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The vertex equation for Cooper pairs of even or odd parity is developed in the Wannier represen-
tation taking into account the spin-orbit interaction of the periodic potential. We assume tightly
bound d and f electrons and a short-range electron-electron interaction. The eigenvalue equation
for the transition temperature T, is reduced to a small set of coupled integral equations for the ver-

tex eigenfunctions. These functions transform according to one and the same irreducible representa-
tion iG of the crystal point group 6, isomorphic to the factor group 8/T„(S =space group,
T„=group of primitive translations). The vertex functions depend on iG and on the distance d be-

tween the two mates. The general symmetrization procedure is developed for the vertex function in

the atomic representation or, equivalently, for the Cooper-pair orbitals. The application to the 5f
orbitals of UPt3 is presented for the contact pairs, the nearest-neighbor and the next-nearest-
neighbor pairs. For all configurations, there are even- and odd-parity states by virtue of the inver-
sion center between two U atoms in the nonsymmo~phic lattice. The connection is established be-
tween the pair functions in the atomic representation and the Bloch representation used by other au-
thors to study the k-space symmetry of superconductivity in heavy-fermion metals. Thereby it is
found that —in contrast to 'He—the k dependence of the vertex functions is governed by the band
structure and the periodic spin-orbit coupling.

I. INTRODUCTION

The theory of heavy-fermion superconductivity in-
volves two basic problems. The first concerns the many-
body effect governing the quasiparticle behavior and the
pairing interaction, and the second involves the band-
structure and spin-orbit-coupling effects determining the
symmetry properties of the Cooper pairs. An answer to
these questions may allow for a discussion of triplet (odd
parity) versus singlet (even parity) superconductivity, a
problem on which much of the recent work has centered.
Because of the strong periodic spin-orbit (s.o.) coupling,
the analogy between the superfluid properties of He and
heavy fermions, assumed in some theoretical papers, has
no real justification. In particular, in He the s.o. cou-
pling occurs between the spin S and the angular momen-
tum L of a pair of atoms, by virtue of a dipole-dipole in-
teraction between two He atoms. On the other hand, the
ordinary one-electron s.o. potential affects the itinerant
motion of a heavy fermion. The s.o. interaction between a
pair of electrons caused by the e eCoulomb int-eraction,
the *'spin-other orbit" interaction, is negligible in metals,
as is well known from the paramagnetic relaxation in met-
als. The same is true for the effect of the phonon-
modulated s.o. coupling on the pairing interaction, as
compared with the ordinary Bardeen-Cooper-Schrieffer
(BCS) interaction.

The heavy electrons occupy partly filled narrow bands
spanned by the tightly bound f and d orbitals of the ac-
tinide (rare-earth) and transition-metal ions. The f and d
electrons revolve several times around their atoms before
the itinerant motion —in the case of f electrons by virtue
of hybridization "arries them to a neighbor site. Hence,
we assume for our discussion of the superconducting pair

states that we can write "realistic" Bloch wave functions
in terms of Wannier orbitals that have the proper site and
spin-orbit symmetries.

Our first goal is to set up the transition-temperature
equations that determine the possible instabilities of the
normal phase against the Cooper-pair formation in nar-
row s.o. energy bands, assuming that the crystal has a
center of inversion. Ignoring the s.o. interaction and as-
suming singlet pairing Appel and Kohn' have developed
the theory of superconductivity in the site representation
in order to discuss the atomic aspects of BCS supercon-
ductivity. Here, for the s.o. Cooper pairs, we set up the
T, eigenvalue equations for even- and odd-parity super-
conductivity. The symmetry of the kernel M is deter-
mined by the symmetry properties of the Cooper pairs
formed from Wannier electrons which occupy either the
same or the near-neighbor sites. The pair formation
occurs as the temperature T approaches T, from above.
At T, the vertex eigenfunction I satisfies the linear and
homogeneous eigenvalue equation,

I = ——,I GGI, (1.1)

where G denotes the quasiparticle Green's function and I
is the irreducible interaction between two electrons. In the
Bloch (k) representation, the symmetry properties of the
eigenfunctions, solving for the homogeneous integral
equation (1.1), are obtained and discussed by different au-
thors, applying in a rigorous manner the double-group
theory to singlet and triplet superconductors. The ac-
tual evaluation of the pairing kernel, A =GGI, is difficult
in the Bloch representation due to the local character of d
and f electrons and their short-range interaction with
phonons and with magnetic excitations. Hence, a suit-
able formulation of Eq. (1.1) for tightly bound s.o. elec-
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trons is developed here in the Wannier representation.
This representation has been used with some success in
previous papers to discuss BCS superconductivity in nar-
row d bands. In Sec. II we proceed from Eq. (1.1) to dis-
cuss the general symmetry properties of the eigenfunc-
tions I and the kernel ~. The genera1 procedure for con-
structing the Cooper-pair orbitals in the atomic s.o. repre-
sentation is developed in Sec. III, for the crystal symmetry
of a nonsymmorphic lattice. The resulting pair orbitals
are characterized by the distance d between the two mates
and the irreducible representation iG of the point group 6
that governs the symmetry behavior of the pair. In Sec.
IV the theory is applied to UPt3 to obtain the pair states
for the 5f orbitals at the U atoms. We assume that the
two 5f mates reside at the same atom, at nearest- and at
next-nearest-neighbor atoms. The vertex equation is dis-
cussed in Sec. V and it is shown that for each symmetry
of a Cooper pair, characterized by iG, we obtain a small
set of coupled equations that determine the transition
temperature T, . Which vertex symmetry yields the
highest value of T, depends on the pairing kernel A . Fi-
nally, in Sec. VI we establish the connection between the
Cooper pairs in the atomic and in the Bloch representa-
tions, the latter being used by other authors to discuss
the k-space symmetry of Cooper pairs near the Fermi en-

ergy. Because of the underlying band structure—
including periodic spin-orbit coupling —it appears that the
k dependence of the vertex eigenfunctions (or of the order
parameter), in general, cannot be described in terms of
simple k polynomials. In particular, the occurrence of
certain irreducible representations depends on the details
of the band structure at eF. A summary and an outlook
conclude the paper.

II. VERTEX EQUATION AND THE SYMMETRY
OF ITS EIGENFUNCTIONS

T„l = I (r+ns, r'+ns') =I (rs, r's'), (2.1)

where T„ is an element of the group of primitive transla-
tions, T„.

Antisymmetry,

Al = —I (r's', rs) =I (rs, r's') . (2.2)

The vertex eigenfunction of Eq. (1.1) depends on the
coordinates, spins, and frequencies of the two electrons
that become a Cooper pair as T~T, from above:
1 = I (rs, r's';co). ' The Cooper-pair instability occurs
for pairs of zero imaginary frequency, ~& ———cu2 ——co. We
note that I has the same symmetry properties as the order
parameter 6 with T~T, from below.

The symmetry properties of I" depend on the symmetry
of the single-particle states. Because of the large s.o. in-
teraction in the U atoms, the usual decomposition of Eq.
(1.1) into two equations for spin-singlet and spin-triplet
pairs is not possible. The eigenfunctions 1 can be classi-
fied according to the symmetry group of ~ of Eq (1.1). .
Thus, the eigenfunctions transform according to an ir-
reducible representation of the double group G.

The function I has the following symmetry properties.
Translational symmetry,

Parity,

Pl =1 ( —rs, —r's')=+I (rs, r's') .

Time reversal,

Kl =ss'I '(r s—, r' —s'),
as follows from Nozieres.

Crystal-symmetry operations,

(2.3)

(2.4)

RI (rs, r's')= g I (R 'r, s„.R 'r', s2)
$& *'2

xD' '(R)D" '(R)$$ i $$p (2.&)

where R is an element of the group G. We note that—
ignoring primitive translations —the remaining elements
of G do not form a group since the products of two such
elements may be an element of T„. As suggested by Her-
ring" we consider 6 to be a group, associating the opera-
tions of T„with the identity. In the following we use this
extended definition of the identity, and take 6 to be a
group, isomorphic to S /T„and to the point group of the
crystal. The matrix D"~ '(R) is the rotational matrix for
the two spin eigenfunctions 6+(s) and 5 (s), using the z
direction as the axis of the spin quantization. The parity
of I is conserved by virtue of the inversion symmetry.
Therefore, it is convenient to fix the parity and to treat
the two cases of even and odd parities separately.

The two-particle function I (rs, r's') can be written in
terms of the products of single-particle functions, the
symmetry of which is given by the periodic lattice Hamil-
tonian. We choose Wannier orbitals as the suitable
single-particle wave functions. These functions are relat-
ed to Bloeh waves,

where the wave vector k incorporates the band index and
jo is the two-va1ued pseudospin of the BIoch state % is
the total number of atoms in the crystal. The Wannier or-
bital w;&, centered at the site a+~, transforms according
to the spin representation I;—:i of the double point group
at the site ~. The index p labels a basis function. The
symmetry properties of the P~ under the inversion J, K,
and Blount's conjugation JEC are discussed in Ref. 12.
The Wannier orbitals are related to the Bloch waves,

1
w;„(r—n —r,s)= pe ' '"+ 'a;& (kp)g~(rs) .IP & ~ IP T

(2.7)

We assume canonical bands, that is, the symmetry of the
Bloch waves associated with a band complex is deter-
mined by a particular orbital symmetry, e.g., d or f. The
same holds for the Wannier orbitals. We assume "realis-
tic" Bloch bands' in that the quasiparticle effects are
contained in the expansion coefficients a;@ . These coef-
ficients measure the weight of w;& in the Bloch state Pk .

1tt (rs)= ~ g pe'"'"+'a;„(kp)w;„(r n v,—)s,—.
n, r i,p

(2.6)
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The symmetry properties of g~ remain unchanged by the
quasiparticle effects. We emphasize this point because the
single-electron band model may not be appropriate for
describing the electronic states of solids with more than
one f electron per atom and for intra-atomic Coulomb en-
ergies larger than or comparable with the band width. '

The discussion of Herbst' of electron excitation energies
in actinide metals supports the contention that the 5f
electrons of the light actinides such as U are similar to the
itinerant 3d electrons of the transition metals. Hence, the
recent band-structure calculations for UPt3, based on the
local density approximation, yield pertinent insight into
the d fhyb-ridization and the spin-orbit coupling ef-
fects ~

The vertex eigenfunction I is now expressed in terms of
the Wannier orbitals w;„,

I (rs, r's';co)= g g w;„(r—n, —r„s)
0 ) 'r), n2'T2 lp,JV

X wj.„(r'—n1 —~1,s')g (1,2;~) .

(2.&)

Here g denotes the vertex function in the Wannier repre-
sentation where the two electrons occupy the orbitals ip
and jv at the sites n ~+ ~& and n2+ v2, respectively, e.g. ,
1=(n&, r&, ip). For a Wannier pair, the eigenfunction g
fulfills the equation,

g(1,2;co)= — g g g(l', 2', co')( l, 2';co'
~

A
t

1,2;co),

(2.9)

where the antisymmetrized kernel is given by

( I', 2', co'
~

~
~

1,2;cu) = —, g [G(1', I";co')G(2', 2";—co')( I",2",co'
~

I
~

1,2;co)
/I 2tt

—6 (1',2",co')G(2', 1";—co') (2",1";co'
i
I

~
1,2;co) ] . (2.10)

Here 6 is the one-particle Green's function in the Wan-
nier representation and I is the irreducible interaction.
The kernel A is invariant under the symmetry operations
of G. Equation (2.9) has the general form of the vertex
equation of the previous work on BCS superconductivi-

1,2

In Sec. III we determine the linear combinations of the
basic pairs, w;z(r, s)w~ (r', s'), which transform according
to an irreducible representation of G. Thereby, the vertex
equation (2.9) is decomposed into a system of small sets of
homogeneous equations. The symmetry properties of
each set are characterized by an irreducible representation
of G. In general, different representations will lead to dif-
ferent T, s. It is the pairing interaction I contained in A
that selects the symmetry of the pair orbital with the
highest T, .

III. SYMMETRIZED COOPER-PAIR ORBITALS

Starting from the basic pair orbitals, w;&wJ, we now
construct the symmetrized orbitals which are invariant
under G. Alternatively, starting from the basic vertex
functions in the site representation, g(1,2), we construct
the symmetrized functions which transform according to
an irreducible representation of G.

The symmetrized pair orbitals have the following prop-
erties: translational invariance, antisymmetry, parity, and
crystal symmetry. The time-reversal invariance may or
may not be broken. The main problem in constructing
the symmetrized orbitals is to account for the crystal sym-
metry, that is, the proper and in proper rotations, some of
which are accompanied by nonprimitive translations.

Taking into account the translational invariance, the
vertex function is written as

where the basic pair orbital is given by

/=—w;„(r—n —m —r~, s)WJ. (r' —m —rz, s') . (3 2)

The two mates are at the sites m+n+v.
&

and m+v2 in
the orbitals ip and jv, respectively. In Eq. (3.1) g is the
vertex function in the site representation; n = n& —n2,
m =n2. The antisymmetry of I translates into

g(n+T„ip;rp, j v) = —g( —Il 72j v;T),i@—) .

If the vertex function is time-reversal symmetric, then

g('i i v)=i vg

(3.3)

(3.4)

0c, wj.~(r —m —1 2, s )]g (3.5)

with the sites m, n, ~&, and v2 and the orbitals ip and jv,
furthermore

Rw w= Q w;„[r .R(n+m+~, ),s]—
IP, V

X wj~ [I —R (111+ re ),s ]

XD„"'„(R)D'~ (R) . (3.6)

By considering the equivalent point of view, 8 transform-
ing g, and not w;&wJ we get

On the right-hand side occurs Kramer's conjugate func-
tion, g ( —p, —v). Finally, when the symmetry element
A of 6 operates on I, we have

RI = g g R [w;„(r—n —m —~&,s)
sites orbitals

I (rs, rs )= g g g gg(n+v~, ip, rzj v),
m, n w&, w& iP, JV

(3.1) Rl = g g w;„wj.+g,
sites orbi tais

(3.7)
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where

Rg = g g[R '(n+r, ),i'', R '~zj v']

XD(')'(R i)D( )*(R i) (3.8)

From the two alternatives, namely symmetrizing the
pair orbitals /or the vertex eigenfunctions g, we choose
the first one and proceed to find the linear combination of
the j's which transform according to the irreducible rep-
resentations of the group G.

X wj (r rz s')] (3.9)

where Ps denotes a basis function of is is (i——j ) and
where 3 is the antisymmetrization operator,

[2(1+5,J )]'
(3.10)

H is an operator that interchanges rs with r's'. The cou-
pling coefficients C are obtained by the projection opera-
tor method. The inversion of Eq. (3.9) is straightforward
and contains C'.

In the special case where the two electrons occupy the
Wannier orbitals m;z and m~ at one and the same site,
n=0 and v&

——~2, the representations iz are readily found
from the Kronecker product tables.

In general, for two fixed atomic sites, n+~i&rz, the
pair states invariant under S are given by Eq. (3.9). In ad-
dition to the elements of S, there may exist symmetry
operations that leave the pair of sites n+r, and ~z invari-
ant, but which interchange the two sites. This group is
called S. The set product

(3.1 1)

is isomorphic to a point group.
To construct the basis functions which transform ac-

cording to the irreducible representations of W, let us as-
sume that S has two elements, namely the identity S~ and
the operation Sz that interchanges the two sites n+~& and

A. Orbitals for a fixed pair of atomic sites

P is the point group of an atomic site. For a fixed pair
of atomic sites, S is the group of symmetry operations
which leave both of the two sites invariant. S is a sub-
group of G. The representations iz are determined by the
compatibility relations with the representations i of the
group P. We assume that both sites, n+~& and ~2, have
the same point symmetry. Then, S is a subgroup of P. If
the two sites are identical, we have S =P. The one-
e1ectron orbita1s which are the basic functions of is are
obtained from the compatibility relations between the rep-
resentations i and i&. The pair orbitals, invariant under S,
transform according to the Kronecker products of the
representations of S; they are given by

J's/(r sr' s';i sp s) = g C„„A[w;„(r—n —r„s)

The term (n+~„~z) implies that we are dealing with the
basis orbitals at a given pair of atomic sites In. terms of
these +s, the orbitals transforming according to W are
given by

/'(
I
n+ri ~z

I

&'~—1 )

C (is, i ~,p; K)+( n +T i, Tz ),K; Isp],
]c= 1,2

(3.13)

For the even-parity states, i~ ——i++, the coupling coeffi-
cients C(a) = I/U 2 for a = 1,2. For the odd-parity states,
i~ =is, the coupling coefficients are + 1/~2 and
—I /~2, respectively.

B. Construction of the cell orbitals

The symmetry operations which transform a given pair
1 into equivalent pairs, with their center of mass I in the
same unit cell, form a group that we denote by T. This
group is a subgroup of 6,

G=W T. (3.14)

The cell orbitals transform according to the irreducible
representations iG of G.

First, let us consider the case where T is a point sym-

Center of Inv e

I

rt

/
/'T

/

c

FIG. 1. The symmetry operation I J,~j. It consists of the in-
version J followed by the nonprimitive translation v.. When
t J,xj is applied to site 1, 1~2, and 2~1.

A case in point for the occurrence of S are the crystal
structures of UPt3 and UBei3, where a center of inversion
exists between two Uranium atoms: S, = IE,OI,
Sz ——I J,~], where the latter element produces an inversion
J at the first site v

&
followed by a nonprimitive translation

w which sends v& into ~2, cf. Fig. 1. The two symmetry
operations S& and Sz allow for the definition of the two
pair orbitals

Q(n+Ti, 7z),K;lsizs] =S~j (n+'ri, rz,'isizs), K= 1,2

(3.12)
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metry group with the elements T~ (A. =1,2, . . . , A,o). Ap-
plying the operations T~ to pair 1, we produce new orbi-
tals of the same intersite distance,

where the rotation through an angle ~ about the y axis is
a symmetry element of G: C2& —— i—rr~ T. he transforma-
tion of the cell-vertex function g is given by

/( d, I;i ~, p~) = Tg/(d, 1;i,~@~), (3.15)

where d =
~

n+r& —v2
~

and A, labels the angular direc-
tions with respect to the pair 1 at n+w& and 72.

The cell orbitals are the linear combinations of the +s,
Eq. (3.15), which transform according to the representa-
tions ig of G,

/(d, tgpg)= g C(t~p~, igpg, A)/(d, I;t~p, ~), (3.16)

and

(i& )*
Rg(l gp'g ) = g g (igpg )D, (R ')

PG

(i~ )

Kg (l gag ) —g D, ( ter~—)g*(igpg )

PG

where p~ denotes a basic function of i6. The coupling
coefficients C are found by projecting the basis set, /(k),
into a representation of iG. To determine the projections
we use the group properties of W T, which can be a set
product as shown in Appendix B.

The cell orbitals, Eq. (3.16), present the final form of
the symmetrization procedure, provided G =W T. Then,
this product exhausts the symmetry elements of G. The
cell orbitals can be written as

/(d, igpg)= g g. C&„& /(d, k, tc;ip, jv) . (3.17)

The coupling coefficients C—=C(A, ,~) are obtained from
Eqs. (3.9), (3.13), and (3.16) as

C»& ——g g C(t~p~, lgpg ,k)'
's»s 'w I"w

IJ'S
XC('sPsi&uP~i+)Cpvps & (3.18)

where the product of the three C's on the right-hand side
reflects the three symmetrization steps (from left to right):
symmetrization of the basic pair orbital for fixed atomic
sites, parity symmetrization, and cell-pair construction.

In the second case, the set of equivalent pairs is ob-
tained from the given pair 1 by the symmetry elements of
the point group T and by the elements of a group T
which contains nonprimitive translations. Hence, the ele-
ments of the group,

IV. Sf PAIR ORBITALS IN UPT3

We now proceed to determine the cell orbitals for the
5f electrons in UPt3. This compound has the nonsym-
morphic space group, S=D6&. The primitive transla-
tions span the hexagonal structure, shown in Fig. 2. The
crystal has two formula units per unit cell, Fig. 3. There
is a center of inversion at the midpoint between the two U
atoms which are connected by a nonprimitive translation
r. The point symmetry of each of the U atoms is given by
the group D3~, the twelve elements of which are: E the
identity; C3—the rotation through +2~/3 about the z axis;
C2~ the rotation through m about 3 axes within the x-y
plane; S3 the rotation through +2m/3 followed by a re-
flection in the x-y plane; crq the reflection in the x-y
plane; o.„ the reflection in the three symmetry planesvl 2 3

containing the z axis.
These elements can be visualized from Fig. 4.

For the U sublattice of the hexagonal D6~ structure we
first determine the 5f orbitals, w;„, and then find the cell
orbitals for contact, nearest-neighbor, and the next-
nearest-neighbor pairs.

M=T T, (3.19)

when applied to the given pair 1 lead to the equivalent
pair orbitals. Now, we have

(3.20)

and proceed as in the first case to obtain the cell orbitals
that transform according to the ig's.

We conclude this section with the equations that give
the transformations of the cell orbitals under a symmetry
operation R and under the time-reversal operation K,

R/(rs, r's', d, igpg ) = Q/(igp'g )D, (R) (3.21)
~G~G

PG

and

Q - ~
Qm

(iG )

K/(igpg) = g/(igp'g)D, ( iver ), —
PG

(3.22) FKs. 2. The hexagonal crystal lattice UPt3, , U atoms; 0, Pt
atoms.
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0
I

X

Q 0

w7+ —lj(5/2 5/2 — v 6/7/3 3a+ V 1 /7/3 2p

w7 Q5/2 5/2 —+ 1 /7/3 2a &—6/7/3 3p

w8+ 1t/5/2, 1/2 +3/743, 0a+ +4/7 t13,1p

w8 — 6/2, —1/2 +4/7(t'3, —la+ +3/703, 0p

w9+ 1t 5/2, —3/2 +5/71))3, 2a+ +2/71I)3, 1p

9 —Q5/2 3/2 — 2/7/3 '1a + V 5/7/3 2p

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

where

(r)=f,(r)i Y, (Q, g) (4.7)

FIG. 3. The unit cell of UPt3.

A. 5f orbitals

The one-electron orbitals, w;&(r, s), originate from the
rotationally invariant free-atom states with total angular
momentum j = —,', —,'. Of these fourteen states we ignore
the eight j = —, states which are split from the six j = —',
states by virtue of spin-orbit coupling. The splitting is
clearly seen in the recent band-structure calculations of
UPt3. The j= —, states make the dominant Sf contribu-
tion to the Bloch states at the Fermi energy. ' ' We
look at these states as quasiparticle states. The quasiparti-
cles are the f electrons. The f bands are moved to the vi-
cinity of the Fermi energy and are narrowed by correla-
tion effects.

By using the D3~ point symmetry of a U site, we pro-
ject out of the j= —, states, g5/z, the new basis states

1
which transform according to the matrix representations
of D3h Table I. By applying the projection operator
method we get

and a=5+(s), p=5 (s). The functions f1(r) have the
full point symtnetry. The orbitals w;„(p = +, —)

transform under the symmetry operations of the group
D3g as

Rw;„(r—n —r1,s) = g w;„[r—R (n+r1),s]D„"„(R),
P

(4.8)

where the matrices D&& are given in Table I.
We use the Condon-Shortley choice of the phases of the

spherical harmonics Y~ . The application of K gives

KY1 ~ = Y1*~=( —1) Y1

The phases of a and /3 are fixed by

Ka=P, KP= —a .

For the Kramers doublet we have

(4.9)

(4.10)

Kw;„=p, w; „(p=+,—); I;=1,1,, 1 (4.11)

B. Cell contact pairs

The pair orbitals are composed of contact pairs at the
two U sites of the unit cell. The contact-pair orbitals at
each of the two sites are invariant under D3~. The orbi-
tals transform according to the irreducible representations
1; of S given by the decomposition of the direct product,
(1 +I +I )X(1 +1 +I ) (cf. Table II),

I lS
g(rs, r's';i&ps) = g C„„Aj'(rs, r's';i@,jv), (4.12)

I

22, V2

where //'(rs, r's';ipj v) is the basic pair orbital at a U
atom, w;„wz . The coupling coefficients C are obtained
by applying the projection operator,

(4.13)

to the product states,

23,

FICs. 4. Hexagonal plane; symmetry operations of the group
D», Eq. (4. l).

R

=—g g D„p~ (R )*D~p (R )D J' (R )w;„wp
R p', v'

igsS
Cp'yp wgp LU~p (4.14)
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TABLE I. The matrix representations of the point group D3&, D6q ——D3h && C;.

C3 C3 C3+

1

1 0
0 1

1 0
0 1

0
0 e

0 0
0

Q

0 e

1 0
0 1

1 0
0

e* 0
0

e 0
0 e*

0
0 e*

0
0 e

1 0
0 1

1 0
0 1

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

e 0
0

e 0
0

1 0
0 1 0

0
0

0
0

0 1 0
0 1

1 0
0 1

v
1

0 1

1 0
0

0
0
e 0

0 1

1 0
0

0
0
e 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0
0

0 i

i 0
0 ie

0
0

0

0
i 0

0
ie 0

0
0

0
0

0
0

0
0

0 i

i 0
0 i

i 0
0

Q

0
0

0
0

0 i
i 0

Here n is the number of group elements and d the dimen-
sion of I; . The coefficients C, defined by comparing Eq.
(4.12) with Eq. (4.14), are given in Table III. We note that
in the case of contact pairs, where the two mates are at
one and the same site, W =S, Eq. (3.11).

To get the cell pairs which exhibit the complete symme-
try of 6 =D6h, we take into account the group T. The
elements of T send the contact pair at one site either into
itself or into the pair at the other site,
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TABLE I. (,Conti nued).

S3+ S3 s3+

r2

1 0
0 1

1 0
0 1

e* 0
0

e 0
p

e 0
0 e 0

0
0

0
0

0
0 0

0
0

0
0

—i 0
0 i 0

0
0

0
0

0
0

0
0

0

0
0 —i

—i 0
0 i 0

0
0

0 0
0

0

0
0 —i 0 i i

—i 0
0 i

0
0 —i

—i 0
0 i

i 0
0

C2 C22 C2l Cp3

0 1

1 0
0

Oi

0
0

0 1

1 0
0

e 0
0 e

e 0

0 1

1 0
0 e

p

0 e*

0
0 1

1 0
0 e

0
0 e*

0

0 —1

1 0
0

0
0

—e 0
0 1

—1 0
0

0
0

0 —1

1 0
0

0
0

0
0

—1 0
0

0
0

0

0 —1

1 0
0 1

—1 0
0 1

—1 0
0 1

—1 0
0
1 0

0 —1

0

Ti ——IE,OI, T2=I J,rI . (4.15)

Here, I J,r} is the inversion at r~ —— r/2 followed by r,—
Fig. 1. The group T is ismorphic to the point group C;

(elements E and J). The irreducible representations of C;
are I

&
and I

&
. For the group G, the representations are

then given by direct products: I; =I; „&(
The contact orbitals at the two atomic sites are
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7 I 7 ) ~

/(K, l3hp3h ) —/ r+,s;1 +,5;13hp3h, K= 1

TABLE II. Multiplication table for the representations I 7,

r8, r9 «D3h.

2
' '

2
' ' '" '" '

(4.16)

I7
I g

I9

r, +r, +r, r, +r,+r,
r, +r,+r,

I 5+I
Is

r, +r,+r, +r,

The cell pair orbitals are

/( 16hP6h ) —g C (1 3h, l6h', K)j (K)
]c= 1,2

(4.17)

where the coefficients C(i3h, l6h, K) are given in Table IV.
By using Eqs. (4.12)—(4.17) and Tables III and IV we
write the cell orbitals as

ei5
/( l 6hP6h ) =

2
7 I 7 J

w;& r+ —,s wz r'+ —,s' —wz r+ —,s w;& r'+ —,s'2' ~ 2' ~ 2' '" 2'

I 7 l 7 t+ w r ——,s w. r' ——s' —w r ——s w r' ——s'
2

L

(4.18)

Here, i6h ——i3h(i,j), and i3h ——I &, I q, I q, and I 6. The
phase factors e' are given in Table V together with the
relations between the representations of the pair orbitals
i3h and the representations of the single-electron orbitals i
and j.

Because of the antisymmetry which is evident from Eq.
(4.18), the pair orbitals which are transforming according
to the i3$ representations I 2 I 6(7 7) I 6(8 8) I 3(9 9) and
I 4(9 9) vanish. The pair orbitals which transform accord-
ing to the one-dimensional representations I 3 and I 4 of
D6~ are given by

~( + 1+ I J~I
3,4

7
w7+ r+, s w8 r +,$~2 2' 2'

7 7+w7 r+ —,s ws+ r +—,s'2' '+ 2'

(4.19)

l lsTABLE III. The coupling coefficients C„„ofEq. (4.11). The basis index ps is omitted for the one-dimensional representations)" ~s
of S.

&s~Ps

7+ 7+
7+7—
7 —7+
7 —7—

0
1/W2

—1/V 2
0

0
1/~2
1/~2
0

1

0
0
0

0
0
0
1

is~Ps

8+ 8+
8+8—
8 —8+
8 —8—

0

—1/~2
0

0

1/V 2
0

1

0
0
0

0
0
0
1

is~Ps

9+ 9+
9+9—
9—9+
9—9—

0
1/W2

—1/~2
0

0
1/U 2
1/~2
0

I3
1/V 2
0
0

—1/v 2

r,
1/~2
0
0
1/2

&s~Ps

7+ 8+
7+ 8—
7 —8+
7 —8—

0
1/W2
1/v 2
0

0
1/v 2

—1/v 2
0

is~Ps

7+ 9+
7+9—
7—9+
7 —9—

0
0
0
1

1

0
0
0

0
1

0

0
—1

0
0

&s~Ps

8+ 9+
8+9—
8 —9+
8 —9—

0
0
1

0

0
—1

0
0

0
0
0
1

1

0
0
0
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TABLE IV. The coefficients C(i3h, 16h,'K) of Eq. (4.17) for the
contact cell orbitals; i 6h

——i 3h.

TABLE V. The connection between the pair of one-electron
orbitals, ip and jv, and the pair orbital i3hp3h. The phase factor
of Eq. (4.18).

+
13h 13h jv 13h P3h

I/V 2
1/v 2

1/V 2
—1/+2

Kj. (16hi ) = gg(l6gp )D& & ( —I && ) (4.20)

where

+Here, + in the bracket refers to I 3
—whereas —refers to

+r;.
The time-reversal symmetric orbitals are given by

7+
8+
9+
7+
7—
7—
7+
7—
7+
8—
8+
8—
8+

7—
8—
9—
8+
8—
9—
9+
9+
9—
9+
9—
9—
9+

1

1

1

1

1

1

1

I
—1

1

—1

1

1

(4.21)

0 1

1 0 r5 r6 .

C. Nearest-neighbor cell pairs

A given U atom has six nearest-neighbor atoms. Three
atoms lie in the plane above and three lie in the plane
below that containing the U atom. The six equivalent
atom pairs, 0-1, . . . , 0—6, are shown in Fig. 5. The syrn-
metry operations which send a given pair, 0-1, into itself
and the other pairs are given by the group
T =C3h ——IE,C3+, C3,ol„S3+,S3 }. We proceed to con-
struct the cell orbitals arising from two electrons at the
nearest-neighbor U sites.

First, we find the pair orbitals at a given atom pair, 0-1.
The two atoms are separated by the nonprimitive transla-
tion, ! r! =4.15 A. The symmetry operations which leave
both of the two atoms invariant form the group

S =C,'= IE,o„}which is isomorphic to C„Table VI.
The one-electron orbitals compatible with the symmetry
of C,

' transform according to the one-dimensional repre-
sentations I 3 and I 4 of C,'. The compatibility relations
between the representations of D3~ and C,

' are evident
from the Tables I and VI. Furthermore, the pair orbitals
transform according to the one-dimensional representa-
tions I

&
and I z of C,', as is seen from Table VI.

The basic product set, w;„wj, forms a four-dimensional
vector space (p, v = + ). Hence, the two one-dimensional
representations I

&
and I"z each occur twice. We introduce

the degeneracy indices a and b; i& ——I &, I &, I 2, and I 2.
('s)

Applying the projection operator P to the product set,
we get the pair orbitals in the form

gjl~
/(rs, r's';is)= g C„„A w;„r+ —,.s w, , r' ——,s'2' " 2'

(4.22)

The coupling coefficients C are evaluated in Appendix A;
the result is given in Table VII.

In addition to the symmetry elements C,
' there exists

the inversion center between the two U atoms. Hence, the

!
!
!
!

C!
!

!

FICx. 5. The six nearest-neighbor U atoms.

r,
I2
I 3

I4

1

1

—1

—1

I3
r,

I3

TABLE VI. The double group C, : Character table and mul-
tiplication table.

C,
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TABLE VII. The coefficients C„ofEq. (4.22); a and b label the degeneracy of the representations
of S. The common factor 1/V 2 is omitted.

I a
Z

b I-a pb pb

7+ 7+
7+7—
7 —7+
7 —7—

0
1

1

0

0
1

1

0

8+ 8+
8+8—
8 —8+
8 —8+

0
1

—1

0

l6
0
0

I-a pb I a Z.b pb

9+ 9+
9+9—
9—9+
9—9—

0
1

1

0

7+ 8+
7+ 8—
7 —8+
7—8—

7+ 9+
7+9—
7 —9+
7 —9—

E'

0
0
E'

pb pb

IF
0
0

—l6

Eg

8+ 9+
8+9—
8 —9+
8 —9—

I-a pb

l 6'

0
0

—16

I a pb

lE
0
0
l&

basic set of antisymmetrized pair orbitals at 0-1 has the
form,

/(K, is ) = [E,O]g(is ), K= 1

(4.23)

~=C,'C;, are given by

/(i~) = g C(i~, is ,K)P(K', is) .
x=1,2,

(4.24)

The pair orbitals of even and odd parity, transforming ac-
cording to the representations i ~ ——i&

— of the group
Here, the C's are given by Table IV, when i~ is substitut-
ed for i3h. We insert Eq. (4.23) into (4.24) and get

g(rs, r's', i~)= g C„„
[2(1+5;~)]'/

T

TX w r+ —,s m r' ——s' —w - r ——s ur. r'+ —s'
2 J 2 J 2 P

T / T I+ m r ——,s m r'+ —s —m r+ —s m r' ——s'2' ' 2' '" 2' '" 2' (4.25)

This equation is the final form of the pair orbitals at a
given pair of U sites. For i =j, the orbitals transforming
according to I &, I 2, and I z have odd parity and the orbi-
tals I ~ has even parity.

Finally, the cell orbitals are found to be the proper
linear combinations of the pair orbitals at the six
equivalent atom pairs, 0-1 to 0-6 (Fig. S). By applying the
elements of T =C3h to a given pair orbital f we generate
the six linearly independent orbitals:

6

~6hP6h ) g C(4'~6hP6h ~YE(i,S
X=1

(4.27)

To find the linear combinations of the f& s which
transform according to the irreducible representations of
D6h ——C3h&, we apply the projection operator method;
the result is

/, =Eg, /2 —C3+/, /3=

Y4 ~hY /5 S3 j, /6=S3 /.
(4.26)

The coupling constants C are derived in Appendix 8, up
to a phase factor that we are free to choose in order to ful-
fill the time-reversal symmetry, Eq. (4.20). The C's are
given in Table VIII.
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TABLE VIII. The coefficients C(i~, i6hp6h, k) of Eq. (4.27) for the nearest-neighbor cell orbitals.
The factor 1/V6 is omitted; a=exp(2rri I3). The C's are labeled by the representations of D31„.+
l6h —l 3h ~

l3h~P3h

A, =l
k=2
k=3
A, =4
X=5
k=6

I3
Case (a): i~ ——I &+, I,

I5, + I 5

—lE
—l E'

r6, —
—l E'

—lE

l3h P3h

A. = 1

A. =2
A. =3
k=4

Case (b): i,~ ——I 2+, I 2

r„+ I 5, —

—lE
—I E'

l

—l E'

D. Next-nearest-neighbor cell pairs

XmJ r'+ ——a s'
2

(4.28)

The coupling coefficients are found in Table IX. The
time-reversal behavior is Kg(I ~) =/(I ~) and
Kg(I z) = —g(I z). In addition to the elements of C„ the

Each U atom has six next-nearest-neighbor (NNN)
atoms in the plane perpendicular to the z axis (Fig. 6).
The two atoms of a pair are separated by a primitive
translation n. The two basis vectors are given by
v

&
——rz ———v/2. The symmetry operators that leave both

of the two atoms invariant lead to the point group
C, = [E,os I =S, Table IV. The antisymmetrized pair or-
bitals invariant under S are given by

lJ/~/(rs, r's', is) = gC„„A w;„r+ —,s
p, v

pair of atoms is left invariant by the group C,'= IE,o, I.
The reflection on the plane parallel to the z axis, o, ,U

1
'P

sends the pair 0-1 into 0-1', cf. Fig. 6. The latter pair is
transformed into the former by a primitive transIation
and the result is an interchange of the atoms 0 and 1.
Hence, the pair orbital at 0-1 is invariant under the group
that is isomorphic to C3, ——IE, tr~, rr, , Cz~ I. This group
(=W) is the direct product, C, XC,'; the characters are
found in Table X. The pair orbital transforms according
to an irreducible representation of M,

/(i~)= g C(is,i~,x)/(Ir) .
@=1,2

(4.29)

Here/(1) =Eg(is) and /(2)= r, tg(is); i s is(ij ). 'The-—
coupling coefficients are given in Table XI. The corre-
sponding time-reversal behavior is

= —j'(I;), i =2, 3 . (4.30)

For i =j, the following representations of M do not
occur: i~ ——I z(1 z, I z), I &(1 &), and 1 3(1;). Equation
(4.29) presents the final form of the NNN pair orbitals for
a given pair of U atoms.

There are six equivalent pairs that enter a ce11 orbital.
Three of these pairs lie in the plane of the center atom 0,
Fig. 7: O-l, 0-2, and 0-3. The other three equivalent pairs
lie in the parallel plane through the other atom of the unit
ce11: 0'-4, 0'-5, and 0'-6.

The three pair orbitals in the plane of atom 0 are gen-
erated by the symmetry elements of C3,' we have

E/(i ~ ), /z ——C3+g——(i ~ ), and g3 ——C3 g(i ~ ). Using
the projection operator method, we find the proper linear
combinations which transform according to the irreduci-
ble representations of D3&,

FIG. 6. The six next-nearest-neighbor U atoms.
g(rs, r's', i3gp3h ) = g C(i ~,i3pp3p„k)/g(i~) . (4.31)
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TABLE IX. The coefficients C„„ofEq. (4.28); see also Table VII.

7+ 7+
7+7—
7 —7+
7 —7—

pa

0
1

—1

0

I b I-a pb

1

0
0

—1

8+ 8+
8+8—
8 —8+
8 —8—

I-a

0
1

—1

0

pb I-a I b

1

0
0

—1

I a pb I a pb I-a I b I-a pb

9+ 9+
9+9—
9—9+
9—9—

0
1

—1

0

0
0
+ l

+1
0
0

—1

7+ 8+
7+ 8—
7 —8+
7 —8—

Eg

7+ 9+
7+9—
7 —9+
8 —9—

I a pb I-a I b

8+ 9+
8+9—
8 —9+
8 —9—

I-a

0
1

—1

0

Z
b I-a pb

1

0
0

—1

The coupling constants are listed in Table XII. The final
step in constructing the ce11 pair orbitals at the NNN
atoms consists in applying the symmetry operations T& z,
Ecl. (4.15), to /(i 3h, p3h ).

g D„"„(Rg)"D„"„'(Rg)=0

for i~i', p"'~p', p"~p . (5.3)

V. T, EQUATION

At this point we employ the Cooper pairs of Sec. III in
order to symmetrize the vertex equation for the basic pair
eigenfunctions, Eq. (2.9). Using the transformation (3.17)
that relates the basic pairs to the cel1 pairs, the vertex
equation becomes

g (d, i yp) =—

x (d', iy p (
~

(
d, iyp) . (5.4)

In summary M only connects cell orbitals of one and the
same representation, iG, and of the same basis vector, pG.
Thus, the eigenfunctions obey the sets of equations,

X X g(d' .p)
1

c co' d', y'

g(d, iyp)= — gg g g(d', iy p')
c co d i'y'p

x(d', i p'~M~di p) .

(5.1)

Here i y
=

( iG, y I, where y is a degeneracy index (1,2, . . . )

that labels the cell pairs corresponding to the same repre-
sentation iG,'p=pG. The kernel A is invariant under the
symmetry operations R ~, hence, we have

Each set in general leads to a different T, (iG). For a de-
generate representation iG, the matrix elements of A
have the same value for the different basis vectors,
p =p o. In evaluating T, (i G ), we may choose any p G.
For T & T„ the degeneracy is lifted when the GL, free en-
ergy is minimized to yield the equilibrium state, as shown
by other authors. As for T„which representation iG
yields the highest transition temperature wi11 depend on
the pairing interaction I of the kernel A,
(d', iy p I

A
I
d, iyp)

(d iyp ~A ~diyp) (d iyp~~~diyp)5 o„„'
(5.2)

d" y"
(d', iy p ~

G(co)G( —co)
~

d",iy p)

X (d",iy-p
~

I(co co')
~
d, iyp)—, (5.5)

This equation follows directly from the orthogonality
theorem,

where GG and I have the same symmetry properties as
A . The anomalous Green's function is given by

TABLE X. Character table of the point group C3„.
I

Czi

TABLE XI. The coefficients C(i, =I &,i ~,~) of Eq. (4.29).
For iz ——I z, the coefficients remain unchanged when I &, I 3

( =i ~) are replaced by I z, I 4, respectively.

r,
I2
13
r,

1

—1

1

—1

1

1

—1

—1

1

—1

—1

1

i~ ——I )

I/~2
I/~2

i/V 2
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TABLE XII. The coefficients C(i~, i3hp3h, 'A, ) of Eq. (4.31) for the next-nearest-neighbor cell orbi-
tals. The common factor 1/V 2 is omitted.

l 3h, P3h Il I5, + 1 3h 7P3h I 6r

13h, P3h

A, =l
A, =2
k=3

~3h7P3h

i- =r,
I4 I6, +

(d, ~'rp
~

G(~)G( —a7)
~

d', ~r p) = g F*(d,i,p)
1 I F(d', iz p)

1V'0 „, ' r [co—eq(k)][ —co —eq ( —k)]

where No ——number of unit cells; F also depends on k,p,p' and is given by

(5.6)

F(k,pp';d, irp)= g g C„'q~e'" a; q ('kp)a;*q ( —kq) .
p, p2 A, , K

(5.7)

Here d= [d, k, ,lc} and T~ 2=7
& 2(K); C depends on the angular direction A, and on the parameter ic that interchanges the

two sites, cf. Eq (3.12. ). This equation for the function F is derived in the Appendix C. There, one also finds the pairing
interaction I of Eq. (5.5) expressed in terms of the interaction between basic pairs: Eq. (C6).

The central equation for the set of eigenfunctions of iG, Eq. (5.4), reduces to a simple form for special cases of M.
Such a case is the contact model. Here, the two mates of a pair are at one and the same atomic site before the scattering
event takes place. After the event, the two mates are again at one site; it may or may not be different from the initial
site. This model is adopted in Ref. 1 to discuss T, of BCS superconductors. In the mean time, it has been applied suc-
cessfully to several d-band superconductors.

For even- and odd-parity superconductors the contact kernel ( d =d'=0) is

(irp ~

A ~i), p) = g F*(imp) F(ir p)(ir p ~

I(co co')
~ Ir p)—,1 1

(5.8)

where F is given by Eq. (5.7) with d=0 so that the A, summation is omitted. The Cooper pairs are formed from states in
the immediate vicinity of the Fermi surface eF ——e(kF), so that F(kF) is of some interest. For a given representation i r,

'

F(kF) is determined by the contributions of the one-electron orbitals, w;„and wj„, to the Cooper pairs at eF. WhenlP ) JP2'

only one orbital symmetry, say i =j =I"7, determines the Bloch states at eF, then only the one-dimensional representa-
tions I"&- of D6~ occur as the symmetries of the cell-pair orbitals. Hence, no two-dimensional representations are met
with, and no exotic superconducting phases occur. The negative parity representation I

&
exists, however. The corre-

sponding F is

pp ) I [a 7,— /2( Fp)a 7 —,— l2( kFP ) 7 —,—l2(kFP)a 7+, — /2( kFP )]

7+, /2(kFP) 7 —,/2( kFP ) 7 —,/2(kFP) 7+, /2( kFP )] } (5.9)

From this equation it is clearly seen that the odd-parity
state I

~
owes its existence to the nonsymmorphic crystal

structure of UPt3. The Cooper pair consists of a linear
combination of the two contact pairs centered at the two
U sites in the unit cell. The sites are separated by a
nonprimitive translation v. and have a center of inversion
between them, Fig. 1. The above result arises as a conse-
quence of the crystal symmetry; its form is anticipated in
a paper by Anderson. It is also clearly established here
that —because of the kF dependence of the function F
given by Eq. (5.9)—it is unlikely that any simple model of
the order parameter, bqq (kF), is at all relevant to the ob-
servations in heavy-fermion superconductors. The expli-

FICx. 7. The twelve next-nearest-neighbor sites participating
in the formation of the cell orbital.
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TABLE XIII, Symmetries of one-electron orbitals, contact pairs, nearest-neighbor, and next-nearest-neighbor pairs. The irreduci-
ble representations of D6I, in our notation and that of Ref. 4 are, respectively, I ~, A l~, I ~, A &„, I 2, A &~', I 2, Az„, I &+,B&~, I 3,B&„,
I 4+, B2~, I 4,82„, I &+, E&~, l &,Ez„, I 6,E&~', I 6,E&„. We note that in the case i =Z the pair orbital I z+ for nearest-neighbor pairs does
not occur [cf. the comments following Eq. (4.25)]. Similarly, for i =j the pair orbital I q does not occur for next-nearest-neighbor
pairs.

One-electron
orbitals

point symmetry D3$

Contact
cell pairs

Symmetry D6~ ——D&p, C;

Nearest-neighbor pairs
Pair orbital at Cell pairs
fixed pair of symmetry

sites, X=C;.C,
'

D6$ —M C3$

Next-nearest-Neighbor pairs
Pair orbital at Cell pairs
fixed pairs of symmetry
si~es A =C'„D,„=W.C, -C,

p + I+ I+

l p—,I4—

cit k dependence of F is determined by the expansion
coefficients a;& &2(kF,p) which can be found from band-
structure calculations.

In the case where different orbital symmetries, say I 7

and I 8, admix into the Bloch waves at k~, then also the
two-dimensional representations occur for the eigenfunc-
tions, cf. Table III for the contact pairs. When we go
beyond the contact model and take into account the
nearest-neighbor and next-nearest-neighbor pairs, then all
of the representations of D6& occur for the eigenfunctions
as is directly seen from Table XIII.

Equation (5.1) is the exact linearized gap equation;
there is no restriction on the strength of the pairing in-
teraction, Eq. (5.5). If the interaction is of electronic ori-
gin, as discussed in Ref. 21, the value of T, /TF may not
be very small. When the frequency dependence of the or-
der parameter becomes important, Eq. (5.1) can be gen-
eralized in the manner of the strong-coupling theory of su-
perconductivity.

VI. CONNECTION TO THE BLOCH-WAVE
(k) REPRESENTATION

Let us assume that the solution of the T, equation in
the atomic representation Eq. (5.1) has provided us with
the set of eigenfunctions g(d, imp) that yield the highest
transition temperature. The corresponding Cooper pairs
transform according to an irreducible representation iG,
i.e., i& ——IiG, y I. We can readily transform this result into
the k representation in order to obtain the Fermi-surface
symmetry of the superconducting state at and just below
T, . For one-dimensional representations iz, this transfor-
mation yields the desired k-space symmetry of the super-
conducting state. For multidimensional representations,
we can make use of the results of other authors to deter-
mine the symmetry of the superconducting state near

4 —6
C'

Assuming for simplicity that Cooper pairing occurs be-
tween mates in the same subband, we write the vertex
eigenfunction in terms of Bloch waves as

I (rs, r's') = g g~(rs)P ~(r's')gz~ (k),
k, p, p

(6.1)

where gz& (k) is the eigenfunction in k space. By compar-
ing Eq. (6.1) with (2.8) we get the relation between the g's
in the k and the n representations, in terms of the basic
pairs, g(n+r, —r» i,p, , i~@,). Substituting for the latter
functions the symmetrized vertex functions of Eq. (3.17),
we have

gpss(k)= g g F(k,pp', d, imp)g(d, imp),
d imp

(6.2)

where i =iG and F is defined by Eq. (5.7). There is a
one-to-one correspondence between the eigenfunctions of
the k representation transforming according to iG,

gpss (k;igp)

and the functions,

g QF(k, pp';d imp)g(d imp),
d y

(6.3)

(6.4)

determined by the eigenfunctions g.
The eigenfunctions of the k representation

gz~ (k;iGp) =hz~(k;iGp)are discussed .elsewhere. At
T=O, it is the order parametr in the k representation that
corresponds in coordinate space to the usual wave func-
tion of a Cooper pair, the dimension of which is deter-
mined by the coherence length g. This wave function can
be thought of as a coherent superposition of our cell pair
orbitals, in analogy to a Bloch wave being a coherent su-
perposition of the %"annier orbitals of each unit cell.
Hence, within the length g there are many cell pairs, the
dimension of which is governed by the short range of the
e-e interaction and the Wannier orbitals.

VII. SUMMARY

Recently, the symmetry of heavy-fermion superconduc-
tors has been discussed in the Bloch (k) representation.
This discussion leads to the classification of the possible
superconducting singlet and triplet states into which the
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normal state transfers at and directly below T, . For
each state, the particular k-space symmetry at eF deter-
mines the behavior of the equilibrium and transport phe-
nomena in the superconducting phase.

Here, we take a different point of view and construct
the Cooper-pair states in the atomic representation, that
is, in terms of Wannier orbitals that take into account the
periodic spin-orbit coupling effects. The motivation for
this approach lies in the fact that the f electrons respon-
sible for the heavy-fermion superconductivity are highly
localized in space and spend most of their time at the f
atom sites. Besides, the pairing interaction is of short
range in coordinate space whether phonons or spin fluc-
tuations or both are responsible for the attractive interac-
tion I between the electrons. As for ordinary phonons
and their deformation-potential coupling to the electrons,
I is governed by the short range of the phonon Green's
function. ' The local nature of I also holds for the
breathing-mode coupling of the volume strain to the f
electrons. This coupling is used in Ref. 7 to explain sin-
glet superconductivity in the Ce compound; its impor-
tance for the elastic properties of U compounds is dis-
cussed by Yoshizawa et al. As for ordinary paramag-
nons in homogenoeus systems, the range of I is deter-
mined by the spin-correlation length p that is rather short
in Pd and in UAlz. A self-consistent paramagnon model
is also applied to UPt3 and accounts for the electronic
specific heat. ' For the Anderson lattice, the wave-vector
dependence of the susceptibility, and hence p, is still un-
known at low T.

For the reasons given above, we develop the T, eigen-
value equation for heavy fermions in the atomic represen-
tation. The goal is to determine, first of all, the parity
and the symmetry of the superconducting state into which
the normal metal transfers and to obtain the actual k-
space symmetry of this state at eF by the transformation,
Eq. (6.2). In contrast to 'He, this symmetry is not merely
a reflection of the physical nature of the pairing interac-
tion. Instead, as we show in Secs. III and IV, the crystal
symmetry plays an important role for the existence of
even- and odd-parity states and their symmetry behavior.
The reason is the presence of an inversion center between
two U atoms in a nonsymmorphic lattice. Furthermore,
the importance of band-structure effects for the existence
of nontrivial superconducting states becomes evident in
the contact model, cf. Table XIII. The possible existence
of I 3 and I 4 as well as the two-dimensional representa-
tions depends on the admixture of different Wannier orbi-
tals w;„(r,s) into the Bloch waves at eF. Because of these
facts, the construction of the symmetrized pair orbitals or,
equivalently, of the eigenfunctions in Secs. III and IV is
straightforward, but complex. A reliable calculation of
the highest T, value is a difficult problem. However,
based on a realistic pairing interaction I, the method
developed in Sec. III can be applied to find the relative
magnitudes of the T, 's for different symmetries.

This discussion presents a first step in this direction; we
symmetirze the Cooper-pair orbitals and the correspond-
ing vertex equations for T, . The general procedure
presented in Sec. III is applied to the 5f electrons of UPt3
in Sec. IV. For the contact model where the two mates

reside at one and the same site, the odd-parity state I
&

al-
ways occurs, by virtue of the inversion center between the
two U atoms. The k dependence for the eigenfunction of
the I, contact state is given by Eq. (5.9). It is unlikely
that this dependence resembles one of the four simple
solutions to the triplet gap functions of He. In the case
of nearest-neighbor pairs, the two mates of a cell (sym-
metrized) pair orbital reside at one of the U-atom pairs
shown in Fig. 5. Although there is no direct overlap be-
tween two neighbor U atoms (4.15 A apart), the orthogo-
nalization of the Sf orbital at site 1 to the 6d orbital at
site 2, and vice versa, leads to some indirect overlap be-
tween the Sf states P.erhaps more important, there is sig-
nificant hybridization between the Sf orbitals and the 5d
orbitals of the Pt atoms. All of the representations of the
group D6& occur as the possible symmetries of the
nearest-neighbor pairs, cf. Table VIII. Each U atom has
six next-nearest neighbors, each at a distance of 5.8 A.
The cell orbital consists of a linear superposition of twelve
electron pairs, Eq. (4.32), each of which occupies one of
the equivalent atom pairs shown in Fig. 7. These NNN
pair orbitals can become involved in superconductivity if
there is a sufficiently strong hybridization between the U
5f and the Pt 6d electrons at eF. The Pt atoms lie be-
tween the U atoms as seen in Fig. l. All of the sym-
metries of contact, nearest-neighbor, and next-nearest-
neighbor pairs are found in Table XIII.

The second step, namely the actual solution of the T,
eigenvalue equation requires the input of some realistic
model for the quasiparticle band structure and for the
pairing interaction I. Then, using the symmetrization
procedure developed here for Cooper pairs consisting of
tightly bound spin-orbit electrons, one can attempt to find
the actual parity and symmetry of the heavy fermions in a
metallic superconductor.
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APPENDIX A: NEAREST-NEIGHBOR
PAIR ORBITALS /(is )

To find / (is), Eq. (4.23), let us consider the projection
of this product set wz„(r+r/2, s)wz„(r' r/2, s') into —the
representations I

&
and I 2 of C,

' =S. We have

= —,'(w +w + —e*w w7 )

E'

2
= —(e*w w —ew w ), e=—e

(A 1)

This linear combination is clearly invariant under the
symmetry operations of C,'. We are free to choose a phase
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factor so that the above orbital does not change its sign
under K, cf. Eq. (4.20). Hence

/(r+ —,s;r' ——,s';I i)
s

(r~)
Pii /= —,(E+eC3 +'E C3 +oh+'ES3 +e S3 )/

=
6 4'i+&A~+ &V3+'Y4+&A+EV6» (B6)

l
E wp+

2
I + II'+,s w 7 r ——,s2' + 2' (r, )Ppi'/= —,(E+E'C3++eC3 +og+e*S3++eS3 )acr„/

I + I—Ew7 r+ —,s w7 r ——,s2' 2'

&/(I i) =/(ri)

(A2) = —4'i+ &V'2+ &A+F4+ &V's+ &A»6
(r, )

P» g= —,(E+eC3++@"C3 —oh eS—3+ —e'S3 )/
= 6i V&+~IC2+~ IC3 IC4 ~A eY6) ~r

(B7)

(B8)

The second pair orbital transforming according to I i of
(r, )

C,
' is obtained by applying P to w7+ w7

(r, )

P2, '/= —( E —e'C—
3 EC3 +err, +e*S3++@$3 )o'

6

(r))P w7+ w7 =
4 (E +E+o'„+crU )w7+ w7 /1 ~%2 ~F3+A+ ~%5+eA) (B9)

1=
2 (W7+W7 —W7 W7+ )

=W2y(r,')

and

(r, ) 1=
2 (W7+W7 +W7 W7+ )

=v 2y(r', ) .

For the two I 2 representations we get

(r, ) lEP w7+ w7+ = (e w7+ wp+ +6w7 w7 ')
2

(A5)

These orbitals present the correct linear combinations of
the functions gz(i ~ = I

&
) which transform according to

the irreducible representations of D6~. Since D6~ is the
set product —and not the direct product —of C3I, and M
the group elements of C3I, and W do not commute with
each other. We can use, however, the multiplication prop-
erties in order to commute the elements of C3~ with o., of
W, for example, o„C3+ ——C3 o,, For i~=I 2, we get
the cell orbitals in the same manner as for i~ ——I &, taking
into account that cr,/(I 2) = —/(I 2).

APPENDIX C: THE KERNEL A"

(A6)

APPENDIX 8: NEAREST-NEICiHBOR
CELL ORBITALS

The six pair orbitals given by Eq. (4.26) form the basis
set of a six-dimensional vector space. By applying the
projection operator,

(Bl)

to the orbital /(i~), Eq. (4.25), we generate six orthogo-
nal vectors, the cell orbitals. The matrices D&& are given
by Table I. To find the projection of P '" on/(i~), we
use the group properties of D6q, for example,
cr, =C 3+ o „, For /(i .~ =I, ) we get

(r, )P /= „(E+C3 +C3 +—crh+S3 +S3 )(1 +r„c)g

=
6 (/i+PZ+P3+/4+Ye+/6»

where it is taken into account that r„/c(ri)=/(1 i).
Furthermore,

(B3)
(I 3)P 'g= —„(E+C3 +C3 crh S3 S3 )(1+cr„)/

The right-hand side of Eq. (5.8) for the kernel A con-
tains the anomalous Green's function GG and the pairing
interactions I in terms of the cell orbitals for the Cooper
pairs. We now proceed to express GG and I in terms of
the basic pairs, Eq. (3.2).

The Green's function is given by

(d, irp ~

G(cU)G( —co)
~

d', ir p),
= fdr, fdr~(ri, r2 ,d,irp)G(ri', r3 cU)

X G(r2, r4, —cU)/(r 3r4, d'i& p), '(Cl)

where r={x,y,z;s] and dr=dr(x, y, z;s); the degeneracy
index depends on the symmetries i and j of the basic pair,
y={@;i,j {. In the atomic representation, Eq. (Cl) be-
comes

(
~

GG
~

) Q F*(1 2
~

d irp)G(1 3 co)
1,2, 3,4

X G (2,4; cU)F (3,4;d', i r P ),—(C2)

where, e.g. , 1 = {n, ,r„i&pi ) and F denotes the inner prod-
uct,

F(1,2;d, irp) = fdr f dr'w;& (r —n& r&)—
X w~& (r' —nz —rz/)(r, r', di&p)

=
6 V'i+A+A —A —A —A» (B4) l+ i

—
~
—2

~
~~l (C3)
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We use this equation and the translational invariance of 6
to write Eq. (C2) as

where d23 ——nz+~z —n3 —r3 and the orbital indices of the
G's correspond to those of Eq. (C2). The one-electron
Careen's function is

(IGGI)= y y C „C„
P) P4 Kk.,K A

Xmo g G(d'+dz3 ~)

1 ik d~& 'i&] ~i ~ 'zPz &za, (kn)a.* (Irn)
G(d tzi, p, , i zp z)= e

e—e~(k)

(C5)
d23

XG(d+dz3, —co),

(C4)

When the Green's function, Eq. (C5), is substituted for G
in (C4) we arrive at Eq. (5.6).

In an analogous manner, the pairing interaction I of
Eq. (5.5) can be found in terms of the interaction between
basic pairs; the result is

(, d,i&p I
I(to —co')

I

d', iy'p) =No g g C„',„'~C„~~
Pi -. P4A, K, A, 'K'

& g(o »pi;d tzpz II I d3z+d t3p3 d+d'+» 4p4& .
d32

(C6)

Note that, for example, d= Id, X,~I.
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