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For a recent strong-coupling theory for dirty superconductors, a solution for T, of the McMillan

type is obtained, which still contains complete disorder renormalizations of both anomalous and nor-

mal self-energies. All disorder effects leading to diffusion enhancement of vertices are calculated.
The resulting T, formula gives good account of the observed T, degradation in high-T, materials.
A detailed discussion of the approximations used and of the relation to previous approaches is given.

I. INTRODUCTION

Understanding the properties of disordered supercon-
ductors has proven to be a difficult task. Even before a
theoretical understanding of clean superconductivity' was
obtained, experiments indicated that many weak-coupling
superconductors show an enhancement of T, if they are
made disordered. ' On the contrary, low- T, strong-
coupling materials like Hg and Pb show a small decrease
of T, with increasing disorder. For most materials, these
are very small effects (at most 20%) compared to the
strong destructive effects of magnetic impurities. In re-
cent years, interest in the disorder dependence of T, has
been revived as more and more high-T, (T, ) 10 K) su-
perconducting materials have been found. Most members
of this class are fairly strongly disordered from the point
of view of metal physics, with resistivities p) 20 pAcm.
Invariably, the cleanest specimens are those with the
highest T„and T, decreases rapidly with increasing dis-
order. ' Thereby the slope dT, idp is steeper the higher
the T, in the clean limit. In contrast to the disorder
dependence of T, in low-T, materials, this T, degradia-
tion is by no means a small effect. For instance, in
Nb3Ge, T, drops from 22 to 5 K if p is increased from 40
to 120 pA cm by means of irradiation.

There has been a number of theoretical efforts to under-
stand these various phenomena. " These have been dis-
cussed in a preceding paper, ' and we will not repeat this
discussion here. In the same paper, ' a new strong-
coupling theory for dirty superconductors was developed.
This was shown to yield a unified description of all the ef-
fects discussed in Refs. 7—11, and to contain additional
disorder renormalizations of the same order of magnitude,
which had not been considered so far. It turned out that
from a microscopic point of view, the effects discussed in
Refs. 10 and 11 are due to impurity renormalization of
that part of the normal self-energy which is an even func-
tion of frequency and can be neglected in standard theory.
This led to the introduction of a new renormalization
function Y in addition to the anomalous self-energy 8'
and the usual renormalization function Z. The resulting
strong-coupling equations are coupled integral equations
for three self-energies W, F, and Z, which depend on en-

ergy as well as frequency. These equations are rather

complicated and have not been solved so far. However, a
detailed discussion has been given in Ref. 12 of how the
previous strong-coupling approaches are obtained as spe-
cial cases of the new theory. Comparison with Ref. 10
was more difficult because of the different models. Apart
from that, a new mechanism for an enhancement of A, has
been identified. This was found to be of an importance
equal to the effects discussed previously (apart from Ref.
7, they are all due to diffusion enhanced vertices). Since
there are so many effects of comparable magnitude, it is
clear that for the previous approaches, each of which had
taken into account one of them, a meaningful comparison
with experiment is not possible. Rather one must demand
as a minimum requirement for such a comparison that all
impurity renormalizations belonging to some most impor-
tant class be taken into account (if such a classification is
possible).

The purpose of the present paper is to present a calcula-
tion of T, which meets the above minimum requirement
within the framework provided in Ref. 12 (hereafter re-
ferred to as I). To this end we first obtain an approximate
solution at T, of the integral equations given in I, without
specifying the various disorder renormalizations. This
will be done by approximating the energy dependence of
the new renormalization function Y in such a way that
the integral with respect to the energy can be carried out.
The resulting two integral equations have the same struc-
ture as the standard strong-coupling theory. ' Therefore
we can use McMillan's method' to obtain an approxi-
mate solution. Then the impurity renormalizations of the
vertices are calculated in lowest order of the systematic
procedure given in I. This way we keep only the most
dominant disorder contributions, that is, diffusion
enhancement of vertices. We will find this sufficient to
describe the relatively strong effects on T, found in the
high- T, strong-coupling materials. The resulting general-
ized McMillan formula contains the T, formula obtained
before, ' but now both A, and p are disorder dependent.
So this result confirms and extends that of Ref. 10. We
compare with a number of experiments on high-T, ma-
terials, and find good agreement for resisitivities which
are not too large. For p) 100—200 p, Q cm, depending on
the material, the experiments find T, to decrease faster
than described by the theory. The probable reasons for
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this discrepancy are discussed in a continuation of the dis-
cussion given in I.

II. APPROXIMATE SOLUTION FOR THE
STRONG-COUPLING EQUATIONS

A. Integral equations

The general integral equations determining the self-
energies and Green's functions have been given in Eqs.

(4.12)—(4.14) of I. Instead of writing them down again in
full, we immediately make a number of simplifications. It
has already been discussed in I that the energy dependence
of the anomalous self-energy 8' and the renormalization
function Z can be neglected within the range of validity
of the theory. We also neglect thermal phonons. ' Then
we have the following equations for the retarded self ener-
gies:

W(co)= f dva F (v) f f de'Ir nF(e', x) + +U, f f(x) f de'ImF(e', x),dx . . . f (x) 1 f(x) — w dx
(2.1)

co[1—Z(cd)]= f dva F (v) f f de'ImG(e', x) co
f (x) 1 —f(x)

(x —v) —co (x +v) —ro2 2 2 2
(2.2)

Y(e,co)= f dv f de'a F (e e', v) f— ImG(e', x) f(x) +[1—f(x)]
7T (x —v) —rd (x+v) —co

+ f dv f de' aF (e—e', v)+ —U, (E—6 )5(v) f f(x)lmG(e', x) . (2.3)

The retarded Green's functions read

cdz(co)+ [e+ Y(e,ro)]

[tdz(rd)] —[e+ Y(e,co)] —W(co)

F(e, rd) = —W(co ) (2.4b)
[coz(co)] —[e+ Y(e,cd )] —W(co)

f(x) denotes the Fermi function, and the disorder-
dependent Eliashberg functions are defined as

a F (e,v)=QRb' (q, e)Bb(q, v), (2.5)
q, b

with a F (v)—:a F (e=O, v). Bb is the phonon spectral
function for polarization branch b, and the vertex func-
tions Rb' have been defined in I, Eqs. (3.7') and (3.10),
in terms of electronic correlation functions. Finally, the
Coulomb kernels are given by

ti Y(e,cd) =5Y(O, ro)+EY'(co) . (2.7)

We anticipate that Y(O, ro) is zero within our approxima-
tion scheme, and that Y' is independent of co (we will veri-
fy this later). Then the Green's functions, Eqs. (2.4), can
be written as

G(e, co) = 1 coZ ( cd ) +6

1+Y [coz(co) ] —e —W(co)
(2.8a)

ing band-structure effects. Therefore, by "clean limit" we
mean here and in the following, "clean limit of a jellium
model" (cf. Ref. 12 of I). So we have to consider only
5Y= Y—Y' ', where Y' ' is the contribution for zero dis-
order. Now we expand 5Y in a Taylor series with respect
to e, and terminate at the linear term:

K /2NF
U, =g R, (q, O)

q~p q +K
(2.6a)

F(e,ro) = 1 —W(co)

1+Y [coz(co)] —e —W(ro)
(2.8b)

U, (e)= g [R, (q, e) —2R, (q, e)]Y F H K /2NF

q~p g +K
(2.6b)

Here K is the Thomas-Fermi screening wave number and
Nz is the density of states per spin at the Fermi level.
For the definition of R, ' in terms of correlation func-
tions we refer again to I, Eqs. (3.14) and (3.15).

1 coz(rd )sgn(co)
1+Y' [~'z(~)' —w(~)']'" ' (2.9a)

Here we have introduced Z(co) =Z(cd)/(I + Y') and
W(co) = W(ro)/(1+ Y'). The c dependence of G and F is
now elementary, and we can perform the energy integra-
tions in Eqs. (2.1) and (2.2). We define
—iver~(ro)= fde G(e, rd) and irrgro)= f deF(e, ro), and
obtain

B. Energy integration

The main obstacle to solving Eqs. (2.1)—(2.3) with the
methods known from standard strong-coupling theory is
the energy dependence of Y. To deal with this difficulty,
we first remember that in the clean limit, Y can be
neglected. ' We note that in the following we will calcu-
late correlation functions within a jellium model, neglect-

1 W(cd)sgn(co)
co

[ 2Z( )2 W( )2]1/2
(2.9b)

Notice that Re~(co) is an even function of frequency. In-
spection of the first term in Eq. (2.3) shows that indeed
Y(O, co) =0, ' so the first assumption made after Eq. (2.7)
was consistent. We can now write Eqs. (2.1) and (2.2) as
follows:
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pq~)= U, f "dxtanh(x/2T)Rex)+ f dva F (v) f dxRegx) f (x) 1 f(—x)+
X —CO —V X —Q)+ V

(2.10)

co[1—Z(co)]= —f dva F (v) f dx Rep(x) f (x) 1 —f(x)+
X —CO —V X —CO+ V

(2.11)

We still have to determine Y'. From Eq. (2.3), we obtain

5Y(e,co)= f d e'f dv 5a F (e e'', v—) f ImG(e', x) f(x) z 2 +[1—f(x)] 2 277 (x —v) —co (x +v) —co

aF—(e e', v)—+5U, (e e')5lv—) f f(x)lmG(e', x) (2.12)

5a F and 5U, denote the quantities given by Eqs. (2.5) and (2.6b), with the respective clean-limit contributions subtract-
ed. a F is a Hartree contribution, which vanishes in the clean limit. According to Eq. (2.7), we have
Y'(co)=d5Y(e, co)/de ~, o. Under the intergal, we may differentiate with respect to e' instead of e, and integration by
parts yields

Y'(co)= f dv f 5a F (v) f(x) z z +[1—f(x)] z z
7T (x —v) —co (x +v) —co

+ —a F (v)+5U, 5(v) f(x) lim [ImG(e, x)—ImG( —e,x)] . (2.13)

From Eq. (2.8a), we see that for
~

e
~

~oo, ImG(e, x) is nonzero only if ~x
~

~oo as well. Consequently, the co-

dependent part of Y' vanishes as we have anticipated after Eq. (2.7), and

Y'= f dv aF (v)+—5U, 5(v) f f(x) lim [ImG(e, x)—ImG( e,x)] . —
V 7T E'~ oo

(2.13')

Equations (2.9), (2.10), (2.11), and (2.13) form a new set of self-consistency equations, which have been considerably sim-
plified in comparison with the original ones. We will now solve them for T, .

C. McMillan solution for T,

As usual, we define the gap parameter b(co)=$'(co)/Z(co)= W(co)/Z(co). For T~T„we have W~O, so we can
substitute Re~(co)=1/(1+ Y'), Re+co)=[1/(1+ Y')]Red, (co)/co into the right-hand side of Eqs. (2.10) and (2.11). This
yields

I

co[1—Z(co)]=, f dva2FF(v) f dx f( —x)1+Y' 0
+f(x)

- dx
W

6(co)Z(cu)=, f tanh(x/2T)Red, (x)1+Y' o x

(2.14)

f dva F (v) f Red(x) f( —x)1+Y' X

1 1+
X +V+ CO X +V —CO

f(x)— (2.15)

To calculate Y' from Eq. (2. 13'), we need to know ImG
at T, . At T„we have A(co) =0, but Z(co)&1. So

f f(x)lmG(e, x) = —f dx f(x)5[xZ(x) e(1+Y')], —

and we have to change variables x~x'=xZ(x). From
Eq. (2.14), we see that Z(x~ ao ) =1+0(1/x );
hence, lim„xdZ/dx =0, and therefore lim„[Z(x)
+xdZ/dx] =Z( oo ) =1. Consequently, at those large fre-
quencies we are interested in, the Jacobian is one, and we
find
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x lim Img e,x —ImG —e,xdx D. Disorder renormalizations and T, formula

=f( —~)—f(~)

This yields for Y' the simple result

Y'=6U, +4 f a'F (v) . (2.16)

Inspection of Eqs. (2.14) and (2.15) shows that, apart from
the factor 1/(1+ Y'), they have the same structure as in

the clean case. Therefore we can immediately write down
our generalization of McMillan's' result for T, ( U, )' '—:p= —,(K/2kF) 1n[1+(2kF/K) ], (2.18)

We start with the Coulomb kernels U, and U, . Ac-
cording to Eqs. (2.6) they are determined by the functions
R, and R, , which in turn have been defined in Eqs.
(3.14) and (3.15) of I. To calculate them, we follow the
general scheme given in Appendix B of I. Accordingly,
we first consider the clean case, denoted by the superscript
(0). From Eq. (2.16) we have (Y')'P'=0, while (U, )' ' has
already been calculated in I. The result was the effective
Coulomb potential given by Morel and Anderson, ' viz. ,

1.04(1+X+Y')

1.45 A, @*[1+0.62K, /( I+.Y')]

where

A, =2f aF (v) (2.17b)

where kF is the Fermi wave number. Using the free-
fermion correlation function in Eq. (2.5), we find from
Eq. (2.17b) the known result,

2kF
X, "=A.=2gi'NF f f dq(q/2k')BI (q, v) .

and

W
W U,p*= U, 1+,ln(E&/%cop)1+Y' (2.17c)

Here Ez is of the order of the bandwidth and coo is of the
order of the Debye frequency. Notice that k, Y', and U,
all depend on disorder. What remains to be done is to cal-
culate this disorder dependence.

(2.19)

Here gi ——kF/3m(p;)cL with ion mass density p; and
longitudinal sound velocity cL. BL ' is the longitudinal
phonon spectrum in the clean limit.

In lowest order of the general approximation scheme
only diffusive disorder contributions are kept. For this
case, the renormalization of U, has already been given in
Eq. (5.10) of I. The result was

K l2NF g (q) 1 —5q p 1 —4, p
U. =V+

N g, , ', +
Dq q +K g q kpk p (k+p) +K

(2.20)

with diffusion constant D and the static phase-space
correlation function

gkp('q) [ k —q/2ck+q/2 l p —q/2 p+q/2] (2.21)

gkp (q) = —5kp(m /kq) [e[kF—(k+q/2) ]

—8[kF—(k —q/2) ]] . (2.22)

The c,c are electronic creation and annihilation operators
and [ l ] denotes the Kubo product defined in I. gkp is un-

derstood to contain disorder, but no electron-electron or
electron-phonon interactions. It can be calculated, e.g. , in
the self-consistent Born approximation. ' In considera-
tion of the crude approximations we have made already,
however, this does not seem worthwhile. We therefore
simply replace g1,& by the free-fermion correlation

of the second contribution to 5U, in Eq. (2.20) is not im-
portant, since the same kind of q dependence appears in
the numerator as well as in the denominator. We there-
fore ignore it, using gkp'(q =0)=5kp2m5(kF —k ). This
way we obtain

U, =p, 1+(1+g) —(plpM ) (2.23)

Here the resistivity p has been used as a measure of the
disorder. It is connected with the diffusion constant by
p=1/2NFD. The resistivity scale is given by Mott s resis-
tivity p~ ——3m /kF. It is that value of the Drude resistivi-
ty which is obtained for a mean free path 1=1/kF. The
present theory is valid for plpM « 1. The parameter g is
given by

In this approximation, the static density correlation
g' (q) =gk gkp'(q) is just the Lindhard function. It
shows the asymptotic behavior g '(q=O)=NF,
g (q »2kF) =0(1/q ), and we replace it by a step func-
tion: g' '(q)=NFe(2kF q). Finally, the q —dependence

g=(2kF/K)arctan(2kF/K)in[1+(2kF/K) ) . (2.24)

For the other disorder-dependent quantities, we use exact-
ly the same reasoning. Repeating the arguments which
led to Eq. (5.10), of I or Eq. (2.20), we obtain
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ir /2NF g(q) 1 —6q o

Dq q'+~'
3 1 —&k, ig

hagi'i

q 2 2gpp' q
k, p k', p'

(2.25)

The same approximations which led to Eq. (2.23), yield ,
'

ci,q—o(v cbq—)e(coD —v). Then we obtain

5 U, =p(g —3)—(p/pM ) . (2.26) 2 f 5a F (v)=k (p/—pM), (2.27a)

The; expressions for the phonon kernels 6~ F and cr F
which correspond to Eqs. (5.10) of I or (2.20) and (2.25)
are rather lengthy because of the tensor vertices entering
the electron-phonon coupling. Since the analogy to the
Coulomb case is perfect, we do not have to write them
down. To evaluate the terms

g g gkk(q»b(k+p v)g»(q»
k, p k', p'

occurring in these expressions, we again neglect the q
dependence and use a Debye spectrum Bb(q, v)

I

2 j oa F (v)=2k. (p/—pM) . (2.27b)

The factor-of-2 difference between Eqs. (2.24a) and
(2.24b) stems from the fact that the exchange term has
only one diffusive contribution (due to Cooper-propagator
renormalization), while the direct one has two of them (cf.
the discussion in I).

We now can collect our results. Combining Eqs. (2.16),
(2.17), (2.23), and (2.27), we obtain the generalized McMil-
lan formula

Q~ 1.04[1+Afi (p)+f2(p)]
Tc ex

1.45

Afar(P)

—p*(p) [1+0.62kf i(p)/[1+f2(p)] I

(2.28)

Here p =p/p~ is the dimensionless resistivity, the
disorder-dependent Coulomb pseudopotential is given by

@f3(p)p*(p) =@f3(p) 1+ 1n(E~/RQ)Q)
1+f2(p)

(2.29)

and the three disorder renormalization functions read

fi(x) =1+(6/ir)x,

f2(x) = [p(g —3)+4k ](6/ir)x,

f3(x)=1+(1+/)(6/ir)x .

(2.30a)

(2.30b)

(2.30c)

X is the clean-limit parameter which can be measured (at
least in principle), and is well known for many materi-
als. ' p and g are given by the screening parameter
2kF /~. The latter should not be very sensitive to
moderate disorder, and in the clean limit reliable values
exist for many substances. The least-well-known parame-
ters remaining are In(Eslficoo) and the resistivity scale
p~. The former is present in the clean limit as well, and
is usually assumed to have a value of 5—6. However, for
transition metals it might be considerably smaller. pM is
not directly measurable. Since it sets the scale for the
critical regime of the Anderson transition, however, one
has an idea about its order of magnitude. For most ma-
terials, values of the order of 1000 pO, cm seem to be con-
sistent with what is known about the Anderson transition.
Equations (2.28)—(2.30) represent the leading disorder
corrections to McMillan's formula in the sense that the
first nontrivial contribution of F has been taken into ac-
count, and all of the strongest disorder renormalizations;
that is, diffusive vertex enhancements, have been included.

III. RESULTS AND DISCUSSIONS

A. Connection with previous calculations

We have already discussed at length, both in I and in
the preceding section, our approach in general as well as
the particular approximations that led to Eq. (2.28). Here
we briefly show how our result is related to previous
work, in particular to Ref. 10.

Let us ignore for a while the disorder renormalization
of A, by putting f, (x)=1, as well as that of @[f3(x)=1],
and assume A, to be small (weak coupling). Then we have

T exp
1+f2

1+ In(Ea /ficoo)1+,
If we additionally assume the disorder to be weak, we can
write 1+f2-1/(I f 2 ) and obtain—

—1
T, -exp

(A, —p*)(1 f2)—(3.1a)

p =Jtl [1+@(1 f2 )In(Es /ficoo) ]— (3.lb)

This is the structure of the result obtained previously, ' '

and inspection of f2, Eq. (2.30b) shows that the disorder
renormalizations also have identical structure. In this
sense, Eq. (2.28) confirms our previous result. In particu-
lar, it gives a microscopic derivation of how the electron-
phonon coupling enters the disorder renormalization. "'
However, this "derivation" of the previous results was not
quite honest. Even if one assumes k, p, and p to be small,
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of order e, say, the disorder corrections to k and p are of
O(e ), while those kept in Eqs. (3.1) are of O(e ), since f2
itself is of O(e ) T. herefore, formally the effects con-
sidered in Ref. 10 have been of higher order than those
neglected. In practice however, all the parameters are of
O(1), and the formal expansion arguments given above
make little sense. The present self-consistent treatment of
Y changes the perturbative result of Ref. 10 1 f2, i—nto
1/(1+f2), and the microscopic treatment of the attrac-
tive interaction yields A.~Xfi. Both effects counteract
the T, degradiation. On the other hand, the f2 found
here is considerably larger than that in the phenomenolog-
ical approach. So we have two new effects counteracting
each other. This is the reason why the results of Ref. 10
with phenomenological fit parameters A, and p were not a
bad approximation to the present ones, as we will see
below.

The renormalization p, ~pf3 has been obtained before
by Anderson et al. , who additionally considered effects
on p' due to anomalous diffusion near an Anderson tran-
sition. In Ref. 9, f3 has been evaluated for the case of
quasi-one-dimensional diffusion in a model for A-15 ma-
terials. Keck and Schmid considered a nondiffusion re-
normalization of A. different from what is described by
our f&. Within the general approximation scheme given
in I, it corresponds to picking up the stress contributions
to a F only. The diffusive Cooper-propagator renormal-
ization expressed by f& has not been considered before.
Because of the diffusion pole, it is stronger than the stress
renormalization. Evaluation of all renormalization func-
tions up to stress contributions is possible, but already
very cumbersome. Such a calculation would be necessary,
although, to describe the T, enhancement observed in
weak-coupling materials.

I i I I

I

20—

Tc (K)

IO—

0 1 I I I I I I I I I

100 200
p (poem)

C. Discussion

We first discuss the parameters used in the preceding
section. The values for p and g are standard ones.
Within In(E~/ficoo)=5 they yield p'=0. 13 at p=0, a
common value for many materials. ' As has been men-
tioned in Ref. 21, A, is a bare parameter which has no
direct physical meaning for materials which do not have a

FIG. 1. Transition temperature versus resisitivity for Nb3Ge
(crosses), LuRh4B4 (circles), and ErRh4B~ (crossed circles). Ex-
perimental data points have been redrawn from Ref. 5, Fig. 35.
Solid lines represent the present theory with parameters as given
in the text. The dashed line is the theoretical result for Nb3Ge
with magnetic-field-dependent terms removed, see text.

B. Comparison with experiment

Equation (2.28) can be directly compared with experi-
ment. Unfortunately, there are not many data available
for bulk materials, where T, is given as a function of the
resistivity. We have fitted our T, formula to data on
Nb3Ge, LuRh4B4, and ErRh4B4 given by Rowell and
Dynes in Ref. 5. We have assumed 2kF/ic=0. 87 (this
yields p=0.37, (=1.11), and OD =300 K for all materi-
als. For Nb3Ge, we have used the estimate
In(E&lficoo) =2 obtained in Ref. 9 from band-structure
considerations, A, =2.5 and pM

——680 pQ cm. For the
rare-earth rhodium bordies, we have chosen
In(Es /ficoc) = 5 and A, =0.91 (0.82), pM = 1400 pA cm
(1050pAcm) for LuRh&B4 (ErRh4B4). The resulting fit is
shown in Fig. 1. For p/pM &0.15, agreement is very
good, while for larger resistivities (in the case of Nb3Ge)
the observed T, degradation is much stronger than that
obtained from theory. We will come back to this
discrepancy in the discussion below. For LuRh4B4,
Rowell and Dynes have also given data extending to
larger resistivities. Figure 2 shows the best fit we could
ob- tain with 2 k+/~ =0.87. OD ——300 K, and
In(Eii /ficta) = 5. We again have chosen A, =0.91 and
pM ——1400 pQ cm. As in the case of Nb3Ge, agreement is
very good for p/pM (0.15, while the theory cannot ac-
count for data at higher resistivities.

0
IO—

0.05

T, (K)

LURh~B~ 0

0 0

0 I

IOO
I

200
p (poem)

500
I

400

FIG. 2. Transition temperature versus resistivity for
LuRh4B4 (circles) and Nb. Data points have been redrawn from
Ref. 5, Fig. 34. The solid line represents the fit of Eq. (2.28) to
the data with parameters as given in the text. The dashed line is
the theoretical prediction for Nb. The lower resistivity scale
refers to LuRh4B4, the upper one to Nb.
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clean limit. This is the case for Nb3Ge, the value chosen
corresponds to a clean limit T, of 32.2 K. The Debye
temperature chosen is the one for crystalline Nb3Ge, and
we have assumed the same value for the rare-earth rhodi-
um borides. Little is known about variations of the Debye
temperature with disorder, and we have assumed it to be
constant. However, Tsuei gives a value OD ——222 K for
amorphous Nb3Ge. This indicates that there may be a
significant drop of OD with disorder. Concurrently, one
would expect a change in the phonon spectrum which
determines the bare value of k. The information presently
available is not sufficient to take such effects into ac-
count. Another parameter is 1n(E~/ficta). For the rare-
earth rhodium borides, we have used the common value of
5. For A-15's, In(E~/Acta) =2 has been estimated in Ref.
9. Since this value is perhaps disputable, we have also
tried In(E~/fm0) =5 for Nb3Ge. We then obtain a fit in-
distinguishable from the one shown in Fig. 1 with
A, =1.92, pM ——660 pQcm. The remaining parameter is
the resistivity scale pM. Although the values chosen are
a priori reasonable, it is interesting that for Nb3Ge, we
need a value about half that for the rare-earth rhodium
borides. In this context we note that all these materials
show anomalies of the Mooij type in the normal-state
resistivity. For residual resistivities p, approaching a ma-
terial dependent value p*, the temperature coefficient of
resistivity, a=(l/p)dp/dT, gets smaller and smaller, and
for p, &p*, a is negative. The high- T, superconductors
share this behavior with a large number of other high-
resistivity materials. There is no generally accepted ex-
planation for this phenomenon. Recent proposals for an
explanation include incipient Anderson localization,
phonon-induced tunneling, and interaction anomalies.
All these explanations predict p* to be proportional to p~.
From measurements of p versus T for the rare-earth rho-
dium borides, we find p*=280 pQ, cm, while for Nb3Ge
one has p*=100 pOcm. This is consistent with our
choices for pM. We conclude that all parameters chosen
for the fits are realistic.

In Ref. 5, data of T, versus p for Nb3Sn and V3Si have
also been given. Although the T, degradiation is of the
same order of magnitude as for Nb3Ge, the curves show a
distinct s shape (especially for Nb3Sn). This cannot be ex-
plained by the present theory. We have speculated ear-
lier' that band-structure effects may be important for
these well-ordered, stoichiometric compounds, while in

the metastable 2-15's, such as Nb3Ge, these effects are
washed out, and can be neglected.

Let us come back to the failure of the theory at large
resistivities. As has been emphasized in I, various approx-
imations necessary to derive the strong-coupling equations
restrict the validity of the theory to the regime p/p~ && 1.
Therefore it is not surprising that we get significant devia-
tions for p/p~&0. 15. There are many effects which
might play a role at higher resistivities, cf. the discussion
in I. Presumably the most important one will be the dis-
order dependence of the dynamically screened Coulomb
interaction, which has been neglected in our Thomas-
Fermi approximation. Recent tunneling measurements
on aluminum approaching the metal-insulator transition
indeed suggest that inelastic lifetime effects are the main

reason for the observed suppression of superconductivity.
Although it would be very difficult to construct a com-
plete theory in this regime, certain aspects of the
disorder-dependent dynamical screening could be relative-
ly easily taken into account within the framework provid-
ed in I. A first attempt to this direction has been made in
Ref. 9. In this connection it is also interesting to note that
the fits for the data shown in Figs. 1 and 2 obtained in
Ref. 10 within a BCS-Bogoliubov theory were somewhat
better at high resisitivities. The technical reason is that in
the perturbative treatment of Ref. 10, the normal self-
energy yielded factors of (1 fz ), w—here fz was slightly
different from fq. The present self-consistent treatment
changes this into 1/(1+f &), as has been discussed in Sec.
III A. As a consequence, the saturation tendency of T, at
large p is larger in the present formalism. However, in
the region where this difference arises, the theory is not
supposed to be valid anyway, as has been discussed above.
For p/p~ & 0.15, the present theory provides a microscop-
ic corroboration of the results obtained in Ref. 10 on the
basis of a phenomenological model.

An extension of the formalism of Ref. 10 to finite mag-
netic fields revealed an interesting anomaly in the T
dependence of H, at the critical point. This effect was

based on the fact that a magnetic field strongly weakens
some contributions to the renormalization factors, viz. ,
the Cooper-propagator renormalizations discussed at
length in I. Since in the present theory new Cooper-
propagator renormalizations are present, some of which
tend to enhance T„one has to check whether the effect
predicted in Ref. 30 survives. For this purpose we show
in Fig. 1 as a dashed line, the result we obtain for Nb3Ge
by neglecting all Cooper-propagator renormalizations
(with all other parameters kept fixed). The result shows
that a magnetic field has an effect of the same sign and
order of magnitude as in the BCS-Bogoliubov theory. So
the prediction made in Ref. 30 for Nb3Ge stands, al-
though the numbers estimated may have been too optimis-
tic by a factor of 2—3.

As we have discussed in the preceding section the pa-
rameters A, and p are clean-limit values. For the materials
discussed so far, the clean limit does not exist, and so
there is some freedom left in choosing A, and p. It would
be very interesting to check Eq. (2.28) for a material
which can be made very clean, and where A, and p are
known. As an example, we choose Nb, for which the
clean-limit McMillan solution has been designed. One
has' k=0.82, OD ——277 K, and T, (p=0)=9.2 K. With
ln(E~/fico)=5, this enforces 2k+/~=0 87 Under .the . as-
sumption that these parameters do not change with disor-
der (which implies, e.g. , that changes in the phonon spec-
trum are negligible) the only parameter left is pM. The
dotted line in Fig. 2 shows our prediction for Nb. Unfor-
tunately, we could not find any data to compare with.

Finally, we emphasize that the present application of
the theory presented in I still includes crude approxima-
tions. Even if one assumes the McMillan solution to be
valid, the disorder parameters f~, fz, and f3 have been
evaluated by taking into account terms with diffusion
enhancement only. In order to describe the less drastic ef-
fects observed in low-T, materials, it will be necessary to
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improve at least on this point. This can be done by ex-
ploiting the general approximation scheme given in I. It
will also be desirable to solve the equations numerically, at
least the simplified version given in Sec. II, to check if the
McMillan procedure is still reliable in the presence of dis-
order. These points are left for future investigations.
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