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A strong-coupling theory for dirty bulk superconductors is developed, which in particular consti-
tutes a unifying description of most disorder effects considered so far separately within strong cou-

pling or Bardeen-Cooper-Schrieffer —type formalisms. This is achieved by calculation of all six
Hartree-Fock self-energy contributions (four exchange and two direct ones) within an exact eigen-
state formalism, which yields disorder renormalization of vertices formally exactly in terms of
electron-correlation functions. Compared with standard dirty-limit theory, this extends the region
of validity substantially toward strong disorder. The most important points are that Hartree dia-

grams are crucial, and that one more renormalization function arising from the normal self-energy
has to be introduced. A systematic procedure for calculation of the disorder-induced vertex correc-
tions is given as well as a detailed discussion of how previous approaches are derived as special cases
of the present theory. Among these are the increase of A, due to transverse phonons found by Keck
and Schmid, and various effects discussed recently in connection with the T, degradation observed
in high-T, superconductors. A preliminary discussion of new effects includes a novel diffusion
enhancement of A. and T, -decreasing effects due to the normal self-energy. All these effects are
found to be of comparable magnitude. The structure of the theory favors disorder-induced T, de-

gradation for strong coupling, and enhancement of T, for weak coupling.

I. INTRODUCTION

The strong-coupling theory for clean superconductors is
one of the most successful chapters of condensed-matter
physics. Soon after the breakthrough achieved by Bar-
deen, Cooper, and Schrieffer' (BCS) it was realized by
Eliashberg that the phenomenological attractive interac-
tion of BCS could be replaced by a more realistic interac-
tion on a microscopic level, which takes care of the the re-
tarded nature of the electron-phonon interaction. Addi-
tionally, Eliashberg s theory includes the quasiparticle
damping which had been neglected in the Fermi-liquid ar-
guments of BCS. This was achieved by writing down a
coupled-field theory for the fermion-boson problem with
the help of the Green's-function technique introduced by
Gorkov, and evaluating the self-energies in the Hartree-
Fock approximation. Later this scheme was generalized
to take into account the repulsive Coulomb interaction be-
tween the electrons as well. In the formulation of
Scalapino, Schrieffer, and Wilkins (SSW), this theory still
constitutes the state of the art in superconductivity
theory. It turned out to be quantitatively correct, which is
particularly impressive in the comparison with tunneling
experiments. The approximate solution for T, given by
McMillan has become a most popular tool which is reli-
able for a large class of materials. The key for under-
standing this somewhat miraculous success is a theorem
found by Migdal for the normal state, which shows that
the expansion parameter for the perturbation theory is not
the electron-phonon coupling, but rather the square root
of the ratio of electronic and ionic mass, which is of the
order of 10 . This has been realized to be true for the
superconducting state as well by Eliashberg and Nambu.

For impure superconductors, progress has been less im-

pressive. It soon became clear that because of the s-wave
pairing in the superconducting state, very low concentra-
tions of paramagnetic impurities drastically reduce T„
and finally completely suppress superconductivity. ' On
the other hand, there is no obvious reason why nonmag-
netic impurities should affect the Cooper pairs, and
indeed Anderson" showed that a BCS-type ground state
can be formed with the exact electronic states including
modifications by impurities. As a result, one expects no
dependence at all of T, on nonmagnetic disorder, ' ' a
fact often referred to as Anderson's theorem. There are
effects on the behavior in a magnetic field, though, since
even in BCS theory the critical field, in contrast to T„ is
determined by a density correlation function at finite
wave numbers, which is sensitive to disorder. This has
been worked out in detail, ' and constitutes the standard
dirty-limit theory of superconductivity.

Though Anderson's theorem is undoubtedly true within
BCS theory, it gradually became clear that the microscop-
ic interactions do depend on disorder in a rather compli-
cated way. More precisely, there has been increasing ex-
perimental evidence for a disorder dependence of T,
which cannot be explained by changes in the electronic
density of states or in the phonon spectrum. First it was
noticed that many weak-coupling superconductors show
an enhancement of T, if disorder is introduced. ' These
are relatively small effects, typically of the order of
10—20%. There are also some examples of a more dras-
tic rise of T, in low- T, materials, the most prominent be-
ing Mo3Ge, ' granular Al, ' ' and amorphous Ga. '

However, these are considered exceptions rather than typi-
cal behavior. It was also found' that low- T, strong cou-
pling materials, such as Hg and Pb, show a weak decrease
of T, with increasing disorder. More recently, interest in
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the disorder dependence of T, has arisen as a byproduct
of the successful fabrication of high-T, (T, ) 10 K) ma-
terials, most of which are fairly dirty by metallic stan-
dards, with resistivities p of 10—40 pQ cm. It turns out
that invariably the highest T, is obtained for the cleanest
specimen. If disorder is increased, by means of irradiation
of otherwise, T, drops dramatically. ' Thereby a number
of correlations are observed, the most obvious of which is
that the decrease is more rapid the higher T, in the clean
limit, while for T, ~ 10 K no example is known where T,
would rise with disorder. The nature of the disorder
seems to be unimportant: For T, plotted against the
resistivity just above T, (or against the extrapolated resi-
dual resistivity) one obtains a single curve for each materi-
al, regardless of how the disorder has been introduced.
This is sometimes called the "universal" T, degradation.
The degradation phenomenon is not specific to any partic-
ular class of materials, but rather is observed for a wide
range of substances. '

There have been a number of theoretical attempts to
deal with the problem of disorder-induced changes of T, .
Since there are strong reasons to believe that disorder-
induced renormalizations of the basic interactions are re-
sponsible for the effect, it is clear that one should work
within the frame of strong-coupling theory. A pioneering
step has been the work of Keck and Schmid, ' who tried
to explain the small increase of T, in the low-T, materi-
als mentioned above. They generalized the original
Eliashberg equations (without the Coulomb interaction)
by calculating the self-energy in an exact eigenstate for-
malism. After reducing the disorder dependence to an
electronic stress correlation function entering the Eliash-
berg function a F(co), they calculated the correlation
function in what amounts to a kinetic theory description.
The result accounts well for the initial rise of T, up to
p(10 pQcm, but fails completely at higher disorder.
Technically, their calculation considers impurity correc-
tions of the phonon part of the anomalous self-energy, 8',
and of the renormalization function Z.

Contrary to Keck and Schmid, Anderson et al. con-
centrated on the Coulomb pseudopotential, i.e., the
Coulomb contribution to 8' in order to explain the T, -

degradation effect. They assumed that the phonon parts
of the self-energies do not change, and neglected changes
of the renormalization function Z. They found that elec-
tronic diffusion (as opposed to free motion) does not
change the Coulomb pseudopotential significantly, essen-
tially since impurity corrections enter p, so that

p' =p, /[1+p 1n(EF /Act)p) ]
is changed little. They then considered systems close to
an Anderson transition, ' and in this regime they found a
strong enhancement of p'. However, Gurvitch gives ex-
perimental evidence that the materials considered by An-
derson et al. are still far from an Anderson transition.
Entin-Wohlman et al. have also questioned the
relevance of the Anderson localization corrections for the
materials under consideration. They considered a linear
chain model for 2 —15 superconductors, and propose an
enhancement of p* due to diffusion in the quasi-one-
dimensional structure. They also assumed phonon contri-

butions to be unaffected.
Wysokinski and Kuzemsky have studied a model for

transition metal alloys, and treated the disorder by means
of a coherent potential approximation. Their result for
the renormalized Coulomb potential includes the diffusion
corrections found in Ref. 20, but the implications of this
result were not discussed. They also obtain a renormaliza-
tion of the electron-phonon coupling.

There has also been a considerable amount of work
based on BCS-Bogoliubov models. Fukuyama and co-
workers have studied corrections to both the pair propa-
gator and the schematic repulsive interaction in the weak
disorder regime, they found a suppression of T, . Kapitul-
nik and Kotlier have considered a Ginzburg-Landau
theory in the scaling regime near an Anderson transition.
Neglecting Coulomb effects, they found a sharp decrease
of the coherence length, which implies that fluctuations
effects should be important in this regime. The present
author has studied a BCS-Bogoliubov model with in-
teraction corrections to the pair propagator and to the
repulsive potential taken into account, in a spirit similar
to that of Ref. 24. Technically speaking, this work con-
sidered diffusion corrections of the type found by
Altshuler and Aronov to the Coulomb part of the nor-
mal self-energy. The result for T, explains the degrada-
tion with reasonable parameters, but since the
phenomenological model neglects all effects on the in-
teraction parameters found in the works described above,
the theory is clearly not entirely satisfactory.

In this situation it is obvious that one should try a uni-
fying description of what has been achieved so far. This
could be done by starting from SSW theory formulated in
an exact eigenstate representation to incorporate disorder
in terms of correlation functions, as was done in Refs. 19
and 20. This way one can easily combine these two re-
sults. In addition, however, it would be necessary to keep
the full normal self-energy (not just the part usually
denoted by Z) in order to incorporate the effects of Refs.
24 and 26. This means that one would have to introduce
at least one more renormalization function. It would also
be necessary to include the Hartree contributions to both
the phonon and the Coulomb part of the normal self-
energy, since contrary to standard theory they do not van-
ish if strong disorder is present. This way one would ob-
tain coupled integral equations for three quantities rather
than two, and they would be integral equations in energy
as well as in frequency. Since disorder would have been
included formally exactly in terms of (a priori unknown)
correlation functions, these equations should be of the
same accuracy as the standard theory for clean and weak-
ly disordered systems.

It is the aim of the present paper to perform part of the
program sketched above. We will succeed in obtaining a
unified description of most of the effects discussed previ-
ously, but we have so far been unable to obtain an accu-
rate theory for arbitrary disorder. The main obstacle has
been that we have been unable to include the dynamically
screened Coulomb potential in the presence of disorder,
and have used a static screening approximation instead.
The resulting theory should be reliable for small and in-
termediate disorder (for resistivities p & 100 pAcm), but
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near a metal insulator transition presumably still other ef-
fects would come into p1ay. The paper is organized as
follows. In Sec. II we derive and discuss the basic
electron-impurity, electron-electron, and electron-phonon
interactions. Impurity renormalizations of the respective
vertices are briefly examined diagrammatically for later
comparison with results obtained with the correlation
function technique. In Sec. III we define the relevant
Green's functions and self-energies, and calculate the
latter with the exact eigenstate formalism, which includes
the impurity renormalizations. In Sec. IV we perform
various frequency summations to derive the strong cou-
pling equations. Section V demonstrates how the previous
theories can be obtained as special cases of the present
one.

The conclusion is that all previous approaches have
neglected effects equal to or larger than the ones con-
sidered, and are therefore not reliable. The present theory
also includes a number of new affects, which also are of
comparable magnitude. Among them is a novel diffusion
enhancement of the electron-phonon coupling parameter
k, and effects due to the normal self-energy which tend to
decrease T, . We briefly discuss these new affects, and
show that they tend to yield an increase of T, with disor-
der for weak coupling materials, and a decrease for strong
coupling ones. This is in accord with the experimental
facts. A more detailed discussion and comparison with
experiment will be given in a separate paper.

Finally we emphasize that we will deal with a theory
for bulk materials only. Phenomena in superconducting
thin films are perhaps even more interesting, but ap-
parently also more difficult for a theoretical description.

II. EFFECTIVE INTERACTIONS

We consider a system of electrons which interact with
static impurities, among each other via a screed Coulomb
interaction, and with lattice vibrations via an effective
electron-phonon interaction. The electron-impurity in-
teraction is the least sophisticated one, and it influences
the other two, so we start with its description.

A. Electron-impurity interaction

The free motion of electrons disturbed by scattering off
impurities is described by the Hamiltonian

H, ;=+ f dx% (x) V„+g V(x —x;) 4 (x) .
2m

(2.1)

Here the 0,+~ are the usual electron field operators, x;
denotes the random sites of the impurities, and V is the
electron-impurity scattering potential. We will find it
convenient to work within the so-called exact eigenstate
representation. "' Thereby one assumes that H, ; has
been diagonalized with a complete set of orthonormal
eigenfunctions Ig„(x)I, and corresponding eigenenergies
E„. Occasionally we will use standard diagrammatic per-
turbation theory to deal with impurity corrections to
various quantities. Accordingly, we define the one-
particle Green's function

G(k, ice„)=[ice„—k /2m+X(k, ice„)) (2.3a)

Here co„=2vrT(n + —, ) is the Matsubara frequency, and

we measure energies from the Fermi level. In diagram-
matic arguments concerning impurity averages, we re-
strict ourselves to pointlike scatterers. The self-energy
reads in lowest order

X(k,i co„)= (i /2r; )sgn(co„),

with the single-particle decay rate

1 /7
&

—2WNF Up

(2.3b)

(2.3c)

Here 1VF is the density of states per spin at the Fermi lev-

el, Uo=n;
~

V(k)
~

with n; the impurity density, and
V(k) the Fourier transform of the scattering potential.

B. Screened Coulomb interaction

Originally, the electrons interact via a bare Coulomb
potentia1

v (q)=(1—5q o)4ire /q
It is convenient to include screening from the very begin-
ning. We write down an effective Coulomb potential

V, (q,i Q ) =v(q)/e(q, iA ), (2.4)

where the dielectric function e is defined in terms of a
screened density-density response function,

~(q, in )=1+v(q)X'd' d(q, in ), (2.5)

with 0 =2~Tm. Xd' d is irreducible with respect to the
Coulomb interaction, but contains the foll disorder correc-
tions due to H, ;. As a consequence, Xd' d behaves rath-
er delicately in the limit of smal1 frequencies and
wavenumbers. In the present paper, we ignore the
subtleties which presumably arise from this point, and
simply use the Thomas-Fermi approximation. That is, we
replace 7d' d by the response of the noninteracting system
in the static long-wave-length limit: X'd' d (q, i 0 )

=Pd ' d(q, i0)=2NF '' Then w.e have for the effective
Coulomb potential

V, (q) —= V, (q, i 0)=(1—5q o)
l

q'+K' '
K

(2.6)

where v = (4m.e 2NF )
' is the Thomas-Fermi screening

wave number. This effective Coulomb interaction couples
to the electron density,

H,', =g f dxdy%' (x)% (x)V, (x—y)+ (y)% (y) .

(2.7)

Consequently, the bare electron-Coulomb vertex is very
simple. If we combine space and time arguments by the

G(x —x', r r—')

= —((T,% (x, r)% (x', r'))~ ) . (2.2)
av

Here T, is the ordering operator for the imaginary time ~,
( . )H means a thermodynamic average formed with

the electron-impurity Hamiltonian, and ( ),„denotes
the impurity average. The Fourier transform of G can be
written as
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symbol 1=(x~,r~) etc. , the bare vertex for the scattering
of an electron from point 1 to point 3 by a potential at
point 2, reads

I,(q, iQ )= 1 2 31+3
1 r—; ~Q ~+Dq + 0 ~ ~

l+1 l+3
I '(1,2, 3)=5(1—2)5(2 —3), (2.8) (2.11)

where

r'(k, q) = 1 . (2.8')

For later reference, we briefly recall that the Coulomb
vertex is very sensitive to disorder. Figure 1(a) shows re-
normalization of I' by means of impurity ladder dia-
grams [diffusion-propagator renormalization (DPR)]. I'
is denoted by a dot, the renormalized vertex F'' by a cir-
cled dot, and straight lines denote electron propagators as
given by Eq. (2.2). V, is symbolized by a dashed do-tted
line, and the electron-impurity interaction is shown as
dashed lines, where each cross carriers a factor Uo.
Evaluation of Fig. 1(a) is straightforward and shows that
the Coulomb vertex at small wave numbers is strongly
enhanced by disorder due to the diffusion pole structure
inherent in the vertex correction. This becomes particu-
larly clear if we sum EI':—I '—I'over k and q:

b.y, (i Q )
—=g b,I'(k, q;iQ )

k, q

=QIp(q, iQ )/[1 Ip(q, i—Q )],
q

where Io is the first of a series of integrals defined as

I~(q, iQ )= Up g (pq/pq)'G(p+q/2, ice„)
P

(2.9)

XG(p —q/2, ice„iQ„) . —(2.10)

For co„(cp„—Q ) &0, and 1 even we have at small q and
0,

5(1 —2):—5(x& —x2)5(r& —72),

etc. In Fourier space, scattering of an electron from
k+q/2 to k —q/2 is associated with a factor

=Q Ip(k iQ )g 1/[1 —Ip(q iQ )]
k q

(2.12)

This shows that the maximally crossed ladder and the or-
dinary impurity ladder yield the same type of diffusion
enhancement for the Coulomb vertex.

C. Effective electron-phonon interaction

The problem of electron-phonon interaction in disor-
dered metals is not straightforward, mainly because un-
critical application of the usual Frohlich model yields an
incorrect result. We will use a model proposed by Blount
and Tsuneto, and, in a form particularly suitable for ap-
plications, by Schmid. In particular, Schmid has de-
rived a model interaction which for impure systems sim-
ply replaces the Frohlich model, without requiring any
changes in the formalism.

The result is the following effective interaction between
electrons and phonons,

H, ,=, g [mr~(q) ——,kid(q)]y~(q)
m(p, )'~', ~l. (q)

where D =Uz~;/3 is the diffusion constant with Fermi
velocity U~. At 0=0, hy, is proportional to 1/D, and
for small Q it rises like

~

Q
~

'~ .
Another impurity contribution to the renormalization

of I' is obtained by replacing the ladder in the Fig. 1(a)
by the maximally crossed ladder, known from the
Anderson-localization problem, ' shown in Fig. 1(b)
[Cooper-propagator renormalization (CPR)]. Denoting
the resulting vertex correction by At ', we obtain

by, (iQ )=—g bI '(k, q;iQ )

k, q

k+ g/2, lm +, g m~T(q)PT(q) .
m(p, )'", ~T q

(2.13)

.——q, iQ

k-q/2, ice-iQ

Here the r(q) are the longitudinal (L) and transverse ( T)
parts of the Fourier transforms of the electron stress
operator,

r y(x)= g J dy(V„V„) (V„V„)&— —1

(a) I
I+ ~i 0 +
I

I I
)&4 (x)4 (y)5(x —y) . (2.14)

I a
I / t

FIG. 1. (a) Renormalization of the Coulomb vertex due to
impurity ladder diagrams (diffusion-propagator renormaliza-
tion). (b) Maximally crossed ladder diagrams. Insertion in (a)
instead of the ordinary ladder yields the Cooper-propagator re-
normalization of the Coulomb vertex.

d(q)=g I dxe' "4 (x)% (x),

is the Fourier transform of the electronic density operator.
The phonon field operators pb (q) are defined as

lyb(q) =i[cob(q)/2]' [bb(q)+bb( —q)],

(2.15)

(2.16)

where cob(q) is the dispersion relation for polarization
branch b, the b, b are phonon creation and annihilation
operators, and the cb ——cob(q~0)/q are the sound veloci-
ties. With this normalization, the bare phonon propagator
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Db '(q, iO ) = —f dwe ( T,P b(q, ~)P b(q) )'"=~b(q)/[(i& )' —~~(q)],
is dimensionless. From Eq. (2.13) we read off the screened electron-phonon vertex in k space'

(2.17)

I I (k,q)=, [(kq/q) —kF/3] .
m (p; )'~ coL (q)

(2.18a)

I T(k,q)=, , (kq/q)
~
(q/q) X(kXq/q)

i
.

m (p;)'~ coT(q)

We will also need the corresponding expression in real space, viz. ,
1

) 4 ~(+1 +2)@+2 'r3) f dy(&.,—V„).(V'„,—Vz)p5(x2 —x&)5(y —x )p(y —x } —'k2) p(1 2)g(2

(2.18b)

Here we have combined space and time arguments as before, and we have defined a real-space phonon propagator

—tq(x, —x, I q eb(q) q eb(q)
D py (1,2}—:ge ' ',

2 Db(q, ~, —r2)
q, b m (p;)'~'coq(q) m (p;)' '~b(q)

(2.19)

(2.20)

(2.21)

and

We now consider the impurity renormalization of I L in the same way as we have done for the Coulomb vertex. Fig-
ures 2(a) and 2(b) show the vertex corrections due to diffusion-propagator and Cooper-propagator renormalization,
respectively. Here and in the following, we denote the electron-phonon vertex by a triangle, and the phonon propagator
by a wavy line. We define quantities b, y L(iQ ), and b,yL(if' ) in complete analogy to b,y„b,y', in Sec. II B. In terms
of the integrals defined in Eq. (2.10), we obtain

k

baal

(i6 )=,~2 +[I o(q, i II ) —3I2(q, i0 )]/[1 Ip(q, i—6 )],
3m (p, )'"c, ,

k
Apl. (iQ~ ) =

&&&
g[IO(k, i 0 ) —3Iz(k, iQ )]g 1/[1 Io(q,—if' )] .

3m(p;)' cL
(2.22)

(aj q, iQ q, iQ,

k -q/2, (m-lQ, k -q/2, leo —(Q

FIG. 2. Electron-phonon vertex correction due to (a) DPR
and (b) CPR. Summation over k yields the quantities Ay and

4y in the text.

With the help of Eq. (2.11), we see that there is no dif-
fusion enhancement of the longitudinal electron-phonon
vertex due to DPR (Ref. 32) (the transverse vertex is obvi-
ously not enhanced either). However, there is a diffusion
enhancement due to CPR, since in Eq. (2.22) the integra-
tions over Io —3I2 and over 1/(1 —Io) decouple. This
has interesting consequences for the sound attenuation, as
has been discussed recently. It is also important for the
superconductivity, as we will see below. We will come
back to the results expressed in Eqs. (2.9), (2.12), (2.21),
and (2.22) in the next section, where we will study impuri-
ty renormalizations with a more powerful technique.

III. GREEN'S FUNCTIONS AND SELF-ENERGIES

A. Basic definitions

We now define Careen's functions for the fully interact-
ing system. Following Gorkov, we define a normal elec-
tron Green's function

$(1,2}= $(x),x2, &),~2)

= —( T,V (x),r, )% (x2, &2) ) .

and an anomalous one

(3.1)

Ã(1,2)—:K(x&,x2, r), r)) = ( T~%,(x),7, )%,(x2, 7)) ) .

(3.2)

Here ( . ) denotes a thermodynamic average formed
with the full Hamiltonian of the system, and we have
not yet included an impurity average. It is useful to con-
sider these Green's functions in the exact eigenstate basis
defined in Sec. IIA. We follow Ref. 19, and assume S
and W to be diagonal in the exact eigenstate basis:

=5„$„, M „=5„M„. Consequently, the self-
energies are also diagonal. As in conventional strong cou-
pling theory, ' we retain two different self-energy func-
tions formed with 9 and ~, respectively, and denote
them by S and 8'. The generalized Dyson equations read
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(from here on we omit the discrete index on Matsubara
frequencies)

[ice E—„—S„(ice)]$„(ice)+W„(ice)a „(iso)=1, (3.3a)

[ ice—E„——S„( i—co)]a „(ice)—W„(ice)S„(icy)=0 .

(3.3b)

2 2 I

f(&i= (+5(& E„(f„)— (3.4)

We now apply this average to Eqs. (3.3). Thereby we as-
sume' that Green*s functions and self-energies depend on
n only via E„,and that the sum may be replaced by an in-
tegral: (I/1VF)g„= f dE„. The latter is tantamount to
assuming the exact eigenstates to be nondegenerate, and
the former implies factorization of averages over prod-
ucts. We then can solve the average Eqs. (3.3) for 9
and W. We decompose the normal self-energy in the usu-
al way:

S ( E, I co ) =i co[ 1 —Z ( e, E co ) ]+ Y'( e,i cu ),
where both Z and Y are even functions of the Matsubara
frequency, and obtain

Here the self-energies S„,W„, are obtained from the corre-
sponding real-space quantities. These are shown diagram-
matically in Fig. 3. They have to be calculated according
to the usual rules. Careen's functions 9'(W) are drawn
as unidirectional (bidirectional) straight double lines. Fi-
nally, one has to perform the appropriate transformations
to obtain S„,W„ in terms of S„,W„. Notice that in Fig.
3 we have shown Hartree (H) contributions to the self-
energie, since in our case they are nonzero as we will see.
There are no Hartree contributions to 8 because of parti-
cle number conservation. So far we have assumed a fixed
distribution of impurities. To get physical results, howev-
er, we have to average over the random impurity posi-
tions. We perform this by using the method given by
Keck and Schmid' (see also Ref. 38). This leads to the
following prescription for constructing energy-dependent,
averaged quantities f (F) from their exact eigenstate repre-
sentation f„:

/'
I

w' / SC I

t f F )

2 I 2 I 2 I

FIG. 3. All lowest-order phonon (ph) and Coulomb (c) contri-
butions to the self energies 8;S. Hartree contributions with re-
versed direction of electron loop are not shown.

i coZ(e i co)+[e+Y(E,ice)]
[icoZ(e&i ru) ] [e+—

Y(E&ice�)

] W(e&—i ~) ]
(3.5a)

—W(e, ice)
E&le) = 2 2 . 2[icoZ(e,ice)] —[e+ Y(e,ice)] —W(E, ice)

(3.5b)

In the following section, we will calculate W, Z, and Y
from Fig. 3 in terms of S and M to obtain closed equa-
tions.

B. Calculation of the self-energies

1. Phonon eontri butions

According to the rules given in the previous section, we
obtain from Fig. 3 the phonon part of the self-energy. We
transform into the exact eigenstate basis and take the
average by the procedure stated in Eq. (3.4). In doing so,
we average separately over the phonon propagator,
neglecting all cumulants as we have done in deriving Eq.
(3.5). The result is

Wt'"(E&ice) = —Tg g f de'R&(q, e e')W(e', iso'—)Dq(q, ice ice') &—
iso q, b

where

~r s m (p, )' ('o&(q) m (p;)' (o&(q) NF

X f dx)dx2e

X f dy&[ ——,'(V, —V ) (V„—Vy )p ——,'kF5 p]5(x) —y, )

X f dy2[ ——,(V„—V„)~(V„—V„)s——,
'
k+5~s]5(x2 —y2)

X g 5(EE„)5(~' E)g' —„'(x, )g&» (x—,)g» (y2)g»& (y, )
n, m av

(3.7)
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Here we have used the fact, explained in Appendix A, that in an excellent approximation R depends on e —e only. In
Appendix A we also show that the impurity average of four wave functions occurring in Eq. (3.7) can be expressed in
terms of a Kubo correlation function for noninteracting electrons. Performing a Fourier transform, we finally obtain

q'eb(q) 1
Rb(q, e —e') =g g g[k kp ——,

' k~5 p]@I,'p(q, e—e')[pub ——,
'
kF5rs],

py s m(p;)' cob(q) m(p;)' cob(q) ~Ng k
(3.7')

where Nk& is the absorptive part of the phase-space Kubo function defined in Appendix A.
Exactly the same reasoning applies to the remaining two diagrams. For the phonon exchange contribution to the nor-

mal self-energy we obtain

Szh(e i co) = —T y y f de'Rb (q, e e')—S(e',ico')Db(q ico ico—') . (3.8)
ice q, b

The Hartree contribution reads

Sz~(e ico)=2T y y f de'Rb (q, e e'—)9(e', ico')Db(q, i 0=0),
ice' q, b

with

q eb(q) q eb(q)
Rb (q, e e')=—

, &2 1/2
&& b m (p;) cob(q) m(p;) cob(q) nNF

(3.9)

X g(k~k& ——,
'

kF5~&)@'j,+~ ~ z+~+~ (k —p, e e')(p—~ps —,
'

kF5—rb) .
k, p

(3.10)

2. Coulomb eontri bu tions

Calculation of the remaining three diagrams in Fig. 3,
which give the Coulomb contributions to the self-energies,
proceeds in exact analogy to the calculations given above.
Because of our static screening approximation, the
Coulomb parts of a11 self-energies are independent of fre-
quency. We obtain

IV, (e)= —T g g f de'R, (q, e —e')a (e',ico')V, (q),
iso' q

(3.11)

S, (e)= —T g g f de' R, (q, e e') 9 (e'—,i co') V(q),
ice' q

(3.12)

S, (e)=2T+g f de'R, (q, ee')9(e', ico')V, (q) .
iso' q

(3.13)

for the Coulomb contribution to the anomalous self-
energy, and the Fock and Hartree parts of the Coulomb
contribution to the normal self-energy, respectively. The
vertex functions read

actly. Furthermore, even if Nkp is explicitly known in
some approximation (e.g. , from kinetic theory), evaluation
of the wave-vector integrals is nontrivial. In Appendix B
we give a method how the latter task can be performed
approximately in a systematic way.

IV. STRONG-COUPLIN(s EQUATIONS

A. Frequency summations: Coulomb contributions

Due to our static screening approximation, the
Coulomb parts of the self-energies are independent of fre-
quency. Introducing the ana1ytic continuations
G(e, co) =3'(e, ico~co+i 0), F(e,co) =w (e,ico~co+i 0),
we have the spectral representation [cf. Eq. (A4)],

9 (e,i co) = ImG (e,co) i(co i co), —dc'
(4.1)

Basically what remains to be done is to perform the
various summations other Matsubara frequencies in the
expressions for the self-energies. Since the disorder does
not affect the frequency dependence of the propagator,
this can be done in the standard way.

R, (q, e —e') = gNk~(q, e—e')
~NF k

R, (q, e —e')= gN'g+p q g+p+q(k —p, e —e')
NF kp

(3.14)

(3.15)

and the same way for W. With the help of Eq. (4.1), the
summations over ico' in Eqs. (3.11)—(3.13) are elementary,
and we obtain

W, (e) = f de' g R, (q, e —e') V, (q)

The vertex functions R~' and R, ' which contain the
impurity renormalizations are extremely complicated,
since knowledge of +kp requires a solution of the
electron-impurity problem, which cannot be obtained ex-

co Irnr' e', co
dco

Since they are frequency independent, S, and S, are con-
tributions to Y:
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Y, (e)= f de'g[R, (q, e.—E ) —2R, (q, E —E')] V, (q) f f (co)ImG(e', ~) .
q

There is no Coulomb contribution to Z.

(4.3}

B. Frequency summations continued: Phonon contributions

For the phonon propagator, one introduces the spectral function Bb(q, v), which allows for the spectral representation

Db(q, iQ)=2 f dv
z z BI,(q, v) .

(iA) —v

From Eq. (3.6) we obtain

Wph(E, in) = f dE' f dva F (e e', v)—n (v}[M (e', ice+ v)+W(e', iso v)j-
r

(4.4)

+ ImF e', xdX f (x) 1 f(x)—+
X —lCO —V X —lQ)+V

(4.5)

where n(co) = [exp(co/T) 1] ' i—s a phonon occupation number, and

a F (e, v)=QRb(q, e)B~(q, v) .
q, b

The exchange contribution to the normal self-energy,

Sp„(rico)= f de' f dva F (e e', v) —n( v)[S(e', icu+v)+9(e', iso —v)]

+ ImG(e', x) +dx, (x) 1 — (x)
7T X —LEO —V X —LCO+ V

(4.6)

(4.7)

has to be separated in its contributions to Z and Y. This is easily accomplished by dividing the rhs into terms which are
odd and even, respectively, in the Matsubara frequency ice. We find

ice[1—Z(e, ice)]=f de' f dva F (e e', v) n(v—)[9'(e', icu+v)+9'(e', ice —v)]

+ice ImG(e', x)
~ ~ +dx f (x) 1 f(x)—

7T (x v) (—ice ) —(x +v) —(ice)
(4.8)

and

Y~h(e, ice)= f de' f dva F (e E', v) n( v)[S—+(e', icu+v)+9+(e', ice v)]—
+ ImG e'x x + I — x

7T (x —v) —

(ice�)

(x +v) (ico)—
(4.9)

Here S+(e,ice) = , [9(e,ic—o)+9''(e,—ice)], and we have anticipated that there is no other contribution to Z. Indeed, the
last remaining term, Eq. (3.9), is independent of ice, and is therefore a contribution to Y:

Yz~(e, iso)=4 f dE' f a F (e E', v) f f(x)l—mG(e', x),
V

where

a F (e,v)=+Rb (q, e)Bb(q, v) .
q, b

(4.10)

(4.11)

We have now completed all simplifications of Eqs. (3.6)—(3.9), and (3.11)—(3.13), which can be carried out in complete
generality, without further assumptions or approximations.

C. The strong-coupling equations

We may now combine Eqs. (4.2) and (4.5), (4.8), and (4.3), (4.9), and (4.10) to write down our strong-coupling equations
for the retarded functions W(e, co) = W(E, ico~co+i 0), etc. ,
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W(E, ci)) = f de' f dv a F (e e'—, v) n (v)[F(E', ro+v) +F(e', co —v)]+ f I mF(e', x)

+ f de'U, (e—e') f f(x)imF(e', x), (4. 12)

co[1 —Z(e, co)]=f de'f dva F (e e', v—) n(v)[G (e', co+v)+G (e', co —v)]

+co ImG e'x +dx, (x) 1 — (x)
'iT (x —v) —co (x +v) —co

Y(e,co) = f de' f dva F"(e e, v—) n (v)[G+(e', co+v)+G+(e', co —v)]

(4.13)

+ ImG e'x x + 1 — x
7T (x —v) —cu (x +v) —co

+f de'f dv aF (—E e', v)+—U, (e—e')5(v) f f(x)ImG(e', x) . (4.14)

U, (e)=JR, (q, e')V, (q),
q

U, (e) =g[R, (q, e) —2R, (q, e)] V, (q) .
q

(4. 15)

(4.16)

Finally, the retarded Green's functions are obtained by re-
placing ico~co+i 0 in Eqs. (3.5). G (G+) are obtain by
retaining in the numerator of Eq. (3.5a) the term
coZ([e+ Y]) only. According to the definitions of Z and
Y, the symmetry requirements are then fulfilled. As in
standard strong coupling theory one does not have to dis-
tinguish between a and a . Eqs. (4.12)—(4.16), together
with Eq. (3.5), form a closed set of integral equations in
two variables for the self-energies W, Z, and Y. They
represent the central result of the present paper. We will
make no attempt to solve these equations, but rather give
a general discussion of their content in the next sections.
An approximate solution for T, of McMillan type will be
given in a separate publication.

a2F~ and a F have been given in Eqs. (4.6) and (4.11),
respectively, and the Coulomb kernels are defined as

U, (e)' '—:p= —,
' (Ir/2k~) in[1+(2kzla. ) ), (5.1)

with the screening wave number a from Eq. (2.6). This is
the result of Morel and Anderson. For the same reason,
e F is independent of energy. With energy-independent
kernels, the integrations over e' in Eqs. (4.12), (4.13) are
elementary, and we obtain the standard strong-coupling
equations. ' Working out the stress correlation function
for a jellium model, one finds that there is no contribution
from transverse phonons, ' while the longitudinal pho-
nons yield' (in the long-wavelength limit)

Then the Coulomb self-energy is energy independent as
well. It should be mentioned, however, that in the absence
of large disorder this point has been improved upon. If
we assume that Y is frequency independent as well, we
find f de'G+ (E', co) =0, and ImG(e, —co) =ImG (e, co).
Therefore the first two contributions in Eq. (4.14) vanish,
and Y is indeed a constant which just renormalizeds the
chemical potential. Thus Y can be neglected. As for the
remaining terms, with Eq. (B7) in Eq. (3.14), we find for
the Coulomb potential, Eq. (4.15),

V. DISCUSSION 2kF dq qa F+(e,v)I I—:a F(v) =gLN+ f 2 BL(q, v),
F

(5.2)

A. Comparison with previous theories

We start the discussion of Eqs. (4.12)—(4.14) by com-
paring them with previous work. First we show that in
the weak disorder limit, the equations correctly reduce to
standard results. In this limit, the scale for frequency
variations of the correlation functions entering a F '

and the Coulomb kernels U, ' is given by the Fermi en-
ergy. This follows from using Eq. (B7) in Eqs. (3.7'),
(3.10), (3.14), and (3.15). Consequently, the phonon self-
energies are energy dependent. This is not strictly true for
the Coulomb self-energies, since there the integration
range is also of the order of the Fermi energy. For our
purposes we neglect this, and follow Morel and Anderson
in assuming an energy independent Coulomb kernel.

where gq ——k~/3m(p;)' cq.
We now turn to the disorder corrections. Let us disre-

gard for a while all Coulomb contributions to the self-
energies, as well as Y~h Then the only vertex correction
we have to deal with is the one in a F . Adopting the
scheme developed in Appendix B, and using free Fermion
static correlation functions in Eq. (B6), we find that the
density mode Ao(q)=d(q) does not yield a contribution
if Eq. (4.6) is rewritten in the form of Eq. (BSa). This re-
flects the fact that there is no diffusion enhancement of
the electron-phonon vertex due to diffusion (i.e., density
fluctuations). This was shown diagrammatically in Ref.
32, and we have repeated the argument in Sec. II C [cf.
Eq. (2.21)]. For the time being, we ignore the possibility
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of CPR [Eq. (2.22)], to which we will come back later,
and go on with the approximation scheme of Appendix B.
The current mode does not contribute either (because of
symmetry under time reversal), and the first nonzero con-
tribution stems from the longitudinal stress operator

@b(q,O) = 1lm [sb(q) I
~g~ —~ )

I sb(q)]
co~0

can be calculated from a Boltzmann equation in the
collision-time approximation. In the long-wavelength
limit, the result is

m. kgb
Nb'(q, O) = +b(ql),

9q
where l =UF ~ is the electronic mean free path, and

(5.3)

2 x arctanxNLx=-
x —arctanx

(5.4a)

[2x +3x —3(x +1)arctanx] . (5.4b)
7TX

Insertion into Eq. (4.6) yields the result of Keck and
Schmid. ' There is an enhancement of T, due to disor-
der, since the increase of the transverse phonon contribu-
tion, [Eq. (5.4b)], overcompensates the decrease of the
longitudinal one. One has to keep in mind, however, that
this result has been derived by neglecting Y and all
Coulomb contributions as well as the Cooperon renormal-
ization of a F.

To understand the work of Refs. 20, 22 within the
present frame, we ignore the Keck-Schmid mechanism
discussed above, taking Eq. (5.2) for a F. We also ignore
Y, and all disorder corrections to Z, concentrating on the
Coulomb contribution to the gap parameter, W, (e), Eq.
(4.2). From Eq. (3.14) we see that, contrary to the case of
the electron-phonon vertex, here the density mode does
yield a contribution. With the diffusion-pole approxima-
tion for the density propagator,

C&T(x) =

5e"(q, e) =g 5@p'p(q, E)= Dq g(q) (5.5)
kp E+D q

where D is the diffusion constant, and g (q)= [d(q)
I
d (q)] is the q-dependent compressibility, we

have

U, (e) =@+ g V, (q) .1 Dq g(q) (5.6)
~2+D2q4

This is an alternative derivation of the enhancement due
to diffusion, cf. Ref. 27 and Sec. II 8. This enhancement
alone does not yield a large effect, since in the Coulomb
pseudopotential, U, enters in the denominator as well
as in the numerator. Anderson et al. therefore con-
sidered a scale-dependent diffusion constant, borrowed
from weak-localization theory, ' in Eq. (5.6). For systems

sL (q) =g(k, —k /3)fg(q)
k

(q in the z direction). Similarly, the transverse stress
operator sT(q) =gzk, k„fb(q) yields the first nonvanish-
ing contribution in the transverse channel. The correla-
tion functions

sufficiently close to an Anderson transition, this results in
a strong decrease of T, . We note that contrary to the
CPR of the vertex, Eq. (2.12) (which has been neglected in
Ref. 20), this procedure effects U, in an indirect way, viz. ,
via critical slowing down effects affecting D. This should
be important in the critical regime of an Anderson transi-
tion only. In an attempt to describe less extremely disor-
dered materials, Entin-Wohlman et al. concentrated on
systems with quasi-one-dimensional structure, such as
A —15's. Accordingly, they replace the q sum in Eq.
(5.6) by a strongly anisotropic integral. Though this
strongly enhances the diffusion effect on U, , the authors
conclude that this effect for itself is not sufficient to ex-
plain the observed T, degradation with reasonable param-
eters. This is perhaps not too surprising. As we have
seen, both Refs. 20 and 22(b) have singled out one mecha-
nism, and neglected several others whose effects are com-
parable. For instance, Leavens ' found that inclusion of
the critical slowing down effects of Ref. 20 on the renor-
malization function Z (but again neglecting Y and the re-
normalization of the phonon contributions) actually yields
an increase of T, in the critical region, contrary to what is
observed in experiment.

The work of Wysokinski and Kuzemsky contains
both the effects discussed in Refs. 19 and 20, and in Ref.
22(b), respectively, albeit for a different model. The dif-
fusion enhancement of the Coulomb kernel, our Eqs.
(4.15) and (5.6), is implicitly contained in their effective
Coulomb potential U,ff.

Up to now we have shown that previous work on dirty
strong-coupling superconductors is contained in the
present theory as special cases of Eqs. (4.12)—(4.16).
Comparison with the work on BCS and Ginzburg-Landau
models mentioned in the introduction is more difficult.
Let us only mention that the effects discussed in Ref. 26
have been, in the present language, entirely due to Y.
Both Fock and Hartree contributions with DPR as well as
CPR have been taken into account. However, in the BCS
approach the disorder dependences of W and Z have been
missing. We will give a more detailed comparison in Ref.
28, where we will solve the present equations approxi-
mately for T, .

Finally, let us tentatively apply Eqs. (4.12)—(4.14) to an
Anderson insulator. The nonergodic properties of the in-
sulating phase are reflected by a contribution proportional
to 5(E) to the phase-space Kubo function d&I,'~(q, e). This
just leads to an energy-independent contribution to all
self-energies, and no obvious accident happens. Though
the question of T, remains open without solving the equa-
tions and a detailed study of the parameters, this seems to
imply the possibility of superconductivity on the insulat-
ing side of an Anderson transition, in accord with the
works quoted under Ref. 13. We emphasize, however,
that because of our crude approximation for the Coulomb
potential, we believe such a procedure to be grossly inade-
quate (cf. the remarks in Refs. 13 and 31).

B. General discussion of the integral equations

Finally we give a brief general discussion of Eqs.
(4.12)—(4.14), with emphasis on the new aspects. The two
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y (e) =y (0) 1 — &e/2D +O(e)
4kF

(5.7')

The energy range we are interested in Eq. (4.12) is a shell
of width 2coD around the Fermi level. Putting e=cuD, we
obtain

+O(mcoD/pmEF ) (5.8)

where p=1/2NFD is the resistivity, and pM is the resis-
tivity scale defined in Appendix A. We conclude that in
the regime p &&p~, where the present theory is valid, the
energy dependence of 8' is extremely small, and can safe-
ly be neglected. This is not quite true for Z and Y, since
contrary to F, G(e, v) is not small for

~

e
~

&coD. To esti-
mate the maximum error, we have to replace (cgD/eF)'
in Eq. (5.8) by one. For not too large a resistivity it then
still is a reasonable approximation to neglect the e depen-
dence of Z, which greatly simplifies Eqs. (4.12) and (4.13).
The energy dependence of Y must not be ignored as we
will discuss below.

The renormalization function Y(e,co) has been defined
in Sec. III A as that part of the normal self-energy which
is an even function of frequency. Of course, such a con-
tribution always exists, but in standard theory it can be
neglected as discussed above. Even for strong disorder,

most important features are as follows: The energy
dependence of the self-energies, and the appearance of an
additional renormalization function Y. We start with a
discussion of the former.

The energy dependence of the self-energies has to be
seen in analogy to their wave-vector dependence in the
clean case. In a disordered system the momentum is no
longer a good quantum number, and one has to classify in
terms of energy instead. This point has been taken care of
in the definition of the ensemble average in Eq. (3.4). The
energy dependence then appears technically in the form of
the frequency argument of the Kubo functions entering
the various vertices. Thus in the weak disorder limit it
disappears in a natural way, at least for the phonon parts,
as has been discussed above. This corresponds to the fact
that in standard clean limit theory the wave-vector in-
tegrals can be performed in an excellent approximation. '

With increasing disorder, the Kubo functions develop fre-
quency dependence on a scale smaller than the Fermi en-

ergy, and so the kernels become energy dependent. Let us
consider the case of strongest variation, which is that of a
diffusion-enhanced vertex, Eq. (5.6). The Coulomb poten-
tial can be taken out of the integral at some average wave
number, so basically we are interested in the e dependence
of the function

2k~
y( e)= f dq q Dq /(e +D q ) . (5.7)

Here we have used the fact that the compressibility g(q)
effectively cut off the integral at 2kF (cf. the discussion in
Ref. 26). y(e~O) behaves nonanalytically because of the
diffusion pole, and one obtains

the main contribution to Y, that is the last term in Eq.
(4.14), is still frequency independent. For this reason
one must not ignore the energy dependence of Y lest one
loses Y entirely and therewith a qualitative effect. It is
clear from the structure of Eqs. (3.5) and known from ex-
perience within the BCS model, that Y w111 be adverse to
superconductivity. We conclude that frequency indepen-
dence of a contribution to the normal self-energy is no
sufficient justification for its neglect if its energy-
dependent part is strongly disorder dependent. In Ref. 26
the physics which is here described by Y has been inter-
preted as Altshuler-Aronov corrections to the Careen's
function which make up the Cooper propagator. This in-
terpretation is confirmed by Eqs. (3.5b) and (4.14). In
particular the present microscopic derivation confirms the
existence of a phonon contribution of Hartree type to this
one-particle renormalization. Such a contribution has
first been found within a BCS model by Fukuyama
et al. , but was subsequently neglected. It was found to
be of importance in connection with the T, degradation
effect in Ref. 26. In agreement with Ref. 26, we find
from Eq. (4.14) that Y is larger the larger the electron-
phonon coupling. Since Y acts strongly adverse to super-
conductivity, we conclude that the T, -decreasing effects
should be strongest for strong-coupling superconductors.
On the other hand, at weak coupling Y mill be less dom-
inant, and the T, -enhancing effects inherent in 8, Eq.
(4.12), will gain importance. We conclude that the theory
has an inherent tendency to favor T, -degradation at
strong coupling, and a rise of T, for weak coupling. This
is in agreement with the experimentally observed correla-
tion. ' '

We finally readdress the question of diffusion enhance-
ment of the vertices. In Sec. IIB we have seen diagram-
matically that both DPR and CPR of the Coulomb vertex
yield a diffusion-enhanced result. The former we have ob-
tained with the correlation function technique also, by
evaluating Eq. (4.15) with the help of a diffusion propaga-
tor. The result, Eq. (5.6), agrees with the diagrammatic
one, Eq. (2.9). Since the correlation function technique is
formally exact, the CPR must also be contained in Eq.
(4.15). To see this, we recall a peculiar symmetry of the
phase space Kubo function. This symmetry holds for
noninteracting electrons in the presence of time reversal
invariance. It is expressed by the identity

(5.9)@kp(q ~) @k—p+q p —k+q(k+P ~)
2

'
2

which, under the mentioned conditions, is easily proven
from the Green's function representation of the Kubo
function, Eq. (A7). Clearly, this symmetry has been lost
by writing the diffusion-pole approximation in Eq. (5.5).
According to Eq. (5.9), the phase-space Kubo function
shows a diffusion pole at small k+p and ~ as well as at
small q and co. Accordingly, there is another dangerous
region in phase space which has to be taken into account
in the evaluation of Eq. (4.15). This is easily accom-
plished by using the identity, Eq. (5.9), in Eq. (4.15) be
fore projecting onto the density according to the lowest-
order approximation in the scheme given in Appendix B.
Of course, we must not count the clean contribution
twice. We then obtain, instead of Eq. (5.6),
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L) 2

U, (e)=p+ g ~ g ~
V, (q)+, g[f~(q) ~d(q)]&, (k+p)[d(q) ~f~(q)]~+F

q +&9 g (Q)k, p

(5.10)

The second term in square brackets corresponds to the one
obtained diagrammatically in Eq. (2.12).

For the phonon vertex, the situation is slightly dif-
ferent. The evaluation of a F in Sec. VA following
Keck and Schmid' corresponds to the diagrammatic
DPR. The result was absence of diffusion enhancement,
in agreement with Eq. (2.21). However, if we use Eq. (5.9)
in Eq. (4.6) and project onto the density, we do obtain a
diffusion-enhanced vertex with a rather complicated ver-
tex function. Again, thi. s is in agreement with the di-
agrammatic analysis, Eq. (2.22). In the above arguments,
we have used only density contributions treated in dif-
fusion pole approximation to demonstrate by comparison
with the diagrammatic analysis, that the correlation func-
tion technique correctly yields CPR as well as DPR ef-
fects. We would like to emphasize, however, that the
correlation function method is potentially much more
powerful than the standard diagrammatic technique. For
instance, it easily yields nonsingular contributions like the
one to a F discussed by Keck and Schmid, which would
be hard to obtain by diagrammatic means.

Neither the CPR's, nor the various Hartree contribu-
tions, nor any contributions to Y have been kept before in
a strong-coupling theory for dirty superconductors. This
shows that the physical content of Eq. (4.12)—(4.14) goes
considerably beyond a unification of what has been
achieved before. Since all renormalizations leading to
diffusion-enhanced vertices are of comparable magnitude,
we conclude that all previous theories have neglected con-
tributions comparable to those which have been kept.
With the help of the scheme given in Appendix B, it is
possible to consider all disorder effects belonging to a
given class (e.g. , diffusion enhancement), which will be
necessary for a convincing comparison with experiment.
Unfortunately, solving the integral equations is also con-
siderable more difficult than for the standard strong cou-
pling theory. As a first step towards a solution, we have
solved for T, by adapting the well-known McMillan pro-
cedure. These results will be presented in a separate pub-
lication.

Note added in proof. After the present work was sub-
mitted, I learned that D. A. Browne, K. Levin, and K. A.
Muttalib [Phys. Rev. Lett. (to be published)] had indepen-
dently also realized the importance of the normal self-
energy part Y. I thank Dr. K. Levin for sending me a
preprint, and Dr. D. A. Browne for an interesting discus-
sion.
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APPENDIX A: VERTEX RENORMALIZATIONS
AND KUBO FUNCTIONS

WA=[H, A] . (A2)

The Kubo correlation function of any two variables for
complex frequency z is defined as the resolvent matrix
element of the Louivillian,

1
@gg(z) = A 8

W —z
(A3)

It allows for the spectral representation

dc'
4~s (z) = N'„'g (cu )/(co —z), (A4)

where the spectral function is given by

@zs(co)= [N~s(co+t 0) 4~&(ro t—0)]/2—t

=m.[A
~

5(co—W)
~
B] . (A5)

We now apply this formalism to the electron impurity
problem defined in Sec. II A, choosing the dynamical vari-
ables to be products 4 'II of the electron field operators.
Then

@.. .,...(~)=[q' (x/)q'(x )
~

rr5(co —W)
~

qit(x, )e(x,)]

(A6)

In this appendix we show that the vertex renormaliza-
tions due to impurities encountered in Sec. IIIB can be
expressed in terms of correlation functions for nonin-
teracting electrons. In any space of dynamical variables
A, B, . . . one can define a scalar product, the Kubo prod-
uct, by the definition

[W
~

a]=f dt(((a'a(u))), „—((a'))„((a)).„) .

(A 1)

The time evolution of the variables is given by
3 (t) =exp(iWt)A, with the Liouvillian W defined by

is the most general four-point Kubo function for a system with chemical potential g. Since we are dealing with a bilinear
Hamiltonian, the thermodynamic average in the definition of the Kubo product, Eq. (Al), factorizes, and it is easy to
show

&b„„„„(co)=sr de de', f (e) f(e')—
5(co e'+e)—, (6"(x),x3,e')G "(x4,xp, &)),„X )X2X3X4 (A7)
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Here G" is the spectral function for the Matsubara function defined in Eq. (2.2) taken without the impurity average, and

f (e) = [exp[(e —g)/T]+1] is the Fermi function. Finally, we write G" in the exact eigenstate representation to ob-
tain

@x x x x (~)= —J «[f(e) f (—e+~)]F'x x x x (~»
where

(A8a)

Fx x x x (~) 2 5(e+~ +n )5(e +m Wn(xlxm(x4)on(x3) 4(x2)
n, m av

(A8b)

is the function which appears in the vertex renormaliza-
tion. The temperatures we are interested in are very small
compared with the chemical potential, so in an excellent
approximation we can replace the f(e) by step functions,
and g by ez. One then sees that as long as F'(cv) =F (cv )

for ez —co & e & ez, we have the approximate relation
II

(A9)

Finally, we define the Fourier transform of N to obtain
the phase space Kubo function

II+tp(q~~)=[ca —qnct+qn l
~5(cv ~)

l cp —qncp+q/2] ~

(A10)

where cz ——f d x exp(ikx )'l(x ) Th. is completes the
derivation of Eq. (3.7') from Eq. (3.7).

We add a remark concerning the validity of the approx-
imation involved in Eq. (A9). In the phonon contribu-
tions to the self-energy, the frequency variation is effec-
tively restricted to a layer of width 2~D around the Fermi
energy, and Eq. (A9} is an excellent approximation. For
the Coulomb contributions this is less clear since the ener-

gy scale is of the order of ez. However, the approxima-
tion will fail only for systems whose Fermi energy is close
to a mobility edge e„as can be seen from the following
argument. Near a mobility edge, the resistivity scales
like '

APPENDIX 8: A SYSTEMATIC METHOD
FOR CALCULATING VERTEX FUNCTIONS

In this appendix we give an exact reformulation of the
vertex renormalization encountered in Sec. III in order to
cast them into a form which facilitates explicit calcula-
tions. We first notice that we always have to deal with
expressions of the type

QK(q, e —e')P(q, iQ),
q

(B1)

where %stands for Rb' of R, ', and Pean be Db of V, .
For the exchange contributions, K has the structure

K (q, ee') =g v(k)4k~(q, e —e')v(p),
k, p

while for the direct one it reads

(B2a)

p=pM[(eF —e, )«, ] ', (A 1 1)

where pM ——(A'/e )3' /kI. is Mott's resistivity, which
serves as resistivity scale for systems approaching the An-
derson transition, and s =O(1). Therefore, as long as
p/pM «1, we have ez/e, ))1, and the approximation
leading to Eq. (A9) fails only for a fraction e, /eI «1 of
the integration interval. Once agains we conclude that
our procedure for treating the Coulomb potential is only
reliable for systems not too close to an Anderson transi-
tion. This is quantified by the condition p/pM « 1.

(B3)

Here (K,P,Q)=(k, p, q)[[(k+p —q)/2, (k+p+q)/2, k —p]j for Fock [Hartree] contributions. We now define a com-
plete set of orthogonalized modes

A„(q)=g a„'(k)f&(q),
k

(B4a)

[A„(q)
~

A (q)] =5„g„(p)
and rewrite Eq. (B3) in the form

K (q, e —e')=g v(k)N'j, +p q k+p+q(k —p, e —e')v(p) . (B2b)
k, p

The function v(k) is a second rank tensor for electron-phonon coupling, and one for Coulomb coupling. According to
Eq. (A10), we can write Kubo functions as a matrix element of 5(e—e —W) formed with the phase-space density
f~(q) =c~ q~2ck+q~2. Hence, we can write the expression (Bl) in the form

QK(q, e —E')P(q, iQ)= g v(K)v(P)P(Q, iQ)[fj, (q)
~

rr5(e e' W) ~f~—(q)]—.
q k, p, q

QK(q, e e')P(q, iQ)—= g v(K)v(P)P(Q, iQ}g W~g(q)N„" (q, e e') . —
n, m

Here @'„' (q, e) = [A„(q)
~

n5(e W)
~

A (q)] is—the Kubo function in the new basis, and

(B5)

~."(q)=[f~(q) I
A. (q}] [A (q}

l f,(q}] .
g„(q)g (q)
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Often it is advantageous to split off the clean contribution, formed with the free-Fermi-gas correlation function

(~ kp ) (q cv) ~kp(1r/ca@(ca+ kq/m)[f (k —q/2) —f(k+q/2)]

Denoting the vertex function in the clean limit by K' ', we then obtain our final result

QX(q, e—e')P(q, iII)=+K' '(q, e —e')P(q, iII)
q

+ g u(K)u(P)P(Q, iQ)g 8'~p(q)5%„" (q, e e—'),

(B7)

(B8a)
k, p, q n, m

with

With a suitable choice for the set of modes A„(q), the

sum over n, m in Eq. (B8a) should converge rapidly. It
will then be possible to get reasonably accurate results

from calculating only a few dynamic [Eq. (B8a)] and stat-

ic [Eq. (B6)] correlation functions. A natural choice for
the longitudinal modes would be a)(k) =1, a)(k) =kq/q,
a)(k) =(kq/q) —k /3, etc. , thus taking density, current,
and stress as the first few modes. For the corresponding
correlation functions, a number of exact properties are
known, and approximation schemes exist even for strong
disorder.
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