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Simple approximation for the Bethe-ansatz solution of the one-dimensional Fermi gas
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We present a simple approximation scheme for the solution of the integral equations resulting
from the Bethe-ansatz diagonalization of the one-dimensional Fermi gas with 5-function attraction.
These equations arise for the Hubbard model with attractive interaction in the limit of weak cou-

pling and low density. We obtain the ground-state energy as a function of coupling and density in

very good agreement with numerical solutions, as well as a value for the parameter determining the

gap in the magnetic excitation spectrum which strongly supports a conjecture of Larkin and Sak.

I. INTRODUCTION

The one-dimensional Hubbard model with attractive in-
teraction between the electrons is one of the simplest
models for a (quasi-) one-dimensional superconductor. In
the limit of weak interaction and low electronic density it
reduces to a Fermi gas with 6-function attraction. The
properties of this and related models have been discussed
by a number of authors, ' using the exact diagonaliza-
tion of the Hamiltonian by the Bethe ansatz. The attrac-
tive interaction favors formation of electronic pairs, re-
sulting in a ground state with zero magnetization and a
gap in the magnetic excitation spectrum. Writing down
the Hubbard Hamiltonian for n electrons per site in a
linear lattice of N sites as

M= —Tg (a;~i+ ( ~+a;~a;, ~)+ U g a;,a(,a(,ai, ,
I, O

with T)0 and U (0; the energy gap in the weak-
coupling Fermi gas limit (u=

~

U
~

/T&&1, n &&1,
u /n « 1) was shown' to be given by

solution of the relevant integral equation (see below)
whose zeroth order already gives ao differing from (3) by
about 2%, this difference being reduced to less than 0.4%
in the next step. We believe that this is a good indication
of the accuracy of (3). In addition, our method allows us
to evaluate the ground-state energy of the Fermi gas for
any value of u ln. Even the zeroth-order approximation
gives this energy as a function of u /n in very good agree-
ment with the numerical results, ' as shown in Fig. 1. We
also discuss the possibility of applying this method to the
calculation of other quantities, e.g., the energy gap of the
Fermi gas as a function of u In, the magnetization in the
presence of a magnetic field, and the case of the Hubbard
model for arbitrary u and n.

II. BASIC EQUATIONS

The lowest energy level of the one-dimensional Hub-
bard model for a fixed value of the total spin component
S, is given by the so-called "Lieb and Wu equations. " '

In the attractive case, defining s =S,/N and setting

—=2(2e ')'~ u (nt'u) ~ e 'en a

T
(2)

0.07—
with a numerical evaluation of the constant ao yielding
the value no-0. 11.

The same problem was also addressed by Larkin and
Sak resorting to a renormalization-group calculation.
They rederived formula (2) for the gap with an analytical
expression for no, namely,

ao= =0.108 65
inn. + 1

2~2
(3)

which was obtained by means of an argument of univer-
sality and the consequently allowed comparison with the
exact solution of the n =1 model. Since the latter is not
a rigorous approach, it would be interesting to check the
result (3) by obtaining a more accurate value of ao from
the Bethe-ansatz solution. This was the original aim of
this work.

Although we did not obtain ao in closed form, we
worked out a scheme of successive approximations to the
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FIG. 1. Ground-state energy of the one-dimensional Fermi
gas with attraction. In this scale it is impossible to resolve our
zeroth-order approximation from the exact numerical evaluation
of Ref. 1.
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T= 1, these equations can be written as follows:

E n——s u —2 f p(k) cosk dk,
N 2 -a (4)

TABLE I. Comparison between our zeroth- and first-order
approximations for the integral I(sc), Eq. (24), and the exact
(numerical) results reported in Ref. 8 ~

I (~) (exact)

f p(k }dk = 1 —2s,
Q

8 nf o(A, )dA. =——s .—B 2

(7)

2~p(k)=1+ cosk f dX,8u o.(A, )
—~ u +16(sink —A, )

—~ u +4(A, —k')

8up(k) dk ( )—& u + 16(sink —A, )

0.4
0.6
0.8
1.0
1.2
1.5
2.0
2.5
3.0
5.0

10.0

2

0.6019
0.6359
0.6652
0.6910
0.7137
0.7429
0.7817
0.8113
0.8342
0.8896
0.9405

2

0.6023
0.6363
0.6655
0.6911
0.7138
0.7430
0.7817
0.8113
0.8342
0.8896
0.9405

2

0.6027
0.6364
0.6656
0.6912
0.7138
0.7430
0.7817
0.8113
0.8342
0.8896
0.9405

E n—= ——u —2 f cr(A, )g2(A. )dA. ,N 2

2m cr(A, ) + f 2 2 d A,
' =go(A, ),4u o (A, ')

—~ u'+4(X —&')'
B nf o(A, )dA, =—,—B 2

'

where

1 ~ 8u cos"k
—~ u +16(sink —A, )

(9)

(12)

Finally, in the Fermi gas limit u~O, n —+0, with u/n
constant, Eqs. (9) and (10) become'

16
+2 f A, o(A, )dA, , (13)

Ee= —+2n =—
iV

For the ground state (s =0) the right-hand side of (7) be-
comes unity, yielding Q =sr and allowing for the elimina-
tion of p(k) from the set (4)—(8), which reduces to' B nn .

1 n ~ ln(n lu)
ln m — —a +0

u 2 u 4m u 2 n/u

III. ZEROTH-ORDER APPROXIMATION

We can easily solve Eq. (16) in the two extreme limits
K =0 and a~ (x) . In the latter the kernel goes to zero,
while in the former it becomes a 5 function. This yields

x (1
f(x;0)=

1, x )1 (19)

(18)

where the constant ao is the same as that which appears in
Eq. (2) for the energy gap. Our aim is thus to solve Eq.
(16) for f(x;v«1) and integrate this solution in (17) to
check Eq. (18) and determine the value of ao.

x = —,f(x;x) =vcr(A, ),
u

2B' B' K(x;~)= ]c/m.

K +X

2no(A)+ f. ,
4uo(A, ') d'=2—~ u +4(A, —A. ')

Introducing the notation

(14) f(x; oo)=l . (20)

For ~ small, K(x —x', ~) is sharply peaked around
x =x' while f(x;x.) is a smooth function of x except for
the two small regions around x =+1. For this reason, we
can try the following approximation:

1 1f dx ' K(x —x ', v)f(x ',v)=f(x;v) f dx ' K(x —x';K) .

we can rewrite Eqs. (14) and (11) in the form
1

f(x;~)+ f dx'K(x x';x)f(x', a.)=1, —

f dx f(x;x)= (n/B) . —
2

(16)

(17)

Equation (16) also appears in the problem of calculating
the capacity of a circular parallel plate condenser, where
it is known as Love s integral equation. Numerical solu-
tions for various values of ~ were first reported by Nomu-
ra and later corrected by Cooke. ' The Nomura-Cooke
values are shown in Table I.

Given f(x;x) as a solution of Eq. (16), the dependence
of the parameter B on u and n is determined by (17). In
the weak-coupling limit u jn «1 (rc«1), Krivnov and
Ovchinnikov' have found

Substituting (21) into (16) we get the approximate solu-
tion"

1fo(x'&) =
I + t(x;rc)

with
1

t(x;rc) = dx'K(x —x';x)—1

1 ) 1+x 1 ) 1 —x=—tan +—tan
7T K 77 K

(22}

(23)

We can check that the limits (19) and (20) are satisfied.
Indeed, it happens that this approximation is much better
for large ~, since in this limit, although the peak in
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K(x —x;K) becomes smeared, f(x;K) becomes much
smoother, without the rapid variations around the points
x =+1. The limit K=O is also correct, for the variation
of f(x;K) is finite while the range in which this variation
occurs goes to zero; thus its contribution to the integral in
(21) vanishes.

In order to obtain the parameter B in Eq. (17) we need
to evaluate

1 1

I(K)—= —, f dx f(x;K)= f dx f(x;K) .

In our zeroth-order approximation we have

dx
Ip(K) =

1+t(x;K)

(24)

(25)

with t(x;K) given by Eq. (23). Some values of this in-
tegral (numerically evaluated) are listed in Table I. Evi-
dently the agreement with the exact results is remarkable
for such a crude approximation. It also presents the
correct asymptotic behavior for large K and the exact lim-
iting value Ip(K=O) = —,. The behavior of Ip(K) for small
K, as shown in the Appendix, is described by the relation

Ip(K)= —— +—ap 'K+O(K 1nK),
2 4~ 2

with

(26)

(o) 4 1 1 1
exp = dx

3+ (2/m) tan 'x 8'(x +2) 4

=0.10644. . . (27)

IV. SUCCESSIVE APPROXIMATION SCHEME

Equations (26), (24), and (17) reproduce the form (18) for
B/u, with the approximate value of ap given by (27).
Comparison with the expected exact value (3) shows a
difference of about 2%.

Within the same approximation we also evaluated the
ground-state energy (13) for arbitrary u/n The r.esults
are plotted in Fig. 1 together with the values obtained by a
numerical solution' of Eq. (14) (in which k was turned
into a discrete variable, thereby transforming the integral
equation into a set of algebraic equations). The compar-
ison shows again an agreement that is remarkable, given
the simplicity of the approximation.

1

hp(x K):1 —fp(x 'K) — dx K(x —x''K)f p(x' K) (29)—1

hp(x;K)f ] (x K ) = =fp(x '
K) h p( x; K)

1+t(x;K) (3O)

The process can now be continued by writing
Afp(x;K) =f, (x;K)+bf&

(x;K) and aPPlying the same
treatment to the integral equation determining bf~(x;K),
and so on. We then obtain

f(x;K) =fp(x; K')+f) (x;K)+f2(x;K)+

f~+ )(x;K)=fp(x~K)h~(x jK)

h„+((x;K)=h„(x;K) f„)+( x; )K—

1

dX K X —X;K ~+1 X;K

n=0, 1,2, 3, . . . , (31)

with fp(x;K) and hp(x;K) given by Eqs. (22) and (29),
respectively. For the integral I(K), Eq. (24), we now have

I(K) =Ip(K)+ g bI„(K),
n=1

1

EI„(K)=f dx f„( ;x)K.
(32)

Some values of I~(K) =Ip(K)+BI, (K) are listed in Table I,
showing an improved agreement with the exact values,
even for K quite small.

From the comments following Eq. (27) we see that both
the constant and the logarithmic terms in I(K) are already
correctly given by Ip(K). So, in the limit of small K the
corrections AI„(K) directly yield corrections to ap. We
can write the n th approximation for this parameter as

ap ——ap + g hap(n) (p) (m)

m=1

where

(33)

is the "error" function, which measures the failure of
fp(x;K) to fulfill (16).

We again expect Afp(x;K) to be smooth except for the
narrow regions around x =+1. Then, using approxima-
tion (21) for Afp(x;K) in Eq. (28) and calling f, (x;K) the
resulting solution, we have

2bI (K)
map' '= lim

]c~p
(34)

In the first approximation we obtain the value
ap" ——0.10825, which differs by less than 0.4%%uo from the
renormalization-group~ result (3). So, although our
scheme does not yield an analytical verification of the
latter, there are good indications that it can be approached
to the desired precision.

V. CONCLUSIONS AND POSSIBLE EXTENSIONS

In summary, we have developed a method of successive
approximations to the solution of the Fredholm integral
equation of the second kind, Eq. (14) [or (16)], that ap-
pears in the Bethe-ansatz solution of the one-dimensional
Fermi gas with attractive interaction. With this simple

(28)

where

Since fp(x;K), as defined by Eq. (22), is a reasonable ap-
proximate solution of (16), it can be used as the starting
point for either an iterative solution or a successive ap-
proximation scheme in which the same approximation is
recursively employed for the corrections to fp(x;K) We.
chose this latter approach because it showed faster con-
vergence when compared to the iterative solution, which
is known to be a convergent scheme for this kind of in-
tegral equation.

Writing f(x;K)=fp(x;K)+bfp(x;K) in Eq. (16), the
correction term must satisfy the equation

1

5fp(x;K)+ dx' K(x —x', K)bfp(x;K) =h p(x;K)—1
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scheme we were able to reproduce some of the results ob-
tained by Krivnov and Ovchinnikov' who used much
more involved mathematical methods. In particular, we
obtained, even in the simplest approximation, a very accu-
rate plot of the Fermi gas ground-state energy as a func-
tion of u /n (Fig. 1). Furthermore, our results strongly in-
dicate the correctness of the renormalization-group result
(3) for the parameter ao appearing in the expression for
the energy gap in the weak-coupling limit, Eq. (2). A plot
of this equation is presented in Fig. 2.

We can also speculate on the possibility of using the
same method to study other properties of the Fermi gas,
or even the Hubbard model for more general parameters,
since all the integrals appearing in the Bethe-ansatz solu-
tion present essentially the same form. Indeed, we tried to
obtain the u j'n dependence of the energy gap 6 for the
Fermi gas, using the equations of Krivnov and Ovchinni-
kov'

6= —,u 2B +4—f A, 1J'j(A, )dk. ,

—~ u +4(A.—k')

=~+4 tan
4A. 2(iL —8)

u

(35)

(36)

The zeroth-order approximation, as shown in Fig. 2, is
only good for small n /u (large K), departing from the ex-
act (numerical) result as K becomes small. This can be ex-
plained by the fact that the right-hand side of (36), in con-
trast with (14), presents fast variations for A, -O or A. -B
when u is small. As a result, g(A, ) is no longer a very
smooth function of A, , violating the basic assumption of
the approximation (21). The same difficulty is expected
to arise in the Hubbard model for general parameters [Eq.
(10)], or in the study of the magnetization in the presence
of a magnetic field, ' when it is necessary to treat the
case of s&0 in Eqs. (4)—(8). We still expect the higher-
order approximations to become increasingly accurate.
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APPENDIX

We shall derive Eqs. (26) and (27) as the small-K limit
of Eq. (25). In this limit we can make the approximation

1 ) 1+x—tan
7T K

1 K

2 vr(1+x)
(Al)

in the first term of t(x;K), Eq. (23), since we are integrat-
ing over positive values of x. Keeping only terms up to
first order in ~, except for the "dangerous" second term in
(23), we have

1

1+t (x;K) 2 i 1 —x3+—tan
7T IC

K

4n.(1+x) (A2)

Io(K)=2 f dx
23+—tan
7T K

ln2 . (A3)

A change of variable in the last integral yields

1/x 1 KIo(K)=2K f dx ln2 .
3+ (2/vr )tan 'x 4~

(A4)

However, since the final results involve numerical evalua-
tion of integrals in which the number of variables in-
creases with the order of approximation, it appears that
the method will, at least, lose its simplicity.

I

O. l
4—

O. I 2

For large x we see that

1 1 1—+ —+3+ (2/n )tan 'x 4 8mx
(A5)

O. IO
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FIG. 2. Energy gap of the one-dimensional Fermi gas with
attraction. The solid curve is the numerical result (Ref. 1), the
dashed curve is our zeroth-order approximation for Eqs. (35)
and (36), and the dotted curve is the result of Eq. (2) with ao
given by (3).

1 K lnK K ln(2/a)
Io K = —— +

2 4m. 4~

1/a 1+2K dx
3+ (2/vr) tan 'x

1

8m.(x +a)
1

4 (A6)

Finally, choosing a =2 and evaluating the last integral at
K=O, we arrive at Eqs. (26) and (27).

Subtracting this limiting value and introducing a small-x
cutoff (since the integrand is finite for x =0),
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