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Transport properties of a multicomponent Fermi liquid
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Starting from the Landau kinetic equation, we derive exact expressions for transport coefficients
of a multicomponent Fermi liquid. We consider arbitrary ratios of Fermi momenta and effective
masses, and completely general scattering rates. As specific examples we evaluate the thermal con-
ductivity, shear viscosity, and diffusion coefficients for the multicomponent system, and give further
details for the two-component case.

I. INTRODUCTION

The transport properties of one-component Fermi
liquids at low temperatures may be calculated exactly us-
ing the techniques first developed by Brooker and Sykes'
and by H@jgaard Jensen, Smith, and Wilkins. In recent
years, multicomponent Fermi liquids have become impor-
tant in a number of different contexts, for example, asym-
metric nuclear matter, the coupled electron, proton, neu-
tron, and neutrino Fermi liquids found in stellar collapse
and in the cores of neutron stars, spin-polarized He, ei-
ther pure or dissolved in liquid He, liquid metallic hydro-
gen and electron-hole droplets in semiconductors. Trans-
port properties of the coupled electron-proton-neutron
system have been discussed by Flowers and Itoh, and
transport of spin-polarized He has been considered by a
number of people. ' Flowers and Itoh sketched how this
could be done, but obtained explicit results only for some
special cases. Meyerovich considered only specific forms
of the scattering amplitudes and neglected the energy
dependence of the deviation functions. Mullin and Mi-
yake obtained the exact solution of the transport equation
for the case when scattering of quasiparticles by other
quasiparticles from the same component could be neglect-
ed. Exact expressions for transport coefficients of liquid
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metallic hydrogen, for which the electron and proton Fer-
mi momenta are the same, have been found by Oliva and
Ashcroft.

In this paper we shall show how to generalize the calcu-
lations of Refs. 1 and 2 to the multicomponent case and
shall derive exact expressions for the transport coeffi-
cients. We consider arbitrary ratios of the Fermi momen-
ta and effective masses of the components, and completely
general scattering rates, and we shall express our results in
terms of the functions that occur in the expressions for
the transport coefficients of single-component Fermi
liquids.

II. TRANSPORT EQUATIONS

The standard Landau kinetic equation has the form

8np]

at +Vn p'V pep. —Vpn p' Vep ——I
where p is the momentum of a quasiparticle and ep is its
energy, including nonequilibrium contributions. The in-
dex i, which labels the components, includes information
both about the species of a quasiparticle and its spin. I; is
the collision integral which will depend on the quasiparti-
cle distribution for other indices than i, and it is given by
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where the transition probability 6' is given by2', W ikt (1,2; 3,4)
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l, i;2,j ) is the T matrix for scattering of quasiparticles from components i and j, with momenta pl
and p2, respectively, to a state with quasiparticles from components k and I, with momenta p3 and p4. Here we have
adopted a shorthand notation, and have replaced p by a. The prime in the sum in Eq. (2) indicates that if k and 1 are
the same, the sum must be taken only over distinguishable states.

As usual, one linearizes the collision term by writing

a '
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where n; is the Fermi function. The collision integral then becomes

I&; ——g' n&;nzz(1 —n3k)(1 —n4i) Wij ki(1,2;3,4)6p, +p, p, +p 5(e&+e2 e—3 —e'4)(4(i+4 2j 43k 44l) .
2, 3,4

Rather than solve the equations in complete generality
which is rather cumbersome, we shall discuss a number of
specific examples of physical interest. However, we shall
obtain, in quite general terms, the response of the mul-
ticomponent systems to gradients of the variables deter-
mining the local equilibrium of the system.

III. SOLUTIONS FOR MULTICOMPONENT
SYSTEMS

In this paper we shall investigate examples where the
number of quasiparticles of each component is conserved.
This is the case in spin-polarized liquid He if the number
of quasiparticles of each spin is conserved separately,
which is true if the dipole-dipole interaction between nu-
clear spins may be neglected. This is reasonable unless
non-spin-conserving processes are essential, as in calcula-
tions of the longitudinal spin relaxation time. For asym-
metric nuclear matter, the numbers of neutrons and pro-
tons are separately conserved if beta decay processes are
neglected, and to the extent that spin polarization is ab-
sent, the system may be treated as a two-component, rath-
er than a four-component system.

At low temperatures, the momenta of all thermally ex-
cited quasiparticles (and quasiholes) are confined to lie in
the vicinity of their respective Fermi surfaces, and there-
fore one may decouple the angular and energy variables in
the manner first introduced by Abrikosov and Khalatni-
kov. In the two-body scattering problem one may use the
angles 8 and P to describe the relative orientations of the
quasiparticle momenta, where 0 is the angle between p~

I

and pq and P is the angle between the plane containing p&
and p2, and the one containing p3 and p4. As usual we
shall adopt the convention that quasiparticle 3 is from the
same component as quasiparticle 1, and hence that quasi-
particle 4 belongs to the same component as quasiparticle
2. We therefore simplify the notation for this case by
writing

W( li, 2j;3i,4j )= W j(8,$) .

The phase space sums are converted into angular and en-
ergy integrals by using the result

1
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Pj = (P; +Pj + 2P;Pj cos8)'i (9)

The factor (1+5;j )
' occurs because of the prime on the

sum over momentum states which was introduced to
avoid overcounting the final states when the two final
quasiparticles are identical; p; and pJ. are the Fermi
momenta of species i and j, respectively, d Q
=sin8d8 dP/4m. , and P2 is the azimuthal angle of p2 with
respect to p&. The collision integral therefore becomes

2

I(; — f dx2d——x3n (x&)n (x2)[1 n(x3)][1 n(xi+—xz —x—3)]
8m A

g m,
' f f [4;(pi)+4, (p2) —@;(p3)—@,(p4)]

d n d'(i'2 Wij Pij
(10)

with
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On performing the phase-space manipulations described

x =(e J4 !/T . —
For i =j, p;j reduces to the well-known result

[2cos(8/2) ]
It is convenient to introduce a quasiparticle lifetime for

the state of momentum p, which is defined by evaluating
the collision integral (2) with np; =n; (ep;) for all quasi-
particle states except that with momentum p for the com-
ponent of interest, in which case

above and on making use of a standard integral, one
finds

1

r;(x)
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(14)

In the hydrodynamic limit, in which we are interested
here, we may, following the standard procedure due to
Chapman and Enskog, replace the distribution functions
on the left-hand sides of the transport equations by the lo-
cal equilibrium ones, and eliminate the time derivatives by
employing the conservation laws. The transport equation
then has the form
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X;(xi,p) =FXg(xi )Dg(p)Q, (15)

where Q is related to the gradients of the variables speci-
fying local equilibrium of the system, D&(p) is an irredu-
cible tensor quantity (for example, a spherical harmonic)
which depends on the direction p on the Fermi surface,
X&(x& ) is a function only of the energy variable x~, and
F; is a scalar function which can depend on Fermi veloci-
ties, temperature, etc. For example, for thermal conduc-
tion, X,(x &,p) =x

&
v;p. (VT/T), and F; =v;/T, X~(x ~ )

=x~, D~(p)=p.p, and Q =VzT, where p is a spatial in-

As is clear from the form of the transport equation, the
distribution functions of the various components are cou-
pled through the collision term, since the scattering rate
for one component depends on the distribution functions
of the other components.

In general, the driving term in the Boltzmann equation
may be written as a sum of terms of the type

@;(x,p )=y;(x )Dg(P )Q, (16)

where y;(x~) is a function of the energy variable x and

Q and D~(p~) are defined above. The transport equation
then becomes

dex. Here U;=p;/m;* is the Fermi velocity. Since we
shall work with the linearized transport equation, it is
enough to consider terms of the type (15) one at a time.
Also, since the kernel in collision integral is invariant
under changing the signs of all x simultaneously, we
may confine our attention to driving terms which are ei-
ther odd or even functions of x&. In this case, the devia-
tion function 4;(x ) are even or odd functions of x, ac-
cording to the symmetry of the driving term.

Since in the collision integral the energy and angular in-
tegrals are not coupled, the solution to the transport equa-
tion may be written in the form

F;Xg; (x ) ) (- m;" T dn II'j&j
4cosh (x&/2) 8m R

= —f f dx2L(x), x2) g mj" f f 4~ 1+S,-,

x [7;(xi )+&y (x2)pl(Pl P2) —r;(x2)pl(P1'P3)

1 j(x2 )pl(P& 'P4) ] (17)

where

1 X) —X2
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and
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——cosO,

2

p~ p3 ——1 — sin 8(1—cosP),p2
rJ
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and P denotes the evenness or oddness of the driving term
as a function of x&.

By inspecting Fig. 1, one may easily evaluate the angles
between the various momentum vectors, and one finds

A. A,
p~ pq ——cos8+ 2 sin 8(1—cosP) .

PrPJ
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On introducing new variables

X:";(x ) = —[m p;r;(0)]'~ ' F,2cosh(x /2)

and
1/2

I;(x )= m;p; y;(x )

v;(0) 2 cosh(x /2)

Xi r, (x, )

the transport equation (17) reduces to the simple form

(20)

(21)

oo dx2 X ] —X2
Ij(xp)

sinh[(x
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(22)

where

r (0)T „mj dII pj8; (23)

FIG. 1. Geometry of momenta in a two-quasiparticle col-
lision. In deriving Eqs. (19), we use the fact that
sinO&/p2 ——sinO2/pl ——sinO/PJ. . By convention, p~

——p3 ——p; and

pz ——p4 ——pj. We neglect deviations of the quasiparticle momen-
ta from the respective Fermi rnomenta.

2
mJ.

mr'

dn

(24)
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Qr;(0)rj(0)T, , 3~2 dQ QPiP&
(m mj') ~

4~ Wij
and

I;(x~)=Stijl j(x ) . (34)

(25) Equation (32) may be solved by expanding I in terms
of the eigenfunctions, P, of the equation

where
2

for i&j (26)

sinh

The eigenvalues are

. P„(xz)= 1 x1+ g„(x) .
A~ vr'

(35)

and

g,'; = —PPI(P) P2)+P((P).P3)+Pl(P) P4),

4'j ~l (P &
'P3) (' &j)

klj ~+I(P1'P2)++l(pi P4) (~Wj) .

(28)

(29)

a„=1/2v(v+ 1), v= 1,2, 3, . . . (36)

and the eigenfunctions are given in Ref. 9. Because we
are working in terms of the time r(0), rather than
r=m r(0)/2, it is convenient to choose a normalization
condition

SI'jkjlSlk ~i ~i k (31)

where A,; are the eigenvalues. The transformation ma-
trices S and S, and the eigenvalues A.; for the two-
component case are given in Appendix A. The transport
equation then becomes a decoupled set of equations sirni-
lar in form to those for single-component Fermi liquids:

Equation (22) resembles the standard form of the trans-
port equation for degenerate fermions, except that A.;J. is a
matrix here. Since p2.p3 ——p&.p4, it can be easily verified
that g;j =gj;.. Thus A, ;j is symmetrical in the indices i and
j, and we may diagonalize the set of equations by an
orthogonal transformation S such that

f dx 1+ ~ g„'(x)f„(x)=5„„ (37)

which differs from the convention used earlier. In the no-
tation of Refs. 1 and 8, 1t„=m.i)}„. The solution to Eq. (32)
1s

r, (x)= g P,(x) f dx' P„'(x'):-;(x') .
00

1—
(38)

The final step is to evaluate the response of interest,
which we write quite generally in the form

J= Q +Op, [np, —n; (ep, )]
2

P X):-;(x,)= 1+ I;(x, )
7T2

dX 2 X) —X2 I;(x2),
sinh[(x, —x z ) /2]

p
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where Op; may be written in a form analogous to (15),

0;=GiXo(x )Do(p ) .

(39)

(40)

where

:";(x ) =S;j:"j(x ) (33)

where G; is a scalar function like F, . Equation (39) may
be rewritten in terms of I by use of Eqs. (16), (21), and
(34):

Xg &S,„F„,
Xj

(42}

dQ- Xo(x) r;(0)J=—QTQN;(0)G; f D (p)D~(p} fdx, S;,I, . (41)4~ 2 cosh(x /2) m, .'p, .

Here N;(0) is the density of states at the Fermi surface for species i, and one must be careful to include a factor for pos-
sible spin or isospin degeneracy of the component. Finally, inserting the solution (38) into (41},and using Eqs. (20) and
(33), we can write the transport coefficient in the compact form

J = —T f dQ Do(p)Dg(p) g 't/N (0)7 (0)Nk(0)7 k( 0) GiSijg (Xo
~
v) 1

i,j,k V
1

where

dx Xo(x)P.(x)
Xo lv =

2 cosh(x /2)
(43)

I

In writing Eq. (42), we have assumed that the spin or iso-
spin degeneracy of all components is the same. The sum
over v in this equation is essentially the transport coeffi-
cient for a single-component system. The sum over j
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F;

Xg ——Xp

D~(p) =Dp(p)

v;/T

pn
VT

p;v;/T

1

(p.x)(p y)
BQ

By

I
n

A,p.n

TABLE I. Quantities specifying the driving terms X,(x,p)
[Eq. (15)], the deviation functions 4;(x,p) [Eq. (16)], and the
current operator O~; [Eq. (40)], for thermal conductivity a,
viscosity g, and diffusion D. v; (p;) are the Fermi velocities
(momenta), x =(e—p)/T is the energy variable, T the tempera-
ture, m =n

&

—n2 the asymmetry in the number densities with o.;
taking on the values + 1 or —1, and n is the unit vector along
the relevant gradient.

D

R (A)=3
@=2,4, 6, .

2v+ 1

v(v+ 1)[v(v+ 1)—21]
(46)

is the ratio of the relaxation time for thermal conductivity
compared with the quasiparticle lifetime at the Fermi sur-
face for a single-component system, with A, the measure of
the relative importance of the integral term in the
Boltzmann equation. The minus sign on R symbolizes
that it is for a driving term odd in x, and therefore only
terms with even v contribute. If k approaches 3, the sim-
plest variational solution' of the Boltzmann equation be-
comes exact; the sum in (46) is dominated by the first
term, —,'~ /(1 —A. /3). A plot of R (A, ) is given in Fig.
2(a). We also give, in Fig. 2(b), a plot of R (A, ) divided
by the simplest variational result. For the single-
component case Eq. (45) reduces to the familiar result

Tv; Pi Vi
m

n
2 2

VF UF

3 3 " '
3

N(0)T r„=C, (47)

picks up the eigenvalues XJ. For each i and k, the matrix

Sjk transforms from the initial basis to the eigenstates of
the collision operator, while S;j transforms back to the in-
itial one.

We now turn to specific examples. The various quanti-
ties specifying the driving terms X;(x,p), the deviation
functions @;(x,p), and the current operator O~; in the ex-
amples we consider are tabulated in Table I.

IV. EVALUATION OF TRANSPORT COEFFICIENTS

A. Thermal conductivity

As shown on Table I, for thermal conduction the driv-
ing term at low temperatures is X~(x,p) =x~u; p VT/T, or
F;=v;/T, X~(x)=x, Q =VT, and D&(p)=p n, where n
is a unit vector in the direction of V T. The current of in-
terest is the heat current, for which at low temperatures
Oz, ——(ez,. —)M;)v;p. Its only non-vanishing component is
along V T, and therefore G; = Tv;, Xo ——x, and
Do(p)=p n. The driving term is an odd function of x
and has l= 1 angular symmetry, and therefore in the ex-
pression for g,j in Eqs. (28)—(30), P is —1, and 1= l.

The integral (43) is given by

R (x)

(a)
4.5-

15-
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I

I

I

I

I

l

2

(b) R (~)/R„„(~)

where r„=R (k)r(0), vF is the Fermi velocity, and C„ is
the specific heat per unit volume.

x1t„(x)
dx

2 cosh(x /2)
imv'2v+1

v even
v v+1 (44)

Q U; Vk S,~ R ( A,J. )Sjk (45)

where

and the other one is its complex conjugate. The angular
integral gives a factor —,', and we find for the thermal con-
ductivity ~,

2

T $ gN;(0)r;(0)Nk(0)rk(0)
i,j,k

-5 -4 -3 -2 -I 0 2 3

FICx. 2. Plots showing the behavior of (a) R (A. ) [Eq. (46)] as
a function of A, ; (b) R (A, )/R„„(A, ) as a function of A, . R (A, )

enters into thermal conductivity [Eq. (45)] as the ratio r„/~(0),
while A, is the measure of the relative importance of the integral
term in the Boltzmann equation. R„„(A,) is the simplest varia-
tional result.
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B. Shear viscosity where

Since the system has rotational invariance, we may
evaluate the viscosity by considering a shear, in which the
fluid velocity u is in the x direction and varies only in the
y direction. The driving term (see Table I) is

pix viy B +x
X;(x,p) =

By

and therefore F; =p;u;/T, Xg ——1, Dg(p) =(p x)(p y),
and Q =Bu„/By. It is an even function of x and has
1=2 rotational symmetry, so in Eqs. (28)—(30), P is +1
and I is 2. To evaluate the viscosity, we calculate the
momentum current, for which O~;=p;„v;y, and therefore
G;=p;u;, Xo ——1, and Do(p)=D&(p). The integral (43)
for this case is

R+(A, )=
v(v+ 1)[v(v+ 1)—2A.]

(50)

1 2 2
r) = „N(0—)ppuFrq, (51)

is the ratio of the relaxation time for viscosity compared
with the quasiparticle lifetime at the Fermi surface for a
single-component system. When A, approaches 1, the sim-
plest variational solution of the transport equation is ex-
act, and R+(k) is dominated by the first term in (50),
—,/(1 —A. ). R+(A, ) is plotted in Fig. 3(a), and in Fig. 3(b)
we give a plot of R+(A, ) divided by the simplest variation-
al result. For a single-component system, g reduces to the
standard result

f v'2v+1
dx v odd .

2cosh(x/2) v(v+1) '

The viscosity is therefore given by

(48)

where r„=R+(A,)r(0).

C. Diffusion

(a)

30--

2.0--

I

-5
I

-4

(b)
R (X)/R„, (X)

ri =—„gQN;(0)r;(0)Nk(0)rk(0)
i,j,k

xp; u;pkukS~ R+(AJ )S~l, , (49)

For clarity we shall concern ourselves only with the
two-component case here. One example of this is the dif-
fusion of neutrons relative to protons in asymmetric nu-
clear matter, where the two components are the two types
of nucleons and the spin variable plays no role as far as
diffusion is concerned. Another is spin diffusion in polar-
ized He, where the two components are now two dif-
ferent spin populations. Yet another is spin diffusion in
liquid metallic hydrogen.

We begin by considering situations similar to the first
two. For relative diffusion of neutrons and protons, the
component labels i and j refer to neutrons and protons,
and spins need not be referred to explicitly, while for
spin-polarized He, the labels refer to up- and down-spin
quasiparticles. Spin diffusion in liquid metallic hydrogen
is somewhat different from the first two cases, and we
shall discuss it later.

The gradients of the densities of the components give
rise to chemical potential gradients which cause counter-
flow of the components. Since we are concerned with dif-
fusion at constant pressure P and temperature, the
Gibbs-Duhem relation is

VP —SVT =n
& Vp&+n2Vp2 ——0, (52)

where S is the entropy per unit volume. Therefore we
may write

Vp; =(o;—m/n)V(5p), (53)

-5 -4 -3 -2

FICx. 3. Plots showing the behavior of (a) R +(A, ) [Eq. (50)] as
a function of A, ; (b) R+(A, )/R+, (k) as a function of A, . R+(A, )

enters into viscosity and diffusion [Eqs. (49), (57), and (61)] as
~„/v.(0) and ~D/~(0), respectively. A, signifies the relative im-

portance of the integral term in the Boltzmann equation.
R„+„(A,) is the simplest variational result.

X;(x,p)=u;p Vp;/T= o;— pu. (V5)ILt/T;
n

therefore F; =(cr; —m /n)u; /T, Xg(x) = 1, Q = V(5p, ), and

where ILt; is the chemical potential of the ith component,
5p, =(5pI —5@2)/2 is half the difference in the chemical
potentials of the components, m =n& —n2 is the differ-
ence in the number densities of the components (propor-
tional to magnetization in the case of spin-polarized He),
n =n&+n2 is the total particle density, and o.; =+1 for
i= 1, and —1 for i =2. Then the driving term (see Table
I) 1s
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J' —(J' )d'ff+ Vn; (54)

where (J;)d ff is the current due to diffusion and v is some
average velocity. In general, there is more than one way
of choosing V. One is to impose the condition that the
diffusive Aux of particles, irrespective of their species,

D|2(p) =p.n where n is a unit vector along V(5p). It is
an even function of x and has 1=1 symmetry; so in Eqs.
(28)—(30), P is +1 and 1=1. The flux of interest is the
number current, J;=g v~;[n~; —n (ep, )], which corre-
sponds to Op; =v;p, therefore one can determine these by
the standard procedure.

To evaluate diffusion coefficients it is important to take
into account that the particle flux will generally have two
contributions, one due to diffusion, and the other due to
the bulk motion. Consequently to determine the current
due to diffusion one must subtract the contribution from
bulk motion. The current for each component can be
written as

vanish. This gives the equation

g (J' }d'ff—Ji +Jz —nv =0 (55)

The currents of interest, the diffusion currents (J; }d'ff are
then given by

( J' )d'ff —J; n—;v (56)

with v being determined from Eq. (55). If one is interest-
ed only in the difference (Ji)d'ff (Jq)d'ff as one is in the
case of spin diffusion, one finds

Jdiff (Jl }diff ( J2 }diff y vi oi
foal

n pin
(57)

where 5n~; =n~; n; —(e~;). In our notation for J in Eq.
(39) this amounts to having O~; =u;(o.; —m /n)p, and
hence, G; =u;(o; m ln), —Xo ——1, Do(p) =Dg(p) =p n.
The integral (43) in this case is the same as in the case of
viscosity and is given by Eq. (48). One then finds

Jdiff — 6 g QN;(0)r;(0)Nk(0)7 k(0)v;vk o.;—
i,j,k

ok — S;~R+(A.) )SjkV5p,
n

(58)

where R+(A, ) is given by Eq. (50), and the sum over i,j,k, runs over the two components.
The diffusion coefficient relates currents to gradients of concentrations, and therefore the final step is to express V5p

in terms of V(ni n2). —Under the conditions we are studying, the pressure gradient vanishes, and we may therefore
write

V(n i
—n2) =XpV5iM, (59)

where Xp ——2[8(ni nz)/—B(p —
i p2)]p is a generalized susceptibility of the two-component system at constant pressure.

An expression for Xp in terms of Landau parameters is derived in Appendix B. The diffusion current is therefore given
by

Jg;g ———DVm,

with

(60)

D = —,(Xp )
' g QN;(0)~;(0)Nk(0)rk(0}v;vq o;—

f,j,k
crk —— SqR+(A,)) SJk. (61)

In the one-component case, Eq. (61) reduces to the fami-
liar result

D = ,
' N(0)vpX—

where

iD ——R+(A, )r(0) .

(62)

The results above were derived for the case when v is
chosen such that the net flux of particles in a frame mov-
ing with velocity v vanish. Another choice, which is in
some respects a more natural one, is to take v to be the
center of mass velocity of the particles. In other words, in
a frame moving with velocity v, the total momentum den-
sity vanishes. v is thus given by

frame and p=n&m&+n2m2 is the total mass density.
Here m& and m2 are the bare masses of the particles. For
a system which is Galilean invariant, the momentum den-
sity is given by

g= g g p5np, ,
f P

where 5np, ——n~; —n; (ep;). Note that it is the energy e~;,
which contains no nonequilibrium contributions, that
occurs here. 5npi may be expressed in terms of the quan-
tity 5n~;=n~; —n; (e~;) which occurs in the collision term
[cf. Eq. (4)], since

0Bn;
5n p, 5n p,

— ——(ep,. . Ep, )—
Epi

P
(63)

where I is the total momentum density in the original

0Bn Pf
=5np, — y yf pp

5n.
BEpf j p.

(65)
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where f~j is the Landau interaction function. From
Galilean invariance it follows that"

which leads to the following result:

(73)

p; =m;v;+ X~(mjv. ),
3 J

where

(66)

g = ( rn i n i +m p n i )v = Q m; g vp, .5n p,
.

l P

(67)

3
= f PI fpp'

with p =p p ', and p and p' are taken to be on the respec-
tive Fermi surfaces. From this condition one then finds

This is the eigenvalue condition, as given by Eq. (A2) in
Appendix A, for an eigenvalue of A, =1. The other eigen-
value is A, »+A, 22 —1=X»A,22 —k&2. This condition pro-
vides a useful consistency check on numerical calculations
of A,;~. By similar argument, one can show that for more
than two components, there is likewise an eigenvalue,
X=1. There will not generally be an eigenvalue of A, =1
in the case of thermal conductivity for which the parity is
P = —1, or in the case of viscosity, which corresponds to
l =2 angular symmetry.

m;J; . (68) V. DISCUSSION

Thus the diffusive current Jd'ff in Eq. (58) is given by

Jdiff= g g vpi oi
l P

m;m
5FlPl. (69)

or, in other words, the quantity G; is v;(oi —m;m/p) for
this case, and the diffusion coefficient is given by Eq. (61),
but with (o; —m/n) replaced by (cr; m;m/—p). When the
bare mass of the two components are identical, the two
choices of v are identical, and thus the two diffusion coef-
ficients are also identical. Note that this is true even if
the effective masses for the two components are different.

In the case of liquid metallic hydrogen considered in
Ref. 6, the two components, electrons and protons, are
distinguishable. Since the exchange interaction between
the two different components does not exist (although
such interactions are present within each component sys-
tem), the diffusion of spin of this two-component system
reduces in form to that of the single-component case. The
case we have considered is more general, and hence the ex-
pression for the diffusion coefficient is more involved.

We note that in the case of diffusion in a multicom-
ponent system, there must exist an eigenvalue, A, =1. This
corresponds to the bulk motion discussed earlier. The
contribution to the diffusion coefficient from this term is
formally indeterminate, since both the numerator and one
of the denominators in the series vanish. The matrix ele-
ments in the numerator vanish, since by definition, dif-
fusion currents contain no contributions from bulk
motion, and, as a result, the corresponding contribution to
the diffusion coefficient vanishes. Accordingly, in sum-
ming over the eigenvalues, j in Eqs. (55) and (61), one
must exclude the AJ ——1 term. To demonstrate that there
is an eigenvalue, A, = 1, we note that for /=1 symmetry
and parity, P= + 1, momentum conservation and Eqs.
(28)—(30) give

(70)

We have solved the Boltzmann equation for a mul-
ticomponent Fermi liquid to obtain the transport coeffi-
cients at low temperatures, thereby generalizing a number
of earlier calculations. A particularly noteworthy feature
of our results is that they are compact, and involve the
same functions which occur in the transport coefficients
for single-component Fermi liquids, rather than some new
functions given as infinite series. This form makes it
rather convenient for obtaining transport coefficients for
any number of components. As examples, we have de-
rived explicit expressions for thermal conductivity and
shear viscosity for any number of components coupled to
one another, and for diffusion in the case of two coupled
components. The extension of the calculation for dif-
fusion to more than two components follows easily from
our results. For the two-component case, we have provid-
ed some explicit details. The eigenvalues A.; and the
orthogonal transformation matrix S are given in Appen-
dix A, while the susceptibility at constant pressure 7p
needed in the computation of diffusion is derived in Ap-
pendix B. Again, the extension to a larger number of
components follows in a straightforward manner from the
discussion in the Appendixes.

Throughout our discussion above we have confined our
attention to scattering processes which do not change the
numbers of particles of each component, but our results
may be extended straightforwardly to more general pro-
cesses, such as scattering by the dipole-dipole interaction
in liquid He and P processes in mixtures of neutrons,
protons, electrons, and electron neutrinos.

In our derivation of the transport properties, we have
kept the scattering probabilities W~(9, $) completely gen-
eral. So, our calculation can have two sorts of use. One
use is, given the expressions for 8';J(0,$) for the physical
system under consideration, to predict the transport coef-
ficients. Another use, which has been pioneered in the
case of liquid He and in dilute solutions of He in He, is
to deduce from experiments the properties of WJ (0,$).

Prkrj'+PJCij Pt ('WJ) . —
Using these conditions in Eqs. (24) and (26), we obtain

2 3/2 — 1/2
mJ PJ J

1 —A,;;= XIJ 7

m p'I 8'.

(71)

(72)
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APPENDIX A: ORTHOGONAL TRANSFORMATION

We wish to find the orthogonal matrix S which diago-
nalizes the symmetric matrix k,J-, thereby giving the eigen-
values A,; [Eq. (31)]. For this we simply have to solve an
eigenvalue problem, namely

Consider a two-component Fermi system, with com-
ponents having densities n] and n2. We wish to deter-
mine 2[8(ni n—2)/B(p i

—pq)]p. To do this we evaluate
the change in the energy density, which is given quite gen-
erally by

kIJCXJ =A,CXJ. (Al) P, l P' PJ
5E:g Ep&5 lp/+ z g fpp'5np5np J (81)

det
~

A,;j —A,5,j ~

=0, (A2)

and the eigenvector corresponding to the tth eigenvalue A, ,
is obtained from

g (A,,j —A, ,5j)aj'=0 .
J

(A3)

The eigenvectors determine the matrix S.
For the two-component case, k;J is a 2 &(2 matrix and a

a two-component vector. Then the eigenvalues A, , are

where aJ is a vector, and the A, 's are the eigenvalues, both
to be determined. The eigenvalue condition is

Here we are interested only in changes of the size of the
Fermi surface, and not of its shape, so we may express the
energy in terms of changes in the total density. Only the
angular averages of fpjp appear, and we denote these by
fg. One finds

2

5E =p;5n,;+g + —, g f85n;5nj, (82)
2N(0) ', j

where p; is the chemical potential of species i in the ab-
sence of the density changes. The chemical potentials are
given by p; =8 E/8 n;, and therefore

A, + ——A,, +(A,, +ki2)

where

(A4)
5n;

5p; = + g fj5nj .
N;(0)

(83)

A, ) )+A,22
~s (a) 2

(A5)

We wish to evaluate the susceptibility keeping the pres-
sure fixed. The condition for this is

The quantities A, ii, A22, and A, iq are given [Eqs. (23)—(30)];
they are related to scattering amplitudes and to the Fermi
momenta and the effective masses of the two components.
The eigenvectors a+, cx corresponding to the eigenvalues
A. + and k, respectively, give the transformation matrix S

or

5P = g n;5n; =0,

5n;
gn; ' + g f;,n;5n, =0.' N;(0)

(84)

(85)

cosg/2 —sing/2S=
sing/2 cosg/2

where

(A6) Thus one finds

A2
5n i —— 5(n i n2)—

A cosg=X, ,

A sing=A, &2,
(A7)

and

5n2 ——— 5(ni n2), —

(86)

with A being a normalization constant. a+ and a are
the first and second columns of S, respectively. S is the
transpose of S.

In Eq. (A6), /=0 for ki2 ——A2& ——0; S is then a unit ma-
trix. In other words, in the absence of any coupling be-
tween the components, the bases are left unrotated in Eq.
(42), and the transport coefficients of the multicomponent
system are those of a set of uncoupled Fermi liquids.

where

n;

N, (0)
(87)

and A =A, +A&. From Eqs. (83), (85), and (86) we find

APPENDIX B: SUSCEPTIBILITY
FOR A TWO-COMPONENT SYSTEM

We use thermodynamic arguments and Fermi liquid
theory to derive the susceptibility at constant pressure Xz
for a two-component Fermi liquid, which enters into the
expression for the diffusion coefficient, Eq. (61), in the
text. Our calculation follows the work of Bedell' who
also obtained other responses in spin-polarized He.

1
5(l i

—j z) = ~2 +fii —fir
NI (0)

1+ i N (0) +f22 f12
2

This then gives for the susceptibility,

5(ni —n2)

(BS)
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n [I+N)(0)f0 ][1+N2(0)fo ]—Nt(0)N2(0)f tI

2 n~N2(0)[1+Nt(0)fo ]+n2N~(0)[1+N2(0)fo ]+nN~(0)N2(0)fo

For the case of spin diffusion in an unpolarized Fermi liquid, nt ——n2 ——n/2, N~(0) =N2(0) = —,'N(0), fo' fo—,—and

Eq. (B9) reduces to the familiar result

where

]+F0
N(0)

(B10)

11 12

F' =N (0)
2

(B1 1)
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