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We present model calculations of Mossbauer emission spectra for mobile substitutional Mossbauer

atoms in cubic lattices. The fluctuating hyperfine interactions (isomer shift and quadrupole interac-

tion) due to approaching vacancies are considered. To describe the motion of the Mossbauer atom

we use the five-frequency model appropriate for impurity diffusion including binding of Mossbauer

atoms and vacancies. For suitable choice of the jump frequencies our model shows the combined ef-

fect of quadrupole splitting, motional narrowing, and diffusional broadening of the emitted line.

These features have previously been discussed only separately. We present analytical results for dif-

fusion on sc lattices and numerical results for fcc lattices. In particular we find the following. The
diffusional broadening of the spectrum is governed by the effective jurnp frequency of the substitu-

tional Mossbauer atoms which is essentially given by the product of the vacancy concentration and

the vacancy-Mossbauer atom exchange jump rate whereas the fluctuation rates of the hyperfine in-

teraction is directly given by the vacancy jump rates (without the factor vacancy concentration).
Thus the hyperfine interactions are completely averaged out at temperatures where in normal metals

diffusion broadening can be detected. The dynamics of the hyperfine relaxation can only be detected

at low temperatures in alloys in which the vacancy concentration is enhanced. Promising systems

are nonstoichiometric ordered alloys such as Co-Ga, Pd-Si, Fe-A1.

I. INTRODUCTION

In this paper we study the Mossbauer line shape when
the Mossbauer atom (MA) is an impurity in a host cubic
crystal. An example is Fe in a single crystal of face-
centered-cubic (fcc) Al which will serve as a test case of
our theoretical investigation. ' At finite temperatures the
MA is known to diffuse via vacancy-induced jumps. This
leads to a broadening of the Mossbauer emission line.
Two essential features are prominent in the line-shape cal-
culation: (i) correlation in the MA-vacancy jumps, and
(ii) anisotropy of the jump direction with respect to the
direction of emission of the y ray. An additional impor-
tant aspect, not considered in detail hitherto, is the time
fluctuations in the hyperfine interaction of the MA trig-
gered by the approaching vacancy. Here we present a
treatment of the combined effects of diffusion and the
fluctuating hyperfine interaction on the Mossbauer line
shape.

The simplifying assumptions of our model are as fol-
lows. {1) The hyperfine interaction, mostly in the form of
the isomer shift and electric field gradient, arises only
when the vacancy is a nearest neighbor to the MA. (2)
The elementary jumps of the vacancy are over nearest-
neighbor distances only. (However, for sc and bcc lattices
we allow next-nearest-neighbor jumps of the vacancy be-
tween the sites of the nearest-neighbor shell of the MA.
This permits us to treat fluctuations in the direction of
the electric field gradient in these lattices also. ) (3) The
concentrations of both the impurity (c;) and the vacancy

(c, ) are low so that only a single impurity-vacancy pair
has to be considered at a time. (4) The detailed dynamics
of vaeaney jumps is treated only for the nearest-neighbor
sites'of the MA as was first suggested by Krivoglaz and
Repetskiy. Outside of the nearest-neighbor shell we as-
sume an average vacancy occupation. This means we
have to treat an effective mobile cluster consisting of the
MA and its nearest-neighbor sites embedded in a lattice
with an average vacancy occupancy. While assumptions
(1)—(3) are reasonable at first sight, (4) needs elaboration.
When c„ is small, the probability of finding a vacancy in
the nearest-neighbor shell of a MA is small. %'e can then
safely neglect configurations with more than one vacancy
in the nearest-neighbor shell. As is well known all jumps
of a MA with one particular vacancy are correlated.
However, it has been shown that the major part of the
correlation is effected by immediate returns of the vacan-
cy from the nearest-neighbor shell, and vacancy paths
beyond the nearest neighbor shell give only small contri-
butions. Thus our approximation of assuming an average
vacancy occupation outside the nearest-neighbor shell and
neglecting the correlated reentry of the same vacancy is
justified. This means that the effective rate of reentry of
a vacancy into the nearest neighbor shell is proportional
to the average vacancy concentration c„.

An important ingredient, which distinguishes between
impurity diffusion {e.g. , Fe in Al) and self-diffusion (e.g.,
Fe in Fe) is the perturbation of the vacancy jump frequen-
cies in the immediate vicinity of the impurity (i.e., the
MA). This is incorporated in our study in terms of the
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so-called five-frequency model which was first discussed
in the context of tracer-diffusion studies in fcc crystals.
The five frequencies or jump rates, which carry informa-
tion about the impurity-vacancy binding as well as the po-
tential barriers the vacancy has to jump over, form an
essential input of our calculation (see Fig. 2).

The model presented here is similar in spirit to the one
discussed earlier by Krivoglaz and Repetskiy. However,
two important generalizations are now introduced: (i) the
vacancy jumps within the nearest-neighbor shell of the
MA, governed by the rate w& (see Figs. I and 2), are expli-
citly taken into account, and (ii) time-dependent hyperfine
interactions of quantum nature are incorporated. The
present analysis therefore goes beyond that of Mantl
et al. , who considered, within the Krivoglaz-Repetskiy
model, classical isomer-shift fluctuations only and treated
the w~~oo limit.

We should point out that the combined effects of dif-
fusion and a fluctuating hyperfine interaction have been
discussed earlier. But these analyses have been restricted
to either ideal interstitial diffusion (uncorrelated jumps in
an empty lattice' ), or diffusion in a confined region
("cage"").

An outline of the paper is as follows. In Sec. II we dis-
cuss pure diffusional effects within our approximate treat-
ment of the five-frequency model. An analytical expres-
sion for the Mossbauer line shape is derived for the simple
cubic (sc) structure. This helps illustrate various hmiting
cases which can be connected with earlier studies of the
problem. The analytical results for the sc case serve also
as a check on our numerical analysis which is required in
other cubic structures (e.g. , fcc). In Sec. III we present the
main theoretical formulation of the combined occurrence
of diffusion and hyperfine interaction. The treatment re-
quires an adaptation of the Blume model' in order to in-
corporate the diffusion effects. The theory is illustrated
for the specific case of Fe atom as the Mossbauer probe.
Again, analytic expressions are obtained in the sc case
which yield various interesting limits. We present then in
Sec. IV numerical plots in the fcc case which should be
relevant for Fe diffusion in Al and Cu, for instance. Fi-
nally in Sec. V we discuss our main conclusions.

MA

V(r)
Wg

MA (1,1,0) (2, 2,0) (3,3,0) = R"

II. PURE DIFFUSIONAI. EFFECTS

(b)

FIG. 2. (a) Five-frequency model for impurity (MA) dif-
fusion in fcc crystals. The vacancy jump frequencies are as fol-
lows: uo, vacancy jump frequency in the pure host lattice; te&,

vacancy jump in the NN shell of the MA; w2, exchange jump of
vacancy with MA; w3, dissociation jump of vacancy out of NN
shell; w4, association jump into the NN shell. (b) Possible ener-

gy barriers for vacancy jumps in radial direction. The five fre-
quencies can be parametrized by the corresponding five activa-
tion energies ( E ~

not shown). Eb ——E3 —E4 is equal to
impurity-vacancy binding energy; Eo ——E =migration energy in
pure host lattice.
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A. Formulation of the problem

The Mossbauer emission line shape can be written as'

oo

cr, (k, rp) =f Re f dt exp( irpt —I pt /2')—
m6

&( g exp(inept)exp(ik R")

/

~ 0 0 g 0/
&&GD(R, t) . (2.l)

0
FIG. 1. Kinetic model for the description of impurity dif-

fusion via vacancies ( ). The sphere of influence of the MA (~ )

extends to the NN shell (encircled). There the vacancy jump
frequencies are perturbed (see Fig. 2) and hyperfine interactions
are considered (see Fig. 4).

Here k is the wave vector and Ace the energy of the emit-
ted y rays, %coo——E, —Eg the energy of the nuclear transi-
tion, and I o is the natural linewidth of the excited state of
the Mossbauer nucleus. The sum is over all equilibrium
sites R" of the MA on a discrete lattice and GD(R", t) is
the diffusional part of the self-correlation function. Thus
GD(R', t) measures the conditional probability that the
MA is found at R" at time t given that it started from the
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origin 0 at t =0. The Debye-Wailer factor f describes the
reduction of the intensity due to vibrations of the MA on
a lattice site. In writing (2.1) we have made the usual as-
sumption that vibrations occur on a much faster time
scale than diffusive jumps so that f factors out of the
line-shape expression.

The self-correlation function is determined by the kinet-
ics of the MA-vacancy pair. Therefore, referring to Fig. 1

and adopting a matrix notation, we may write

GD(R", &) = y (R",~
I
P(&)

I 0,P)pp,
a, P

(2.2)

where (R",a I P(t)
I O, P) measures the conditional proba-

bility that the MA is found at R" and the vacancy in the
"state"

~
a) at time t, given that the MA was at the origin

0 and the vacancy was in the "state"
~
P) at t =0. The

state
~

a) or
~
P), in our model, refers to one of the vacan-

cy sites within the nearest-neighbor shell of the MA
(called the "associated" states) or any site (we do not care
which one) outside the nearest-neighbor shell (called the
"nonassociated" state). Thus the associated states run
over Z sites, where Z is the coordination number or the
number of nearest neighbors in a lattice (Z =12, in the
fcc case), while the nonassociated state is just one lumped
state. Hence a or P assumes Z+1 values. The summa-
tions in (2.2) take into account the fact that all final va-

cancy states must be summed over and all initial vacancy
states must be averaged over with the aid of p~, the a
priori probability of finding the state

~

P).
Our fundamental assumption is that the diffusion of

the vacancy within the nearest-neighbor shell as well as in
and out of the nearest-neighbor shell may be viewed as a
stationary Markov process. ' Thus the matrix P(t) obeys
the master equation

(2.3)

where the elements of the "jump matrix" W specify the
various allowed jumps for the MA-vacancy pair and the
accompanying rates.

In order to illustrate the construction of the jump ma-
trix 8' we consider an sc case for the sake of simplicity
(see Fig. 3). Here we have

+(R",a
~ WM~,

~
R,p) . (2.4)

The first term in (2.4) describes the situation in which the
MA is stationary but the vacancy jumps between the asso-
ciated and nonassociated states. The corresponding ma-
trix 8'„ the subscript U specifying vacancy jumps only,
can be written as

1

—1

2
—2

3
—3

N

1

—(v+4w& )

0

LOi

Wi

0
—(v+4w))

LU(

LU)

Wi

LO)

LO)

—(v+4w) )

0
Wi

LU)

LOi

0
—(v+4w) )

Wi

LO)

LU1

Wi

Wi

Wi
—(v+4w) )

0

Wi

LU(

LO)

LU )

0
—(v+4w& )

(2.5)

The diagonal elements of 8'„contribute to the "loss
term" in Eq. (2.3) while the off-diagonal elements contri-
bute to the "gain term. " In Eq. (2.5) the first six rows
refer to the associated states (since there are six nearest-
neighbor sites to the MA atom; see Fig. 3), whereas the
seventh row, labeled by N, stands for the nonassociated
state. The parameter w~ describes the rotational jumps of
a vacancy in the nearest-neighbor shell of the MA. (Due
to the geometry these jumps are next nearest-neighbor
jumps in sc and bcc lattices and nearest-neighbor jumps in
fcc lattices. ) The parameter v refers to the jump rate out
of any associated state and A, designates the jump rate
from the nonassociated state to one of the associated
states. The parameters v and A, can be expressed in terms
of the elementary jump rates w3 and w4 (Fig. 3). For in-
stance, in an sc crystal, five sites outside the nearest-
neighbor shell can be reached from any nearest-neighbor
site of the MA. Hence,

Similarly,

k = 5W4CU (2.7)

Wg

W3

where c„ is the vacancy concentration. We can determine

v=5w3 (2.6)
FICJ. 3. Enumeration of NN sites of a MA (~ ) in an sc lattice

and vacancy ( ) jump frequencies.
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p, (a
I
W,

I
P) =p.(P

I
W„

I
a),

and the probability conservation condition

(2.8)

also the a priori probability p~ from the detailed balance
relation

where CNN is the nearest-neighbor vacancy concentration
and Eb the impurity-vacancy binding energy (cf. Fig. 2),
we may reexpress pz and p~ as

XPt =I (2.9)
P

Combining Eqs. (2.8) and (2.9) yields from Eq. (2.5),

LU4CU

pa=
V+ 6A. LU3 + 6W4CU

CNNpa= 1+6
1

PÃ= 1+6CNN

(2.12)

(2.1 1)=exp( —Eb /Ks T )
W4 CNN

JN (2.10)
V+ 6A, LU3 + 6W4Cq

where pz refers to the occupational probability of one of
the associated states and p~ that of the nonassociated
state. Noting that

W3 CU

Equations (2.7) and (2.12) corroborate our earlier remarks
in Sec. I in connection with the assumption (4).

Coming back to Eq. (2.4), the second term accounts for
MA-vacancy exchanges. From Fig. 3 it is evident that
each such exchange will put the vacancy into the opposite
associated state. For example, if the vacancy was on state
1 before the exchange, it will be on state —1 after the ex-
change. Accordingly, the O'MA, matrix can be written as

~MA-. =

—W2 6nm

W2Snm6n

0

W2Snm6nr

W26nm

0
0
0
0

2

0

—W26nm

W2Snm6n —r2

0

0

W 2Snm 6nr2

W26nm

—W26nm

W2Snm6n r

0

—3

W 2Snm 6nr

—W26nm

N
0

(2.13)

Here the factor S ensures that only nearest-neighbor exchanges can take place. Thus

1, if Rn and R are nearest neighbors
Snm

0, otherwise . (2.14)

Further r is the vector joining the MA and the vacancy
in the

I
a) state. This shows explicitly that the transition

matrix (R"
I

a
I

W
I
R,p) is a function of R"—R only.

From Eq. (2.3) we have
Or, in matrix notation,

(2.17)

at
(a

I - ««) I p) = g «
I

W ~ I

a')(a'
I
P ~«)

I p)

(R",a IP(t) IO, P)
a
at

a
at

P g(t) = WgP k(t) . (2.18)

= g g (R",a
I

W
I
R,a')(R, a'

I P(t)
I

O, P) .

(2.15)

Now, we note that what enters into the line-shape calcula-
tion in Eq. (2.1) is the spatial Fourier transform of
(R",a

I
P(t)

I
O, P):

In Eq. (2.18), P q and Wj, are matrices within the linear
vector space of vacancy states only, as the dependence on
the MA position has been summed over. Note also from
Eq. (2.16) that

(a IP~(t =0)
I
p)= +exp(ik R)5 p5 tt=5 p. .

and hence
g exp(ik R")(R",a

I
P(t) I O, p) —= (a

I
P „(t) I p) . (2.16)

Pg(t =0)=I . (2.19)

From Eq. (2.15), Equation (2.18) in conjunction with the initial condition
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prescribed in Eq. (2.19) can be solved by Laplace transfor-
mation. Thus, introducing

Pi, (s) = I dt exp( st)—P i,(t), (2.20)

we obtain from Eq. (2.18),

Pi, (s) =(sI —Wi, ) (2.21)

~, (k,~)=fRe g (~
I
(sI —W„)-'

I P)p, ,
1

a, P

where

(2.22)

Substituting the result Eq. (2.21), first in Eq. (2.2), and
then in Eq. (2.1), we obtain for the line shape,

s =i (co —pip)+1 p/2A' . (2.23)

B. Analytical results in the sc case

From Eq. (2.4) we have

(~
I

Wi
I
»=(~

I
W.

I
&)+(~

I WMA-. ,k I &» (2 24)

where the matrix W MA „ i, is given from Eq. (2.13) by

We may point out that Eq. (2.22) is also applicable to the
calculation of the incoherent structure factor for neutron
scattering due to impurity diffusion.

—W2—/k r)
w2e

0
0
0
0
0

—1
i k. r&

w2e

0
0
0
0

2

0
0

—W2—ik r2
w2e

0
0
0

i k.r2
w2e

0
0

3

0
0
0
0

—W2—ik-r3
W2e

—3

&k.r3
W2e

—W2

0 '

0
0
0
0
0
0

(2.25)

The full Wi, matrix may then be obtained by combining Eq. (2.25) with Eq. (2.5).
It is clear from Eq. (2.22) that the calculational program consists of inverting the matrix sI —W i, (the dimension of

which is 7)&7 in the sc case) and carrying out the summations over a and P. For the sc lattice this task can be per-
formed analytically if we exploit certain simplifying features of the structure of the matrix 8'k. Details of the calcula-
tion are relegated to the Appendix A. Here we quote the final result:

o, (k, co) = Re 1—
7Th

V —Wi

s —y

w, (s —y)+(v —w& )(i(,—wi)
GO

s +v+6k,
«')+P

s +v+6k,
(2.26)

where

s+v+4w&+wz[1+cos(k r;)]
G =2 +

i=1 D

s +v+4w &+ w2[1+cos(k.r;)]
i=1 D;

1
+Pe

S —P

D; =(s+y') —[w, +w2 —2w, w2cos(k r&)]

P= —7A, —V+W)

y =w2+5w~ +v .

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

the line shape is concerned. This is checked below.
First, note that

D, =D~ =D3 =(s +v+4wi )(s +v+6wi ),
and hence

Go
s +v+6wi s —f

( Gp) PA PN6

s +v+6w) s —p

Substituting the above expressions for G and ( G ) in
Eq. (2.26), and after some algebra, we deduce

I p/2R
cr, (k, co) = Re

s M (pi —imp)2+(I p/2g)2

It is useful to consider various mathematical limits of
Eq. (2.26) and verify them with physical intuition. This is
done in three cases as follows.

(2.32)

which is just the "unperturbed" line shape governed by
the natural linewidth I o/2R.

1. ~ q ——0: No MA-vacancy exchange

Since the MA is totally immobile now, the vacancy
motion is expected to be completely superfluous as far as

2. wq ——wq ——0: "cage" motion

The condition w3 ——0 implies that v=0 [Eq. (2.6)].
This means that once the vacancy is inside the nearest-
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neighbor shell of the MA it cannot escape. In addition,
w1 ——0 implies that the MA-vacancy pair forms a "mixed
dumbbell" and the only allowed motion is the one in
which the dumbbell partners exchange their position at a
rate w2.

We have now [cf. Eq. (2.10)]

G '=6(G')+
S —P

(2.36)

Using the fact that v=p~ ——0 and Eq. (2.36), we obtain
from Eq. (2.26),

1p~= 6 px=0-
o, (k, co) = Re ~ 1—

s —y

Equation (2.26) then yields

o., (k, co}= Re(G ), (2.33)
—w, 6(G )+p 1

s —y
(G')

where from Eq. (2.28),
3

s +w2+ —,wp g cos(k r; )

s(s+2w, )

The line shape in Eq. (2.33) may then be written in the
suggestive form

which simplifies to

o.,(k, co)= Re[((G ) ' —6w&) '] . (2.37)

%'e study now the w1»w2 limit. For this it is con-
venient first to decompose (G ) in Eq. (2.35) as a sum of
two terms. Thus

r, /2x
o, (k, co) =

2M (co —coo) +(I 0/2')

3

+s+3;
C+

s+W,+ (2.38)

3

X 1+—, g cos(k r;)

(2w, +r, /2e)
2~& (~ —~,)'+(2w, +r, /2e'

where

A;—=(wz+5w&)+[w, +wq —2w~w2cos(k r;)]'~
(2.39)

1 w, +wzcos(k r; )
C;—=—1+ 1/2[w, +w2 —2w, w2cos(k. r; )]

3

1 ——,
' g cos(k. r;) (2.34)

3. wq ——Q, wt »w2. "uncorrelctted" diffusion

The first term represents an unbroadened "elastic" com-

ponent whereas the second term represents a "quasielas-
tic" component broadened by an amount (2wq+ro/2A').
The expressions inside the large parentheses give the
respective intensities. The presence of a quasielastic line

riding on top of the elastic line is a general feature of
"cage" diffusion. '

When w»& w2, it is easy to see that

A;+=6w~+w2[1 —cos(k r;)],
=4w

& +w2[1+cos(k.r;)],
C;+=I,
C; =0.

Equation (2.38) then yields

3

(G )=—g Is+6w, +w2[1 —cos(k r;)]I
i=1

(2.40)

The condition w3 ——0 and hence v=0, implies again
that the vacancy is trapped by the MA. This means that

the MA always has a vacancy to jump into. In addition,
the restriction w1 »wq leads to a situation in which the
vacancy is uniformly distributed between the nearest-
neighbor sites of the MA. The MA can then jump into
any of the nearest-neighbor sites without any correlation
to is previous jump. The situation then resembles that of
uncorrelated jumps in an empty lattice.

We have again [cf. Eq. (2.10)]

1

PA 6 ~ P&

which may be written approximately as

p 1 1 w2
1 —— [1—cos(k r;)]

s +6w1 3 s +6w],

Therefore,

(G ) =(s+6w, ) 1+—0 —1
W2

[1—cos(k r;)]
3 s+6w1,

Equation (2.37) then leads to

f 1o.,(k, co)= Re s+ —wz g [1—cos(k r;)]
3 i=1

which from Eq. (2.28) yields

s +4w ~ +w2[1+ cos(k. r; )]Go
3

i=1 D

In addition, Eq. (2.27) implies

(2.35)

Equation (2.41) is the Chudley-Elliot result for the sc
structure.

The analytical expression in Eq. (2.26} lends physical
insight into the mathematical structure of the line-shape
formula when we study various limits, as we have shown



35 MOSSBAUER SPECTRUM FOR DIFFUSING ATOMS INCLUDING. . . 1531

above. However, in dealing with other kinds of crystal
structure, it is impractical to attempt an analytic calcula-
tion as the matrix of (sI —LVi, ) is of larger dimension.
Thus, for instance, we have to deal with 9&&9 and 13& 13
dimensional matrices in the bcc and fcc crystals, respec-
tively. In such cases it is more convenient to carry out the
inversion of the matrix (sl —LVj, ) numerically. The re-
sults of such computation will be discussed later in Sec.
IV.

III. COMBINED EFFECTS OF DIFFUSION
AND HYPERFINE INTERACTION

A. Mathematical formulation

In this section we consider the influence of hyperfine
interaction on the Mossbauer line shape when the vacancy
is a nearest neighbor to the MA. As mentioned in Sec. I,
the hyperfine interaction manifests itself mainly in the
form of isomer shift and quadrupole splitting, and it is
these two effects that we shall treat in the sequel. The hy-
perfine interaction may then be represented by the Hamil-
tonian

A (t)= (6(I)+Q[3[IR~~„(t)] —I ))

X5(RM& u(t) —dNN) ~ (3.1)

where R~z, (t) denotes the distance between the MA and
the vacancy, and the 5 function ensures that the hyperfine
interaction becomes operative only when the vacancy is at
a nearest-neighbor site, separated from the MA by a dis-
tance dNN. The first term b,(I) in Eq. (3.1) accounts for
the monopole interaction between the Mossbauer nucleus
and its electronic shell, which depends on the spin angular
momentum state I of the nucleus. The second term
represents the electric quadrupole interaction which de-
pends on the nuclear quadrupole moment Q, and the rela-
tive orientation between I and R~z „(t), the unit vector
joining the MA and the vacancy. In view of the fact that
R~&,(t) is a stochastic process governed by an underly-
ing probability which obeys Eq. (2.3), the Hamiltonian
A (t) is also a stochastic process. The Mossbauer line
shape under the influence of the Hamiltonian in Eq. (3.1)
is given by'

o, (k, co) = Re J dt exp( st)—f ao

2I, +1 A (I,M,
(
m(k) (r,M, )(r,m,

'
(
m'(k) )I,M; )

X(rgb, I,M,
~
(U(t)),„~ IsMg, I,M,'), (3.2)

t

U(t) =exp —J A "(t')dt'
0 (3.3)

where A "(t) is the Liuoville operator' corresponding to
I

where s is defined in Eq. (2.23), and e and g stand for the
excited and ground states of the nucleus. Here W(k)
represents the interaction between the nucleus and the ra-
diation field and W (k) its Hermitian adjoint; both de-
pend on the direction k of emission of the y ray with
respect to an arbitrarily chosen quantization axis for the
nuclear spin. The entity U(t) is the time-development
operator associated with the Hamiltonian in Eq. (3.1), and
is defined by

I

A (t). The exponentiated operator in Eq. (3.3) should of
course be suitably time ordered.

The crucial point to note here is that ( ),„ in U(t)
designates an average over the underlying stochastic pro-
cess which, in the present case, concerns the kinetics of
the MA-vacancy pair. The indicated averaging, therefore,
has to be carried out over a stationary Markov process de-
fined by a conditional probability which obeys the master
equation (2.3). Needless to say, the outcome of the
averaging procedure must then include the pure diffusion
effects analyzed in Sec. II. Following the procedure of
Blume' and taking special note of the fact that in the
present application one has to perform an additional spa-
tial Fourier transform with regard to the position of the
MA (cf. Sec. II A), we obtain

cr, (k, co) = Re
2

2I, +1 M (,I,M,
~
M(k) ~IgMg)(I'M@ ~

M (k)
~
I,M,')

X g(a~(I M, I,M, [
a, P

sI ——g Vj"F, —LVg
J

( IgMg, I,M,')
~ P)pp . (3.4)

(a
i
FJ.

i p) =5 p6 J,
VJ ——0, if j=X. (3.5)

Here the matrix W'i, is defined in Eq. (2.24). The matrix
Fz projects out the jth (associated) state amongst the pos-
sible states occupied by the vacancy, i.e., '

Equation (3.5) is a statement of the fact that the hyperfine
interaction occurs only when the vacancy is on one of the
associated states. The operator V~. (j~X) represents the
hyperfine Hamiltonian when the vacancy is at the jth as-
sociated state. It can be read out from Eq. (3.1). Thus,
for instance, if the vacancy is on the associated state l or
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—1 (see Fig. 3), we have

V+ i ——6(I) + Q ( 3I„—I ) .

Similarly,

V+ p b, (——I)+Q (3' —I ),

(3.6)

(3.7)

LJ0

r + /2~3

l +0+ ~I+~Q
+ 1/2

&0+~I
&0 ~I -~O.

+ 1/2

V+ 3 6(I——) +Q ( 3I, —I ) . (3.&)

Note that if the hyperfine interaction vanishes (VJ ——0),
Eq. (3.4) reduces to the earlier line shape formula in Eq.
(2.22).

B. Analytical results for the sc case and for Fe

For the sake of definiteness we restrict the subsequent
discussion to the Fe isotope as the MA. The effect of a
(static) hyperfine interaction on the Fe nucleus is shown
schematically in Fig. 4. The simplifying feature to note is
that the quadrupole interaction vanishes in the ground
state of the nucleus since Ig = —,'. This allows us to carry
out further mathematical operations in terms of an ordi-

FIG. 4. Nuclear transitions for "Fe (I,= ~, Ig= 2 ). (a) For
the isolated MA the transition energy is %coo. (b) Hyperfine in-

teractions due to NN vacancy change the nuclear transitions.
The energy is shifted by the vacancy induced isomer shift; the
degeneracy of the nuclear levels for I, =

2 is partially lifted by

the quadrupole interaction due to the vacancy induced electric
field gradient, the transitions of Fe are split into a doublet.

nary operator (and not a Liouville operator), as shown
below.

Writing out explicitly the matrix elements of the Liou-
ville operator in Eq. (3.3), the basic line-shape expression
in Eq. (3.2) may be rewritten as'

o', (k, co) = Re dt exp( st)—2' M, M, M', M'
(I,M,

~

W(k)
~
IgMg )(IsMg

~

Wt(k) I,M,')

X (I~Mg
~
exp —f A (t')dt'

~
IgMg )

X (I,M,'
~

exp ——f ~(t')dt'
~
I,M, ) (3.9)

Now we use the form of the Hamiltonian given in Eq. (3.1) and the fact that the quadrupole interaction is zero in the
ground state. Then

( ' ' ),„=5M I, exp —f bg(t')dt' (I,M,'
~

exp ——f [A, (r')+ V(t')]dr'
~

I,M, )
Mg Mg g O g o

where bg(t) represents the fluctuating monopole interaction in the ground state and h, (r) the corresponding quantity in

the excited state, and V(t) the fluctuating quadrupolar part of the Hamiltonian. Noting that 6 (r) and Q (r) are C num-

ber variables we may regroup them and write

( . . ),„=5,(I,M,'
~

exp
g g

f [b,,(t')+ V(t')]dr'
~
I,M, ),

where ~l(r)=~e(~) —~g(t) is the fluctuating isomer shift. The subsequent mathematical development is identical to that
described in Sec. III A, and we have for the line shape [cf. Eq. (3.4)]

o;(k,~)= Re g (I,M,
~

M(k) ~IsMs)(IgMg
~

W (k) ~I,M,')
27r6 M„M,M,

'

iM, ) iI3)pp .X g(a ( (M,'
I

sI ——g VjFJ —LVq.
a, P J

(3.10)
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In Eq. (3.10), VJ. is an ordinary operator which is given,
for example, in the sc case by Eqs. (3.6)—(3.8), with b, (I)
now interpreted as the isomer shift. Equation (3.10) can
be expressed in a somewhat more compact shape as

o.,(k, co)= Re g N, (k)(M,'
~

(U(s, k)),„~M, ) ~

27Ti6 M, M'

( —', ~M
~

—', )=(——,'~N~ ——', )=—,'+ —,'(3cos8 —1),
( —,

'
[
W

(

—,
' ) = ( ——,

'
(
W

(

——,
' ) = —,

' ——,
' (3 cos 8—1),

( ——,
(
&

)

——, ) = —( —,
(
N

[
—, ) = sin(28)exp( —iP),2 8

(3.15)

where

,(k) = g (I,M,
~

M(k)
~
IsMg )

M
g

(3.11) ( ——,
~

&
~

——, ) = —( —,
~

W
~

—, ) = sin(28)exp(ig),2

( —,
'

~

&
~

——,
' ) =( —,

'
~

W
~

——,
' ) = sin j9exp( 2—ig),2 8

( ——,
'

~

&
~

—,
' ) = ( ——,

'
~

N
~

—,
' ) = sin 8 exp(2ig),2 8

&«I,M,
~

W'(k) ~I,M,'), (3.12)

U(s, k) = s I ——g VJF ~
—LV j,

J
(3.13)

and

(U(s, k)),„=y (a
~

U(s, k)
~ P)pp .

a, P
(3.14)

In the case of Fe for which I, = —,
' and Ig = —,', the

matrix of & (of dimension 4)&4) has 12 nonvanishing
elements which are given as'

0 and P being the directions of k with respect to the
quantization axis for the nuclear spin, chosen to lie along
the z direction.

Our main task now is to evaluate the matrix elements
of (U(s, k)),„which is also a 4X4 matrix within the nu-
clear angular momentum space. In order to do this it is
clear from Eq. (3.13) that we have to invert a 28X28 ma-
trix. This is because the matrix of U(s, k) is labeled by
four angular momentum indices and seven stochastic in-
dices, in the sc case. Again for the sc case, we show in
Appendix B how the required mathematical operations
can be carried out completely analytically. From the re-
sults given in Appendix B it turns out that (U(s, k)),„has
only eight (out of sixteen) nonvanishing elements which
are enumerated below:

( —,
~

( U(s, k) ),„~ —,
' ) = ( ——,

'
~

( U(s, k) ),„~ ——,
'

)

—( ] 3 Hg) '[H)(H4+H5 H6 H7+H8)+U—3H—~(H6 H~)]

( —,
~
(U(s, k)),„~ —, ) = ( ——',

~

(U(s, k))„~ ——,
' )

= (H, H3 Hp ) '[H3(H4+H—5 +H6+H~ Hs ) + W3Hg(H6 —Hp)], —

( —,
~
(U(s, k)),„~ ——, ) =( ——,

~
(U(s, k)).„~ —,

' )

= —(H )H3 Hp ) '[H~(H4—+H5 H6 H~+Hs )+~—3H3(—H6 Hp)], —

( —,
'

~
( U(s, k) ),„~ ——,

' ) = ( ——,
'

~

( U(s, k) )„~ —,
'

)

(H/H3 HQ) '[Hp(H4+Hs+H6+H7 H8 )+~3H((H—6 Hp)]—

(3.16)

where

]
H& ——Ao ——Q( —,B&+—,Bq —B3),

v3 i
Hq — —Q(Bi Bp ), —

2

H3 —A O +—Q( —,B) + —,Bq B3)—
A, —LO)

~5 ~0 SA+JN s +v+6K

1 i
6 2 R

Q~l PA+PN
6A,

1 l' ~ —W~H7= QBz p~+pN——
2 I s+v+6

1
H4 (PN PA )

s —y
(3.17)

1 i
8 2 PQ 3 PA+PN
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C+q +3

Ao ——2g +
i=1

( +)2+ Q
qs

C q; 1+
( -)2+ Q

g2

s —y

v —wi w, (s —y)+(v —wi )(A, —w, )
Ap ——1— —Ao

s —f s +v+6k
C+

C,+

A, —W)

s +v+6K.

) +PN
s +v+6K

PN 3

H4+H5 —— +2p~ g +
s +V+A] s +v+A;

(3.24)

B;=2 +
(q+)2+ Q

i =1,2,3,
(q; )'+

w&(s —y)+(v —w& )(i( —w& )
B;=B; i =1,2,3,

(s +v+6K, )

(3.18)

q;-=s+v+ b(I)+A;—,—i =1,2, 3,

1. 5(I)=0, Q =0: vanishing hyperfine interaction

In this case,

H) ——H3 ——Ap, H3 ——H6 ——H7 ——H8:0
where now,

C+ C;
Ao ——2g

s +v+A; s +v+A;

(3.19)

(3.20)

From Eq. (3.16) then follows that all the off-diagonal ele-
ments of (U(s, k)),„are zero, and all the diagonal ele-
ments are equal. Thus

and A;—and C;—have already been defined in Eq. (2.39).
Before we present the lineshape plots based on the

above formulas, it is useful to consider certain limiting
cases.

where ( G ) is given earlier in Eq. (2.28). Equation (3.22),
together with Eqs. (3.23) and (3.24), lead to a line-shape
expression which is identical with Eq. (2.26) derived be-
fore, therefore, as expected, when the hyperfine interac-
tions vanish, the formula (3.11) yields the line shape for
the pure diffusion case.

2. w2=0: Pure "relaxation" effects

In this case we "switch off" the MA-vacancy exchange,
as in Sec. II B 1. The only effect the vacancy motion has
on the MA is to induce "relaxation" via fluctuations in
the hyperfine interaction. This happens due to two
reasons: (i) when the vacancy jumps from a nearest-
neighbor site to a non-nearest-neighbor site (i.e., a nonas-
sociated state) both the isomer shift and the quadrupolar
interaction vanish; (ii) when the vacancy jumps within the
nearest-neighbor shell of the MA (i.e., the associated
states) the quadrupolar interaction changes form although
the isomer shift stays constant. Thus the line shape now
should be identical with that due to interstitial diffusion
in the vicinity of the MA, a mechanism that is important
in other systems. '

Setting w2 ——0 we obtain from Eq. (2.39)

A;+ =6wi, A; =4wi, C;+ =1, C; =0,
which from Eq. (3.18) imply that

B) ——B2 ——B3p ] — 2 — 3

(H4+H5 )
( M,'

i
( U(s, k) ),„ i M, ) =5

M, M,

independent of M, .
Substituting Eq. (3.21) in Eq. (3.11), we have

(H4+H5)
cr, (k, co) = Re +~M M (k)2M Hi

e

(3.21)
Hence from Eq. (3.17),

H& ——0, H& ——H3 ——Ao ~

A, —w)

s +v+6k

(3.25)

(H4+Hg )

H)
(3.22)

V —Wi
H) ——1—

S —g

w&(s —y)+(v —w&)(A, —w&)
GO

s +v+6K,

(3.23)

where the last step follows from Eq. (3.15).
Now, it may be easily checked that Ap given in Eq.

(3.20) is identical with G defined earlier in Eq. (3.27).
From Eqs. (3.18) and (3.19) then follows that

Ap ——6
s +v+ 6w ) + b,(I)—

fi 1
2 +

s —p
s+v+6w&+ b(I) +Q /A'—

(3.26)

Again we find from Eq. (3.16) that all the off-diagonal
elements of (U(s, k)),„are zero and all the diagonal ele-
ments are equal; Eq. (3.21) and hence Eq. (3.22) still hold
good but now [cf. Eq. (3.18)]

Next, from Eqs. (3.17) and (3.20), Using then Eq. (3.22) the line shape is given by
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v —w, u, (s —y)+(v —w, )(X—w, )o, (ken) = Re ' 1 — —Ao7' S —f s +v+6k
PN SA A, —W1

+~0 5 A+INs —y s +v+6K,
(3.27)

where Az is to be obtained from Eq. (3.26). Apart from a rescaling of the rate parameters (necessitated by a change to
the bcc system) the result (3.27) is identical to the line-shape formula derived earlier in the context of interstitial motion
(e.g., of carbon) in bcc iron. '

3. wq ——0 and w3 ——0: Pure quadrupolar relaxations

f 1
Re 6 Ap-

7TR S —f
1o, (k, co) = Re 1 —w, Ao-

7Tfi S —f

Here we ignore the exchange motion as in Sec. II B 2 above; in addition, we restrict the motion of the vacancy to the
nearest-neighbor shell of the MA (i.e., the associated states). Therefore, the only effect to be considered is that due to
random changes in the direction of the electric field gradient leading to quadrupolar relaxations.

The line-shape expression relevant to the present instance is again given by Eq. (3.27) in which we have to additionally
set w2 ——v=0, and p„=—,', p~ ——0 [cf. Eq. (2.10)]. Thus,

—1 —1 —1

1 1Ap— —6w1
6 S —P

Re s + b,(I)+-l /A'

7Tj6
s +6w)+ b,(I)—(3.28)

Equation (3.28) yields the result derived by Tjon and
Blume in an equivalent situation. '

IV. NUMERICAL CALCULATIONS

The analytical results for the hssbauer emission spec-
trum are quite complicated even for the simple cubic lat-
tice. We therefore have performed numerical calculations
for the three cubic lattices. We shall discuss the general
procedure, but for the sake of brevity present results for
the fcc lattice only.

The general problem is the calculation of the matrix

U(s, k)= sI (ilfi) g V&FJ——Wk.
J

(4.1)

~~w) 3

2

as defined already in Eq. (3.13). U(s, k) acts on the spin
in the excited state of the Mossbauer nucleus and on. the
environmental states. For our stochastic jump model
there are Z+1 environmental states and for the case of

Fe (I, = —,
' in the excited state) there are four spin states.

Thus U(s, k) is a complex 4(Z+1)-dimensional square
matrix. To calculate the emission spectrum U(s, k) has to
be evaluated for each frequency co and emission direction
k, then averaged over the environmental states according

to Eq. (3.14) and multiplied by & „given in Eq. (3.15)
e e

for I = —,.3

First, we have to set up the matrix 8'z which describes
transitions between different states in the environmental
space. For the sc lattice 8'z has been presented in Sec. II;
for the bcc and fcc lattices we follow similar rules for the
construction. The geometry of the nearest-neighbor (NN)
shell is sketched in Figs. 5 and 6 for the bcc and fcc lat-
tices, respectively. In Table I we have collected some
relevant parameters of our model for the three cubic lat-
tices. The number of sites in the NN shell of the MA is
Z. The rotation of the vacancy in the NN shell proceeds
via next-nearest-neighbor (NNN) jumps in sc and bcc lat-
tices, and via NN jumps in fcc crystals. Xw is the num-

W)

ber of sites in the NN shell which can be reached from
one particular NN site by a w1 jump, and N is the num-

W3

ber of non NN sites reached by dissociation jumps with
rate w3 from a NN site. Association jumps to a NN site
with rate w4 can originate from the same number of non
NN sites. Due to the different rates for dissociation and
association jumps the matrix 8'1, is not Hermitian. The

2

5
V /

) !

2

FIG. 5. Enumeration of the NN sites of the MA () in bcc
lattices and vacancy (0) jump frequencies in the NN shell of the
MA.

FIG. 6. Enumeration of the NN sites of the MA () in fcc
lattices and vacancy ( ) jump frequencies in the NN shell of the
MA [five-frequency model of LeClaire (Ref. 9)].
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TABLE I ~ Characteristics of jump model in cubic lattices.
(For an explanation of symbols and abbreviations see text. )

Lattice Type of w& jump N N

sc
bcc
fcc

6
8

12

NNN
NNN
NN

28
36
52

dimension D of the matrix U(s, k) is also given in Table I
for the case of Fe (I,= —', ), i.e., D =4(Z + 1).

Second, the hyperfine interaction V& induced by a va-
cancy on a NN site j (j= 1 to Z) is calculated according
to Eq. (3.1). For j =Z+1, i.e., the environmental state
with no vacancy in the NN shell, the hyperfine interaction
is set equal to zero.

To perform the matrix inversion of the non-Hermitian
complex matrix inside the brackets in Eq. (4.1) we used
the Harwell Library Routine MA23BD. The results were
checked by multiplying the original matrix with the in-
verted one. They proved to be very reliable, the deviation
of the product from the unit matrix was of the order of
the computer accuracy in double precision for a single
matrix element.

To generate a Mossbauer spectrum as shown, e.g. , in
Fig. 7, we have calculated U(s, k) for typically 101 dif-
ferent frequencies and 41 emission directions in the [ 110I
plane (azimuth angle /=45') varying the polar angle 8
from 0' ([001] direction) to 90' ([110]direction).

We will now discuss the results for various choices of
the vacancy jump rates and the hyperfine interaction pa-
rameters. In Table II we have collected the parameters
used in the calculations.

1

0.9
0.8
0.7

0.6
0.5
Q 4

0.3
0.2

c3

0, 1

0.
/

(a)

jii IIII llil ~~ Iill IIII Il III

90

81

72

63

27

18

1

, 0.9
. 0.8
. 0.7

. 0.6
0.5
Q 4

. 0.3

. 0.2

0. 1

, 0
O

A. Pure diffusion broadening

Figure 7 shows the Mossbauer emission spectrum for
the self-diffusion case with hyperfine interaction set equal
to zero. The three-dimensional plot, Fig. 7(a), shows the
intensity cr(9,co) on the z axis, the frequency co —coo (in
units of the natural linewidth I o) on the x axis, and the
polar angle 0 on the y axis. The intensity is normalized
such that the integral over frequencies is equal to ~/2.

0 2 4 6 8 10
4J-4)o

(b)

FICx. 7. Mossbauer spectrum o.(O, co) as a function of emis-
sion frequency co and emission angle 0 in the (110) plane. The
parameters are chosen to describe pure diffusion broadening for
self diffusion in an fcc lattice (see text and Table II). (a) Three-
dimensional plot: o., z axis; 0, y axis; co —coo, x axis. (b) Con-
tour plot for intensity values calculated according to Eq. (4.2) ~

TABLE II. Parameter sets used for spectra shown in the figures. All figures are for fcc crystals with
cubic1attice constant of Al, a =0.413 nm, and y ray of ' Fe,

~

k
~

=72.97 (nm) ', I o ——4.67X10 e&.

r,
Figs. HWHH (mm/sec) azr, g zr, ~, zr, ~,zr, ~, zr. W4/I O

7,8

9,10
11
12
13
14
15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

10
2
2
2
0
0.5

130

10
2
2
2

10
2
6

10
5~10—'

0.1

2
10

5 &&10
—'

0.8

10
5~10—'

0.1

2
10

5 ~ 10-'
30

10-4
0.1

0.1

0. 1

0.1

0. 1

8X10—4
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Figure 7(b) shows a contour plot of the intensity in the
(to, 8) plane. The contour lines shown are for intensity
values calculated according to

o.; =(a;„+e)a',
a =(o,„. E—)/(tr;„+ e),

(4.2)

where a;„and o.max are the minimum and maximum of
the intensity for the shown spectra, and e=3 X 10 . The
actual values are listed in Table III. The same arrange-
ment is used for the graphs that follow. We shall use the
Mossbauer line of Fe and the fcc Al lattice as reference
systems, i.e., we use

~

k
~

=72.97 nm ' for the wave vec-
tor and a =0.413 nm for the cubic lattice constant. The
jump frequencies for Fig. 7 are chosen to be w; =10 I o
(i =1,4) (I 0 is the natural linewidth). The average vacan-
cy concentration is set to c„=10 . This means that the
average rate of formation of a NN-vacancy —MA complex
which is given by 7w4c, is of the order of the natural
linewidth. This rate essentially determines the diffusion
induced linewidth. As discussed before, " the anisotropy
of the additional linewidth is due to the discrete jump vec-
tors in the underlying lattice which can induce only cer-
tain phase shifts of the emitted y ray. Thus as a function
of the wavelength and emission direction the width is a
periodic function in the reciprocal lattice. Whenever the
Ewald sphere of the emitted y ray comes close to a
reciprocal-lattice vector of the diffusion lattice the
diffusion-induced width goes to zero and the emitted line
has the natural linewidth I o. In our case this is best ful-
filled for 0=37' where the intensity plot shows a high
maximum at co =duo.

Previously, ' this model was only treated for the case
of w& being much larger than any other vacancy jump fre-
quency. As discussed by Mantl et al. ' the model then
cannot describe correlation between successive jumps of
the MA. A vacancy entering the NN shell of the MA is
quickly redistributed among all NN sites before any other
jump can take place. Thus the direction of a particular
jump of the MA is independent of the previous jump
directions. In our more general treatment correlation ef-
fects are included since we can allow for different orders
of magnitude of the jump frequencies and keep track of
the motion of the vacancy in the NN shell. The effect can
be seen in the anisotropy of the linewidth yielded by the
present calculation. We have obtained the anisotropy of
the diffusion induced linewidth by computer fitting a
Lorentzian line to the calculated spectrum, one for each

emission direction, and subtracting the natural linewidth.
It should be mentioned that also for small vacancy con-

centrations c, the spectrum actually consists of two
Lorentzian lines. ' One line is the so-called "no-vacancy
line" which for the chosen parameter values carries the
overwhelming part of the intensity, namely 1 —12c„. This
is the line to be compared to the encounter model. ' ' '
The other line is the "associated-vacancy line". It carriers
only an intensity 12c„, and its linewidth is directly pro-
portional to the vacancy jump rates (without the factor
c, ). This line is due to the local motion of one particular
vacancy in the NN shell of the MA, and it is missed in
the encounter model. '

Figure 8 shows the results of the one line fit compared
to the results for the encounter model with the same jump
frequencies and vacancy concentration. ' As can be seen,
the two approaches show reasonable agreement. Minor
differences are due to the fact that in our present model
the diffusion path of a vacancy is followed in detail only
in the NN shell of the MA, whereas in the encounter
model all paths are considered. On the other hand, the
present treatment allows for interference of diffusional
broadening with hyperfine interactions which we will now
consider.

B. Diffusion and fluctuating hyperfine interaction

l. Isomer shift

With our model we can treat the influence of isomer
shift for a more general choice of jump frequencies than
was done in the paper by Mantl et a/. ' Throughout the
treatment we shall set the isomer shift 6=2I 0 in order to
clearly separate the emission line of static MA s being as-
sociated with a NN vacancy from that of MA's without a
vacancy. We have calculated the spectrum for the same
vacancy jump frequencies and concentration as used for
Fig. 7, which describes self-diffusion. The spectrum turns
out to be indistinguishable from Fig. 7, which at first

o

a a
TABLE III. Parameter values for contour plots.

Fig.

7(b)
9(b)

11(b)
12(b)
13(b)
14(b)
15(b)

~min

0.0103
8.547 X 10-'
8.635 ~ 10
8.643 X 10-'
0.022
0.0158
9.962 X 10

max

0.9561
0.6053
0.7039
0.9252
0.4433
0.4972
0.8506

0.003
0.003
0.003
0.003
0.003
0.003
0.003

1.2521
1.23136
1.2407
1.2587
1.16297
1.18774
1.2461

8 (deg)

7Q

FIG. 8. Anisotropy of the diffusion induced linewidth as a
function of emission angle 0 {asterisks). The linewidths are ob-
tained by fitting a single Lorentzian line to each of the spectra
presented in Fig. 7. For comparison, the results of the en-
counter model calculation {Ref. 17) for the same parameters are
shown {solid line).
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sight might be surprising. But one can notice that the
weight of the isomer shifted line determined by the ratio
7w4/c, /w3 ——7c„ is small (=10 ) and the fluctuation
rates w3 and 7W4c„are comparable to the magnitude of
the isomer shift. As is well known in this case, the isomer
shift is nearly averaged out and a single line is obtained
whose width is determined by the ratio of the magnitude
of the isomer shift to the fluctuation rate. For large fluc-
tuation rates the additional width goes to zero and a line
with the natural linewidth 1 0 emerges (motional narrow-
ing' ). The average isomer shift is nearly zero because of
the small weight of the isomer shifted "associated" states.

To obtain separate lines we have to lower the fluctua-
tion rates and increase the weight of the isomer shifted
line. For this purpose we have chosen c, =0.1, then the
weights of the isomer shifted associated states and of the
nonshifted nonassociated state are almost equal. The va-
cancy concentration c, =0. 1 is probably already beyond
the limit of validity of our truncated model (which
neglects association of more than one vacancy in the NN
shell), and we have used such a high value only for clearer
representation of the effects. Figure 9 shows a spectrum
with isomer shift. The jump frequencies governing the
vacancy motion in the NN shell are w&

——w2 ——6=21 p.
These jumps do not contribute to the fluctuation rate of
the isomer shift, i.e., to the mixing of the lines, but they
determine the anisotropy of the width of the isomer shift-
ed line since they enter decisively in the diffusion kinetics
of the MA (see below). The dissociation and association
rates are w3 ——W4 ——0.005I p and the vacancy concentra-
tion is c„=0.1. With these parameters the weights of the
associated and dissociated states are 12pp:,&:05454

5and p& ——» ——0.4545, respectively. The fluctuation rates
are small compared to the magnitude of the isomer shift.
In Fig. 9 one can distinguish two lines, one at Q)~ —ct)p 0
and one at co2 —cop 6=2I p. Figure 10 shows the widths
of two Lorentzian lines fitted to the calculated spectrum
of Fig. 9. The shifted line shows a strongly anisotropic
width induced by the diffusion jumps of the MA. Like in
the case of pure diffusion the magnitude of the diffusion
induced anisotropic width is determined by the vacancy
jump frequencies in the NN shell of the MA. For our
choice of parameters it is comparable to or even larger
than the natural linewidth I p. The unshifted line which
is due to the nonassociated MA's does not have an aniso-

tropy of its own, the apparent anisotropy comes from the
overlap with the shifted line for the vacancy-associated
MA'. s This can be shown analytically in the limit c, «1
and w3 «w2 «wl from the results of Ref. 1.
The width of the unshifted line (nonassociated stage) is
then given by
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FIG. 9. Mossbauer spectra including isomer shift and dif-
fusion broadening for the parameters listed in Table II. Ar-
rangement of plots as in Fig. 7.

I ~=l p+84C„W3

and the width of the shifted line (associated state) is

(4.3)

I z ——I o+7w3+ w2[1 —s (k)] . (4 4)

By increasing the association and dissociation rates the
clearcut distinction between the two lines is lost since gra-
dually motional averaging begins. This can be seen in

9 (deg)
FIG. 10. Computer fit of two Lorentzian lines to each of the

spectra shown as a function of emission angle in Fig. 9. Dif-
ferent symbols refer to different properties of the lines: &, loca-
tion; ~, width; +, weight. Solid lines refer to the associated
state; dotted lines to the dissociated state.
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Figs. 11 and 12. For m3 ——m4 ——0.1I o the MA most prob-
ably changes the association state during the lifetime of
the excited state. Thus the spectrum in Fig. 11 shows a
dynamically averaged isomer shift. The averaging is not
complete for the chosen parameters as can be seen from
the remaining asymmetry of the spectrum. In this case
the spectrum cannot be represented by a superposition of
Lorentzian lines. For F3 ——m4 ——2I 0 the fluctuation rate
of the isomer shift is so large that the spectrum in Fig. 12
shows complete averaging. It only contains symmetrical
lines centered at (5 ) =pz 6&0, with diffusion induced
anisotropic width.

2. Quadrupole interaction

We now discuss the influence of the quadrupole interac-
tion, for the spectra shown we use Q =21 o and b, =2I 0
or b, =0. The quadrupole interaction induces a splitting
of the associated line into a doublet. The spectrum con-

sists of a line centered at coo resulting from the MA's not
associated with a vacancy during the emission of the y
ray and an isomer shifted doublet at co~ —coo ——b.—3Q and
co2 —coo ——b, +3Q resulting from the MA's with a vacancy
in the NN shell. The doublet is anisotropically broadened
due to the diffusion jumps in the MA. This can clearly be
seen in Fig. 13 where we have used 6=0, c, =0.1, m& ——0,
m2 ——10I o, and w3 —M4 —0.01I 0.

As can be seen from the contour plot the anisotropy is
different for the two components of the doublet, i.e., the
spectrum is asymmetric although b.=0. This comes from
the interference of the anisotropy induced by the quadru-
pole interaction (the emission line looks different along
the axis of the electric field gradient and perdicular to this
axis ) and the phase shifts induced by the diffusion jumps.
One could term this asymmetry effect the diffusion in-
duced "dynamic" Goldanskii-Karyagin effect' in analogy
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FIG. 11. Mossbauer spectra showing partial averaging of iso-
mer shift due to larger association and dissociation rates (for pa-
rameters see Table II).
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FKJ. 12. Mossbauer spectra showing complete averaging of
isomer shift due to very large association and dissociation rates.
The lines are centered at ( b, )&0 (for parameters see Table II).
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FKs. 13. Mossbauer spectra including quadrupole interaction
and diffusion broadening for the parameters listed in Table II.
Arrangement of plots as in Fig. 7.

FIG. 14. Mossbauer spectra showing diffusion broadening,
isomer shift, and partially averaged quadrupole interaction due
to slow rotation of vacancies in the NN shell of the MA (for pa-
rameters see text and Table II).

with the asymmetry caused by anisotropic vibration am-
plitudes of MA' s.

There are two mechanisms in our model for the relaxa-
tion of the quadrupole interaction. First, the fluctuation
of the magnitude due to association and dissociation
jumps of vacancies just as in the case of isomer shift.
Secondly, the fluctuation of the direction of the axis of
the field gradient due to rotational jumps of vacancies in
the NN shell of the MA. For the spectrum shown in Fig.
13 both mechanisms are ineffective because the fluctua-
tion rates are too small. Figure 14 shows a spectrum for
6=210 and w&

——0.510&Q=I O. The quadrupole in-
teraction is partially averaged by the rotation jumps but

the isomer shift is unaffected since
w 3 —w4 —0.005I o &(h. The spectrum shown in Fig. 1 5
is calculated with the parameters obtained' for the dif-
fusion of Fe in Al (see Table II), and in addition, assum-
ing b, =21 0 and Q =21 0. As can be seen, the quadrupole
interaction is completely averaged out due to the large ro-
tational jump rate of the vacancies w&

——130I 0. On the
other hand, the slight asymmetry of the spectrum shows
that the isomer shift is not completely averaged due to the
relatively small association and dissociation rates. How-
ever, the measured spectra are symmetric. This means
that in the actual system Fe in Al the isomer shift due to
a NN vacancy must be less than 2I &.
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FIG. 15. Mossbauer spectra for vacancy jump frequencies
obtained (Ref. 1) for diffusion in Fe in Al, in addition including
isomer shift and quadrupole interaction (for parameters see
Table II). Fast rotation of vacancies in the NN shell of the MA
leads to complete averaging of the quadrupole interaction;
averaging of the isomer shift is incomplete.

V. DISCUSSION AND CONCLUSIONS

With our model we can describe the Mossbauer emis-
sion spectrum considering the influence of diffusion of
the MA and of fluctuating hyperfine interactions induced
by vacancies. The results for single crystals show aniso-
tropic diffusion broadening of the Mossbauer spectra and
motional narrowing of the hyperfine interactions, depend-
ing on the magnitude of the vacancy jump frequencies in-
valved. The anisotropy depends on the lattice structure;
explicit calculations are presented for sc lattices (analyti-

cal) and fcc lattices (numerical calculations).
It turns out that in the systems investigated experimen-

tally so far, e.g., dilute metallic alloys like Fe in Al at
high temperatures, ' the relaxation of the hyperfine in-
teractions cannot be detected for two major reasons: (i)
the vacancy concentration is too small, and (ii) hyperfine
interactions of reasonable size (comparable in magnitude
to the natural linewidth) will be averaged out by the rela-
tively high vacancy jump rates. Thus we have confirmed
the applicability of the analysis neglecting hyperfine in-
teractions used to interpret experiments on diffusion
broadening at high temperatures. ' Only in systems with
NN vacancy concentrations in the percent range at low
temperatures (small vacancy jump rates), can all the
features of the model be detected since then the intensity
of the lines carrying the characteristics of the vacancy-
induced hyperfine interactions is strong enough.

Such systems might be (partially) ordered nearly sto-
choimetric metallic alloys of B2 structure like Fe-A1, Pd-
Si, Co-Ga, or of DO3 structure like Cu3Sn which contain
a large concentration of structural vacancies to compen-
sate for nonstoichiometry. The question of if and how
these structural vacancies participate in atomic diffusion
is still open to discussion. Other systems with high va-
cancy concentration on the metallic sublattice are
transition-metal oxides like FeO with oxygen excess. '

We suggest that measurements of the Mossbauer emis-
sion spectra in these systems at low temperatures should
be made. The results could be interpreted with our
theoretical model and should reveal details of the kinetics
of atomic motion, in particular, if systems with large
vacancy-induced hyperfine interactions are investigated.

Other nuclear methods like perturbed angular correla-
tion (PAC), NMR, and P-NMR, can also be used to
investigate the relaxation of vacancy-induced hyperfine
interactions. However, these methods lack the direct in-
formation about jump geometry via the anisotropy of the
linewidth. The theoretical treatment proceeds along simi-
lar lines as presented here for the case of the Mossbauer
effect, e.g., a review can be found in Ref. 18.

Recently, the Mossbauer effect has also been applied to
study the dynamics of biologically relevant protein sys-
tems like hemoglobin. The model description of the
influence of the protein dynamics on the Mossbauer spec-
trum contains features analogous to the vacancy jumps in
our model: fiuctuation of the main axes of the electric
field gradient responsible for the quadrupole interaction,
change of the magnitude and/or symmetry of the hyper-
fine interactions, and displacements of the Fe atom in the
complex due to change of the configuration have been
considered. This suggests that our model could be adopt-
ed for the interpretation of Mossbauer emission spectra of

Fe from such systems.
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APPENDIX A: PURE DIFFUSIONAL EFFECTS
IN THE sc STRUCTURE

We furnish here the steps leading to Eq. (2.26) in the
text. We may recall from Eqs. (2.21) and (2.22) that our
basic task is to compute the matrix elements of Pz(s)
upon inverting the matrix (sl —W~), and then evaluate
the sum over a and P. This is performed by splitting the
matrix W q into four terms and exploiting certain proper-
ties of these terms, as indicated below. Similar strategies
had been employed in Ref. 15.

Using Eqs. (2.5) and (2.25) we may write from Eq.
(2.24)

Wq ——Wq+wi Wi+(v —w&)Wz+(k —wi)W3,

where

(a
I

W
& I

P) = 1 (independent of a and P),

(a
I

W'2 IP)=6~& (independent of P),

(a
I

W3
I
P)=5~& (independent of a),

and the matrix W i, is a 2 X 2 block matrix given by

(A 1)

(A2)

(A3)

(A4)

—y'
—i5)

(w, e —wl)

—1

i5)
(w2e —w))

—r'
—i52

(w2e

0
i52

(w2e —w~)

0 0
i53

(wpe —w[) 0
—i5

(w2e —w) )
3 —y'

0 y

(A5)

In Eq. (A5) g Ia)(a
I

=1 . (A 10)

5; =k.r;, i =1,2, 3 (A6)

1 1 1 1 1 1 1—=—+ (B A—)
——=—+ (B—A )

——
B B — — 3 B 3 — — B (A7)

we may write from Eqs. (2.21) and (Al),

and y and y' are defined in Eqs. (2.30) and (2.31). Using
the operator identity:

Employing next the properties of the matrices W& and
W'2 as given in Eqs. (A2) and (A3) we obtain

y(a I
Pk(s)

I P)pp /{a I

P'
I
P——)pp

a, p a, p

+ g (a IP'
I
a')[wi+(v —wi + x]

a, a'

P~(s) =P'+P'[w
&
W &+(v—w& ) W2]P~(s),

where

P'=—[s —Wq —(A, —w& ) W3]

(A8)

and therefore,

g(a IP~(s) IP)pp

X g (p'
I
P~(s) I p)pp

p, p'

Note that we have not indicated the k and s dependence
of P', for the sake of brevity. Equation (A8) allows us to
write

g (a
I
P~(~) I P)pp

a, p

= g (a
I

P'
I i3)pp

a, p

a, a'

+(v —w~ ) g (a
I

P'
I
N) ' g (a

I

P'
I P)p~ .

a, p

(A 1 1)

a, p

+ g (a IP'Ia')
a, p, a', p'

X(a'
I [w& W&+(v —w&)W2] I

p')

x(p'
I Pg(~) I 13)pp, P' =Po+ P'[( A, w& ) W 3]PO, — (A12)

Thus the left-hand side of Eq. (Al 1), required in the line-
shape computation [cf. Eq. (2.22)], is determined com-
pletely in terms of certain matrix elements of P'. Our
next step is to write P, using again the identity in Eq.
(A7), as

where in the second term on the right we have used the
completeness relation:

where [cf. Eq. (A9)],

Po= (s —Wg)— (A13)
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The strategy then is to calculate the terms involving P' in
Eq. (All) in terms of the matrix elements of Po. First,
note that

g(a LP'(X)= g(a (P )X)

+ g (a
~

P'
~

a')(A, —w, )(X
L

Po L», Third,

(A18)

Second,

2 (& IP'
I
a) = 2 (a IP' l»=(~

I

P'I m) =(s —y)-' .

a, a'

where we have used Eqs. (A4) and (A12). Next,

(A14)

and

g (a
~

Po
L

a') =G
a, a'

(A19)

g (a
~

P'
L

a')= g (a
~

Po
L

a')
a, a'

and therefore,

a, a'

a, P, a'
(a

i

P'
L

P)(A, —wi)(X
L

P
i

a')

g (a
L

P'
~

a') = 1 —g (Aw, .—)(X
L

P
~
f3)

a, a' P

g(a IPo In)p, =(Go&, (A20)
a, P

where G and (G & have been defined in Eqs. (2.27) and
(2.28), respectively. In computing the left-hand sides of
Eqs. (A19) and (A20) we have made use of the fact that
Wl, can be split into block matrices [cf. Eq. (A5)], the
largest being of dimension 2X2 only.

Collecting all the pieces together, we obtain [cf. (A15)]

Xg(aLP La').
a, a'

(A15)
(A, —w&)

(s —y)g (a
L

P'
L

a')= 1— 6—o (s —y) —oG
(s +v+6K, )

(A21)

a, P a, P

+ g (a
L

P'
L

a')(A, —w&)
a, a'

This expression may now be substituted in Eq. (A14). Fi-
nally

X (a
I

P'
I
P)pp= g(a I

P'I &)pp

Equation (A14) then yields

(A, —w& )(s —y)g(a'~P'~X)=(s —y) ' + G
s +v+6k.

x g(x
~

P'LP)p, , (A16)

where the term involving P is given in Eq. (A15).
Thus we find that all the relevant terms in Eq. (All)

are calculable in terms of the matrix elements of P .
Now, Po is given by Eq. (A13) where the matrix Wk is
indicated in Eq. (A5). Using the latter we evaluate below
the required terms involving P . First,

Finally, from Eq. (A16),

(A. —wi )g(a LP LP)p, =(G'&+ G'p~,
a,P s +v+6k, (A23)

where we have employed Eq. (A21).
Substituting Eqs. (A21)—(A23) in Eq. (All) we arrive

(K
i

Po
i
»= (s —y) (A17) at

g (a
i Pz(s) i P)p& —— 1—

a, P

V —Wi

S —P

—1

w, (s —y)+(v —w& )(A, —w& ) 1,—Ni«'&+p.
s +v+6K, s +v+6K,

(A24)

Equation (A24), put together with Eq. (2.22), yields Eq.
(2.26), quoted in the text.

APPENDIX B: COMBINED EFFECTS OF DIFFUSION
AND HYPERFINE INTERACTION

IN THE sc STRUCTURE

I

have to invert a 28 X 28 matrix, since there are four angu-
lar momentum indices and seven stochastic indices. How-
ever, the operations within only the stochastic 'space' can
be carried out in an exactly analogous manner as in Ap-
pendix A. Thus, parallel to Eq. (A24) we now derive

(U(s, k)),„=g (a
i

U(s, k)
L P)p&

a, P

We provide below the derivation of Eq. (3.16). Unlike
the treatment given in Appendix A the required matrix
U(s, k) [cf. Eq. (3.13)] is now labeled by nuclear angular
momentum indices as weIl, since VJ is a quantum opera-
tor. As mentioned earlier, in order to compute U(s, k) we

V —LU]R= 1—
s —y

wi(s —y)+(v+wi)(A, —wi) ~0
s +v+6K,

=~-' (Uo&+p U'
s +v+6K,
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where

a, P

where, however, U and ( Uo ), unlike G 0 and ( G 0 ), are
quantum operators. They are defined by

U =—g(a~ U ~P),
a, P

(82)
Q, =s+(i/R)[b, (I)+Q(3I„'—&')],

522 =s + (i /fi) [b(I) + Q (3' —I )],
A3 —s +(i /A)[b(I)+Q(3I, —I )]

(85)

of (Uo) ' within that space can be in Eq. (84) (displayed
on opposite page), where

Uo= s —LVk ——g V&F&

)
(83)

Retaining the operator character of Vz and restricting
attention to the stochastic space only, the matrix elements

Although Q1, 02, and A3 are noncommuting operators
they may be treated as C numbers as far as manipulations
of the matrix in Eq. (84) are concerned in view of its spe-
cial block nature. Thus

—3

(&)+y')
—i5)

Dl (w2e —wl )

—1
i5)

(w2e —wl )

(&1+y')
i52

(&2+y') (w2e —w& )
—i52

(w2e ' —w l ) (n2+ y')

—3

i53(+3+y') (w2e w& )
—i53

D3 (w2e ' —w~ ) (03+y )

0

(s —y)

(86)

where

D; = (0;+y') —( w f +w 2
—2w ~ w2cos51 )

I

+ +
where 3 1- and C& have been defined earlier in Eq. (2.39).
Next, we may decompose either term in the right-hand
side of Eq. (810) as

Using Eq. (86) it is evident from Eq. (82) that

3

U =2 g [0;+v+4w& +w2(1+cos5; )]/D; +(s —y)

and
3

( Uo) =2p„g [ 0;+v+4w)

(88)

C; /(v+0;+2; )=C; /(q; + V;),
where q;

—have been defined in Eq. (3.18) and

V~ ——Q(3I; —I ), i =x,y, z .

Observe now the interesting property that

V; =9Q

(811)

(812)

(813)

+wp( 1 —cos5; )]/D; +p~(s —y)
for I = —,'. This permits us to simplify Eq. (Bl1) by a
direct power series expansion, as

(89)
Equations (88) and (89) may be contrasted with Eqs.
(2.27) and (2.28) in the text.

At this stage it is well to recognize that U and ( Uo)
are just quantum operators which have a 4&&4 matrix rep-
resentation since the nuclear angular momentum is —,

' in

the excited state. It is possible then to make further sim-
plification in the analysis upon exploiting certain symme-
try properties of the quadrupolar Hamiltonian in Eqs.
(3.6)—(3.8) for I = —,, as shown below.

First, note that

[Q;+v+4w~ +w2(1+cos5;)]/D;

C;-/(v+ A;+ A,-)
= C;-(q;——(i/&) V; )/((q; —)'+9(Q/&)') . (814)

3
2

3

2
1

2

0 v 3/2

3
2

1

2
3Q 0

0

0 v 3/2

Therefore, the matrix elements of U and ( Uo) can be
simply read off from the known matrix elements of V;,
which are listed below. Using the properties of angular
momentum operators, we have

=C;+/(v+0, +A,+)+C; /(v+0, +A, ),
(810)

3

2

v3/2 0 1

2

0 v3/2 0 l
2
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O O O O O O

0

1

2 0
]
2

0

—V3)Z

0

0

—~srz
0

O O O O.»

!

I o 0 —v3yZ 0 1

2

+'~ O

I

1 0 0 0
0 —1 0 0
0 0 —10
0 0 0 1

(815)

B

O O - + O O O

I

O + ]

!

O O O

I

!

I

+ O O O O O

H)
0

R=

and hence

0

0 H2 0

H3 0 Hp

0 H3 0

H2 0 Hi

(816)

Using Eq. (815) the matrix elements of U and (U )
within the angular momentum space are easy to write
down, upon employing Eqs. (88)—(810) and (814). The
next step is to go back to (Bl) and construct the matrix
elements of (U(s, k)),„. This task requires the inversion of
the matrix R in Eq. (Bl). Although the said matrix is of
dimension 4)&4, its structure is sufficiently simple to per-
mit easy inversion. Thus we find

+

I

O O O O O
R '=(H~H3 Hp)—

H3

0
—Hq

0

H)
0

0

H)
0

0

H3

(817)

I I I

The quantities H~, H2, and H3 have been defined in Eq.
(3.17) in the text. Once we have Eq. (817), evaluation of
the matrix elements of (U(s, k)),„ from Eq. (Bl) merely
involves multiplication of a few 4)&4 matrices. After a
bit of algebra we arrive at the eight nonvanishing elements
listed in Eq. (3.16) of the text.
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