( E)r dr- ,a ap

where VLJ is the Lennard-Jones potential for He

(17b) Gl(yi, y2) g(ao yl 3 2)

G2(y~, yz)=g(a&, y&,y2) .
(24)

CT

VLJ(r) =4K
r

12 6
In the limit Vo~ oo, we have as before

F&(x~,xz) =0
Furthermore, we take ao —0.9o. to account roughly for
the fact that LJ potential has a weaker repulsive core
compared with the hard-core potential. With the require-
ments (17), we find that

and

X2
F2(x ),xp ) — =0,

E

(25)

a [—2.05ao,

c.=0.46K .

From Eqs. (2) and (16), it follows that

0 r&a&

V ff(r)= —sg(a~) a~ &r &ao
—.g(. , )+(V.+.)g(..) «a.

(19a)

and a similar set of equations for the spin response.

VI. RESULTS AND DISCUSSION

We have solved the above set of equations numerically,
using the generalized Newton's method, for different den-
sities (c values), and the results are given in Table II.

A. Landau parameters

and
r

0 r&a&

V ff(r)= —Eg(a& ) a» r &ao
—sg(a, )+(Vo+E)g(ao) r &ao .

(19b)

The Fourier transform of the effective potential V',rr(r) is

V',rr(k) = ( Vo+E)g(ao)[sin(kao) —kaocos(kao)]
k

4~
Eg(a&)[sin(ka&) —ka&cos(ka~)],

k
(20)

and a similar expression for V',rr(k) with g (r) replaced by
g(r)

As in Sec. II, a set of self-consistent equations for the
variables x~ ——( Vo+E)g(ao) x2= —Eg(a~), and

y~ ——(ao+c)g(ao) and yq ———sg(a~) can be set up. How-
ever, the computation is somewhat more involved here be-
cause one has now to solve two coupled nonlinear equa-
tions of two variables. Proceeding as before, we can write
these equations in the form

The resulting Landau parameters Fo and Fo are shown
as dashed curves in Figs. 1 and 2, respectively. There are
several interesting features to note here. The attractive
part has the effect of reducing Fo and increasing Fo com-
pared to their values in the pure hard-core case. Also the
curve for Fo in the region of low density is much steeper
than it is for the hard core. In fact, it clearly shows the
tendency of becoming negative for c &1.3. It is, there-
fore, no surprise that for nuclear matter where c & 1, Fo is
negative. The effect of an attractive tail on Fo is very
large as can be clearly seen in Fig. 2. In the region of den-
sities in hard-core case where Fo & —1 (i.e., ferromagnet-
ic), the inclusion of an attractive tail results in Fo & —1.
Under the circumstances, it is natural to ask whether our
results are sensitively dependent on the shape of the at-
tractive part of the bare potential. To answer this ques-
tion, we have solved the self-consistent equations also for
two other choices of the parameters c. and a& for c =1.6.
The latter satisfy the requirement imposed by Eq. (17a).
The resulting effective interactions V',rr(k) and V,'ff(k)
for three different choices of the parameters a, and E are

XI =Fi(xi,x2),
( Vo+8)

(21a)
TABLE II. Solution of the STLS equation for various densi-

ties for a hard-core plus a rectangular attractive potential.

X2
=Fp(x ),x2 ),

E,

where

and

F((x),x2) =g (ao,x),x2),
F2(x ~,x2) =g (a &,

'x
&,x2),

(21b)

(22)

C(apkF)

1.4
1.5
1.6
1.7
1.8
1.9
2.0

Vpg (ap)

16.19
24.91
35.09
37.63
35.88
31.48
26.56

cg(ai )

1.60
1.32
1.07
0.88
0.73
0.62
0.54

—
Vpg (ap)

2. 1 1

1.73
1.44
1.21
1.02
0.85

—~g(a, )

0.305
0.211
0.144
0.095
0.060
0.034
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shown in Figs. 12 and 13, respectively. Notice that
V,rr(k) is qualitatively quite stable against variation of a,
except in the small k region, where the Landau parameter
Fo [ V',ff(k =0)N(0)] for three different situations does
not differ by more than 20 Jo. The situation is entirely
different for V,'ff(k) as can be seen in Fig. 13. The value
of Fo [ V',rr(k =0)X(0)] depends very sensitively on the
shape of the potential. In fact, Fo changes from 0.27 to
—0.44 for three different shapes of the attractive potential
chosen. The main reason for this is the change in the
values of g(a& ) for different values of a~, the latter being
always close to zero and as such can differ easily by 100%
although the actual numerical difference may be small.
As a result, we conclude that the spin-antisymmetric ef-
fective interaction depends very sensitively on the shape
of the bare potential. In particular, our results for Fo
cannot be trusted as reasonable approximations for liquid
He. On the contrary, our results for the symmetric case

can be considered as reasonable first approximations for
liquid He. Notwithstanding that, our N(0) V,'rr(k) for
a

&

——2.2ao (see Fig. 13) is qualitatively quite similar to the
corresponding polarization potential of Aldrich and Pines
( He at saturated vapor pressure).

In Fig. 14 we have compared X(0)V',rr(k) in the two
cases one with a pure hard-core potential and the other a
hard-core plus an attractive potential for a given density
c = 1.7. Notice that in the small k region, inclusion of an
attractive tail in the potential brings about a drastic
change in the shape of the effective potential. Fo in-
creases by more than a factor of 2 from its hard-core
value thus shifting the magnetic instability to higher den-
sities. Curve B of Fig. 14 indeed has a shape very much
like that of f'(k) of Aldrich and Pines. The minimum in
the effective potential is around k=0.8 A ' and depends
on the shape of the attractive part of the potential.

The spin-symmetric effective interactions V',rr(k)N(0)
for c =1.5 and c =1.9 are plotted in Figs. 15 and 16,
respectively. The corresponding effective interaction for
the pure hard-core potential is also shown for comparison.
Notice that X(0)V',rr(k) for c =1.5 is qualitatively quite
similar to the polarization potential f'(k) of Aldrich and

a5I-
Q)=L90

QO

&a

0
z

-Q5

- I.O—

FIG. 13. Spin-antisymmetric dimensionless effective interac-
tion N(0)V,'ff(k) vs kap for c =1.6 and for three different
choices of the parameter a~ (and c) for the attractive tail.

Pines. It starts with a value 10 and has a maximum
around kao —1.5 (k lkF=1). This maximum is not so
pronounced as in the f'(k) of Aldrich and Pines. It first
attains a value zero around ka0=4. 5 (k/kF-3), whereas
f'(k) does so at k/kF-2. 2. This difference could easily
arise from the difference in the hard-core part of the po-
tential. Notice (Fig. 15) that the inclusion of an attractive
tail brings about a considerable reduction in the value of
N(0)V', rr(k) for small values of k from its hard-core
value and a change in the shape. Actually, it can be
shown easily by expanding (20) for small values of k that
the dip in N(0) V',rr(k) is the result of the attractive part
of the potential and is present only when the ratio
r =Eg (a

& )/( Vo+s)g (ao) exceeds a certain critical value.
Similar structure is not present in N(0) V',rr(k) (Fig. 16)
for c =1.9. In fact it can be seen from Table II that the
ratio I" decreases as the density increases resulting in a
gradual disappearance of the structure. This is under-
standable since at high densities one expects the effect of
the hard core to be the dominating one.

Q, =2.2Qo

Q, -2.05 Q
200

Oi =l Qo
5O &Qo

I QO

0

O

0 y

O
X

-0.5

-I.O

FIG. 12. Spin-symmetric dimensionless effective interaction
N(0) V',ff(k) vs kap for c =1.6 and for three different choices of
the parameter a l (and c) for the attractive tail.

FIG. 14. Spin-antisymmetric dimensionless effective interac-
tion N(0)V,'~f(k) vs kap for c =1.7. Curve A is for a pure
hard-core potential, and curve B for a hard-core plus an attrac-
tive potential.
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0.0 2.0 4.0 50 6.0 8.0 I 0.0
FIG. 15. Spin-symmetric dimensionless effective interaction

N(0)V', ff(k) vs kap for c =1.5. Curve 3 is for a pure hard-
core potential and curve B is for a hard-core plus an attractive
potential.

ka

FIG. 17. Structure factor S(k) vs kap for c =1.5, 1.7, and
1.9. The inset is a magnified version of S(k) for small values of
kap. The dashed line represents the slope of S(k) for kap~0.

B. The structure factors

The self-consistent static-structure factors S(k) for
three different densities are shown in Fig. 17. The peak
height increases with density as expected, whereas the
peak position remains unaffected. At a first glance, the
curves of Fig. 17 appear to be the same as those of Fig. 7
for a pure hard-core potential. However, on closer exam-
ination an interesting difference is discerned when one
compares the insets of Figs. (7) and (17), where S(k) for
small values of kao is shown on an expanded scale. No-
tice that for c =1.5, S(k) for the hard core (Fig. 7) is
convex to the wave number axis, whereas the S(k) of Fig.
17 for a hard-core plus an attractive potential is concave,
leading to a plateaulike structure in S(k). Such a struc-
ture has indeed been seen experimentally in S(k) of liquid
He through x-ray and neutron scattering equipments.

Putting ao —2.5 A, we see that the position of the plateau
is also in rough agreement with what is observed. The oc-
currence of this plateau can be traced to the structure in

the low-k region of N(0)V', tr(k) for c =1.5. This struc-
ture disappears with increasing density. Based on this ob-
servation, we infer that the observed plateaulike structure
in S(k) in the small k region in liquid He is a result of
the attractive part of the potential between the helium
atoms, and that the structure would weaken and ultimate-
ly disappear as the density of the system increases when
the repulsive part of the potential dominates. Since this
effect is quite independent of statistics, a similar behavior
is also expected to be found in the structure factor of
liquid He.

The structure factors S(k) for spin fluctuations for
three different densities are shown in Fig 18. The shape
of these curves is quite different from that in the pure
hard-core case, Fig. 8. This difference is a consequence of
the very different behavior of V,'f(k) in the region of
small k in the two cases. As the density increases, the ef-
fect of the hard core becomes more dominant and the
peak in S(k) weakens and ultimately disappears. We ex-
pect, at least qualitatively, a similar behavior in liquid
He.

6o.o)

4 GO

C =I.9

I.5—

30.0

2QO
n»a

IQO

QO

-I GO-

-20.0 I—

-3QO L

I.O 2.0 3.0
ka 0

I.O

0.5

FIG. 16. Spin-symmetric dimensionless effective interaction
N(0)V', ff(k) vs kap for c =1.9. Curve 3 is for a pure hard-
core potential and curve B is for a hard-core plus an attractive
potential.
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kao
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I
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FIG. 18. Static-structure factor S(k) vs kap for c =1.5, 1.7,
and 1.9.
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C. Zero-sound dispersion

The zero-sound dispersion for four different densities is
shown in Fig. 19. On comparing these curves with the
corresponding curves in Fig. 6 for the pure hard-core case,
one notices two important differences: (i) The velocity of
the zero-sound mode given by the slope of these curves for
ka0~0, is reduced from its hard-core value, since Fo is
reduced. (ii) A more pronounced flattening of the disper-
sion curves in the large-k region is seen for say c =1.7
compared to that seen in Fig. 6. Also for higher densities
(c ) 1.7), the peak in the dispersion curves is more pro-
nounced than what it is in Fig. 6. It seems that the addi-
tion of an attractive part to the bare hard-core interparti-
cle potential does bring the zero-sound dispersion more in
agreement with experiment in liquid He (c —1.7—1.6),
although the present agreement remains qualitative. For
c =1.7, the flattening is around kao —3.2, i.e., k=1.2
A

—1

VII. CONCLUDING REMARKS

In the Introduction we asked a number of questions the
main thrust of which was whether it is possible to under-
stand from microscopic considerations, at least qualita-
tively, some of the striking features seen experimentally in
the properties of normal liquid He. Using a model of the
Fermi liquid, whose particles interact via a repulsive hard
core and an attractive tail, we have calculated a number of
properties of our model system within the frame work of
the STLS theory and have provided an answer in the af-
firmative. Since the theory is microscopic, it has enabled
us to study separately the effect of the pure hard-core and
attractive parts of the potential which has, hitherto, not
been possible. Our calculations, we believe, have provided
some microscopic basis to the form of the phenomenolog-
ical polarization potentials of Aldrich and Pines in liquid
He. They give a flattening of the dispersion curve of the

zero-sound and the development of a peak in it with in-
creasing density. The calculations also yield quite unex-
pectedly one very subtle feature, that of the occurrence of
a plateau in the static structure factor S(k) in the region
of small wave number and its gradual disappearance with

increasing density, and that it is a consequence of the at-
tractive part of the potential. Broadly speaking, the
present study has provided us with some physical insight
into the nature of normal liquid He, although quantita-
tive understanding is still lacking. Our simple approxi-
mate scheme needs further improvement to treat a dense
Fermi liquid like He. A comparison of our results with
the exact results for a low density (c &&1) hard-core Fer-
mi liquid shows that the agreement between the two is a
semiquantitative one.

We would now like to make some comments on the
course of future work. An obvious question which comes
to mind is what changes would ensue if one were to repeat
the present calculation using a more realistic Lennard-
Jones kind of potential. In principle there is no difficulty
in doing so, but in practice one is faced with a gigantic
numerical task of solving self-consistently a nonlinear in-
tegral equation. For a soft Coulomb potential, a straight-
forward iteration procedure has been used successfully,
but for a Lennard-Jones potential this does not seem to
work, and so far we have been unable to find a fast con-
verging numerical procedure. We, however, believe that it
is purely a technical matter since in this paper we have
been able to demonstrate that the theory gives a conver-
gent answer even for a hard-core potential. In Appendix
A we have explicitly shown that a straightforward itera-
tion procedure under certain conditions fails to find a
solution even though the latter exists.

A more difficult and fundamental problem which still
remains with the STLS approximation is of incorporating
in a consistent manner frequency and wave-number-
dependent self-energy effects such that in the static long-
wavelength limit one arrives at the Landau form for the
compressibility and susceptibility expressions. So far we
have used the effective dynamic interaction to calculate
the effective mass of the quasiparticle —a procedure
analogous to that of Ref. 23.
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APPENDIX A

Here we make some comments on the solution of the
STLS equation for a strong repulsive potential. For an ar-
bitrary potential, the STLS equations (1), (2), (6), and (7)
can be written as an integral equation for the pair-
correlation function g (r) in the form

g(r) =F(r,g (r)), (A 1)
2.0

O.G 2.0 3.0
I

4.0

FIG. 19. Zero-sound dispersion co(k)/E+(no) vs kao for
c = 1.5, 1.7, 1.9, and 2.0.

where F is a functional of g(r). To solve the integral
equation, the most common procedure is first to write the
integral equation in the form of nonlinear matrix equa-
tions on discrete sites ( r;, i = 1,2, . . . , Ã) so that the con-
tinuous limit is recovered as N~ ac .

The matrix equation can be written schematically in the
form
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x; =F;(x, ,x2, . . . , x~), i =1,2, . . . , N, (A2)

where in the case of STLS equation, x; =g (r; ). This
equation is usually solved by iteration where 0.6

0.5

(A3)

until convergence is attained. However, in the STLS
equation it is often found that the iteration procedure
diverges for a strong repulsive potential. For a general
N-variable equation like (Al), it is very hard to under-
stand the origin of the divergence, whether it is an artifact
of the iteration procedure, or whether it is an indication
that the equation has actually no solution. However, in
our present situation the STLS equation is an equation of
one variable (or two in Sec. V) for which the above ques-
tions can be answered unambiguously.

To show this, we examine our STLS equation for a pure
hard-core potential [Eq. (8a) of the text]

X =F(x) .
Vo

(A4)

In Fig. 20 we show the function F(x) as a function of x
for c =1.4, and we have also shown the straight line

y =x/Vp for two arbitrary values of Vp. The solution of
(A4) is given by the intersection of the two curves,

y =F(x) and y =x/Vp. It is obvious from Fig. 20 that
the solution (A4) exists for all values of positive Vp for
the particular form of F(x) we have.

An iterative solution of (A4) is built up by putting

X) =F(xp),
Vo

X2 =F(x, ),
Vo

~ ~ ~

APPENDIX B

The iterative procedure can be indicated schematically
in Fig. 20 by the dashed arrows. Notice that, although for
both values of Vo we take solution undoubtedly exists, the
iterative procedure converges only in the case of a weaker
Vo. A more careful analysis shows that the convergence
of the iteration procedure depends very strongly on the
relative slopes of the two intercepting curves near the in-
tercepting point. Thus we find that although solution for
(A4) exists, an iterative procedure is not going to converge
when the number 1/Vo is too small.

In the simple one-variable (and two-variable) case we
have considered here, the solution can be attained by other
well-developed methods like Newton's Method where con-
vergence is good over the whole range of Vo. In the N-
variable case a generalization of Newton's method exists
which relies on the heavy computation of the inverse of a
N &N matrix. With modern supercomputers such a com-
putation becomes possible and calculations should be done
to test the theory on a wider range of problems.

0.4

Q5

0,2

O. l

-O.l F(x)

FIG. 20. "F(x)" for c =1.4. The dashed arrows indicate a
straightforward iteration procedure.

self-energy for a multicomponent-paramagnetic Fermi
liquid. The method is based on an approximate scheme of
classification and summation of diagrams introduced by
Vignale and Singwi. Here we summarize briefly our re-
sults for a one-component-paramagnetic Fermi liquid. '

An expression for the derivative of self-energy is de-
rived which has the form

d4 '
»(p)= f (B1)

0,tt(p»p') =P,«(p —p'), (B2)

we get

P„t(q) =T(q)+ [ V',«(q)]'g, (q)

+3[V,'tt(q) ]'X,(q), (B3)

where V',«(q) and V,'tt(q) can be identified as our spin-
symmetric and spin-antisymmetric interaction introduced
in the main text. X, and P, are the density and spin
response functions, respectively. The factor 3 is coming
from spin degeneracy. T(q) should be considered as a lo-
cal approximated T matrix. A previous study of Lowy
and Brown on electron gas shows that T(q) can be iden-
tified roughly as V',«(q). We have adopted this approxi-
mation in our calculation. It is worth pointing out that
11,tt(q) of Eq. (B3) has the same form as the effective in-
teraction which is used by Friman and Krotscheck for a
self-energy calculation for liquid He except that the
choice of T(q) and V,«(q)'s is different.

Within the local approximation, Eq. (B1) can be solved
to give

where p and p' are four-momenta. g,tt(p, p') consists of
three terms corning from three different physical process-
es: (i) a generalized T matrix T(p,p ) which describes the
scattering of two particles, (ii) induced interaction via den-
sity fluctuations, and (iii) induced interaction via spin
fluctuations

In a "local" approximation

In a study of single-particle properties in an electron-
hole liquid we derived an expression for the one-particle

d4
~(p) =f,4.tt(q)g'(p —q)+V* .

(2m. )
(B4)
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Notice that the absolute value of self-energy (i.e., the
chemical potential) is unaccessible using this effective in-
teraction.

The self-energy (84) is evaluated by first dividing it into
two parts, g'"' and g('"', where and

(85)

X'""'(p,E)= f f dco ttt, rt(q, i co)ln
2p 0 (2sr)

co'+(e —gp+q)'

co'+(E.—gp+q)'
(86)

and X=X'"'+X'""'. It is easy to show that

(87a)

gy(res)(p e)
BEp

1
——0,

E=O

(87b)

gy(line)(p &) 00

dc' ef q, l coq
E=O

2+q (q —2)
co +(2+q) co +(q —2)

(87c)

gyi line i( 00 00

P 1 3 q dq dm, f q, iCOq

E=O

co'+ (2+q)' (1+q)(q + 2)
q ln —4

co'+ (q —2)' co'+ (q +2)'
(1 —q)(q —2)
co +(q —2)

(87d)

where we have expressed momentum in units of kz and c in units of EF, p~p/kF, c~t-/EI;. Using the above equation,
the effective mass on the Fermi surface can be evaluated numerically.

The on-shell effective mass is evaluated by evaluating X(p, gz ) first and then differentiating it numerically with respect
to p to obtain m*/m (p).

From (85), it can be shown after some algebra that for p ~ 1,

2p 0
(Bga)

and for p &1
min(1 — +2 ) P +1 miII(1 — +2 )X'"'(p, g~)= f qdq f '

dx P,tr(q, x) — f qdq f, '
dx tt, tt(q, x) .

Also, from (86), we have

X'""'(p,gz) = f q dq f dco P,rt(q, icoq)ln
16~ p 0 co +(2p —q)

The above integrals are evaluated numerically.

(89)
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