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Energy-loss probability in electron microscopy
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New general results on the self-energy of fast electrons interacting with metal surfaces are
presented with emphasis on the energy-loss problem in electron microscopy. Some applications to
both spherical and planar targets are considered. Our results are relevant to the understanding of
inelastic electron scattering near small structures, at the nanometer scale.

In the past few years new developments and applica-
tions of the scanning transmission electron microscope
(STEM) have stimulated renewed interest in the interac-
tion of high-energy electron beams with surfaces and with
small particles.! ™ In a typical STEM configuration a
well-focused 0.5-nm probe of 100-keV electrons provides a
high-resolution transmission scanning image for samples
with complex structure such as catalyst or semiconductor
devices. It also yields, from selected local regions of the
structure, x-ray-emission spectra and electron-energy-loss
spectra. Usually the classical theory of energy loss has
been employed to analyze the experimental energy-loss
spectra, both for planar and spherical geometries. The
free-electron model for spherical targets, originally used
by Fujimoto and Komaki® in broad-beam geometry, has
been applied to the focused-beam case by Schmeits’ and
Kohl® but only for the case of dipole or quadrupole exci-
tations. Using a more general formalism Batson® has
identified the resonance frequencies of small spheres and,
very recently, Ferrell and Echenique’ have presented a
manageable formula, including all multipoles, for the case
of a particle moving at fixed impact parameter outside a
dielectric sphere.

In this paper we present a new general approach to the
problem of the interaction of electrons with solid surfaces,
of practical utility in electron microscopy but which can
also be particularly useful in a variety of other problems
involving electrons at surfaces, such as the definition of
an optical potential in low-energy electron diffraction
(LEED) and reflection high-energy electron diffraction
(RHEED),!>!! or in the problem of surface states.!2~!4
Our model is not restricted to the free-electron model for
the medium response. Any local dielectric response func-
tion €(w) can be used.

The mean energy =, of the incoming electron in a state
Yo of energy E, can be written as the average of an effec-
tive potential Vg(r)

So= [ drgd(n)Ve(r)yo(r) . (1)

We use atomic units throughout. The real part of X,
gives us the lowering of the energy of the particle due to
virtual excitations of the medium, and the imaginary part
is directly related to the probability of energy loss due to
the interaction of the particle with real excitations. The
effective potential is written in terms of the nonlocal self-
energy 2(r,r',E) as

Vo0 = [ dr' 3 (r,r',Eq)i(r') . 2)

The self-energy can be written in the pair approxima-
tion!® in terms of the Green’s function G (r,r',w+ E,) and
the causal screened interaction W (r,r',w). The Green’s
function is given as a sum over a complete set 1 ,(r) of fi-
nal states with energy E;. After some algebra we get

1 WF( )1 ) ()i (1)
Zo—vgfdwdrdr ot AE LTS

XIm[W (r,r',0)], (3)

where AE =E;—E; and 8 is an infinitesimal constant.

We are mainly interested in the energy-loss problem in
electron microscopy. A great deal of information is con-
tained in the probability of losing energy w,P,,, a quantity
directly related to the energy-loss rate ¥ experienced by
the particle

L- [dor,, @)

which, in turn, is given in terms of the imaginary part of
the incident electron self-energy: ¥y = —2ImZX, In equa-
tion (4) v is the electron velocity.

We now use Eq. (3) to calculate P, in a number of
cases of practical interest in electron microscopy. We
first consider an electron beam incident upon a metallic
sphere, both for a broad beam and a well-focused beam
geometry. Then we consider planar-geometry configura-
tions. To illustrate our results we perform some numeri-
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cal calculations for an electron beam incident on an Al
sphere. A detailed study of the effects of electron energy,
geometry, beam size, and material on energy-loss proba-
bility will be published elsewhere.

In the case of spherical geometry, we have an electron
beam incident upon a metallic sphere of radius a, with
dielectric response function €(w), located in vacuum. The
screened interaction is obtained from Poisson’s equation
as

Winro=3 2]411 (o) ;12(,’;)11 Y7 (Q) Y ()
r,r'<a,
Wirro)=3 2 B(o) r,l<1Y1’,“,,(Q’)Y,m(Q),
o2l +1 rr
r.<a, ro>a, (5)
Wirro)= 3 —T @ e )Y (Q)

2o 1
rr'>a,

where r _ (r_) is the smallest (greatest) of r,r’, and

)= D=1
! elle+1+1) °
2041
Bilw)= letl 1’ (6)
()= I(1—¢)
VRO =Ty

and Y}, (Q) is the spherical harmonic function.

If we have a broad-beam geometry, i.e., when the width
of the beam is much greater than the size of the sphere,
we use plane waves to describe the incident electron states
and we obtain

P = 4‘;3 _1_ 1 .2

I — §q2{ m[a;(w)]ji}(ga)
+2Im[Bi(@))); 41(qa)j;_(ga)
+Im[y,()]jf—(ga)} , N

where j;(x) is the spherical Bessel function of the first
kind, q=(Q,q,) is the momentum transfer, and » and ¢
satisfy

2

9 _
5 =0. (8)

0—q,V
Equation (7) is new and it is a general expression, valid
for any dielectric function e(w). It cannot be derived
from the formalisms already existing in the literature,
which only apply to the free-electron gas model.”!® The
terms 3, and y; contain the surface plasmon losses; a;
contains both surface losses and corrections to the bulk

losses due to the presence of the surface.!” In the free-
electron gas model for e(w) and if we neglect the recoil
term ¢2/2 in (8), Eq. (7) reproduces the results of Fujimo-
to and Komaki,® and including the recoil term but for for-
ward scattering (g =gq,), it reproduces the results of Bar-
beran and Bausells.

In STEM experiments we are concerned with a well-
focused beam incident upon a sphere of radius a. We
look for the probability of energy loss at a given impact
parameter b. A physical description of this situation can
be obtained if we neglect beam size effects by taking, in
Eq. (3), a & function in the transverse direction and plane
waves in the direction of motion to describe the electron.
Thus we allow momentum transfer only in the direction
of motion. After some algebra we get from Egs. (3) and
(5) for the probability of losing energy « at impact param-
eter b<a

(I —m)! (Alm)z
o) m? & (I4m) | g+ m[a;(w)]
+245, Af, Im[ ()]
+(AI?H)2Im['VI((O)](121+I ,
b<a, 9
where
App= [ dzr'Py, |2 9,,5 , (10)
@ P, (z/r)
0 Im wz
Ain=J oy € | | (1)

where r’=b2+2z% g(x)=cos(x) for I+m even and
g (x)=sin(x) for / +m odd, and P, (x) is the associated
Lengendre function.

When the incident electron moves outside the sphere
(b > a) only the term proportional to Im(y ;) remains and
Eq. (9) can be expressed in a compact manner.” Equation
(9) solves, for the first time, the case of a STEM experi-
ment with a trajectory penetrating a sphere for a general
dielectric constant, and constitutes a very useful tool to
calculate, as a function of impact parameter b, the proba-
bility of losing energy w for any general dielectric func-
tion €(w). In general, many (/,m) terms are necessary and
the dipole (I =1) approximation is only valid when the
electron is far away from the sphere, or for very small
spheres (wa /v << 1), which is not the case in most experi-
mental situations.

To illustrate the use of Eq. (9), we first consider a free-
electron response €(w) and calculate the energy-loss proba-
bility as a function of impact parameter for a 50-keV elec-
tron incident upon a sphere of radius 100 A. We obtain
two terms, one is due to surface plasmon losses and the
other is the correction to the bulk losses due to the pres-
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FIG. 1. Energy-loss probability as a function of impact pa-
rameter b for a 50-keV electron incident upon an aluminum
sphere of radius 100 A. Solid line: bulk mode; dashed line: to-
tal contribution of the first 20 surface modes (X 6); dashed-
dotted line: dipole (I =1) surface mode (X 6).

ence of the surface. In Fig. 1 we show the dipole mode
contribution to the surface energy loss probability, the to-
tal contribution of the first 20 surface modes, and the full
bulk-plasmon energy loss, which is obtained by adding to
the bulk correction term the well-known bulk energy-loss
probability for a classical particle!’

2

[
P’ =2(a*—bH)'?—L1n
2 wp

v

) (12)

where wp is the plasma frequency. Both bulk and surface
probabilities agree qualitatively with the experimental re-
sults.!® The total contribution of the first 20 modes is not
very different from the total surface mode excitation
probability for the sphere radius we are considering.” The
dipole contribution, however, does not show the probabili-
ty enhancement near the surface, which can be seen in the
experimental results.!® Thus many modes are necessary to
appropriately describe the experimental situation.

Now we consider an electron incident axially on an
aluminum sphere. We concentrate on the dependence of
the bulk correction term on the sphere radius a. We take
a free-electron response function. The results are shown
in Fig. 2. The calculation is greatly simplified by symme-
try arguments (i.e., m =0) but for a big sphere radius we
need to include a great number of modes to get good con-
vergence. For small radius the bulk correction depends
linearly on the sphere radius Pwp =7'rza)pa /(4v?), but for a

|
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FIG. 2. Bulk correction to the plasmon excitation probability,

as a function of the sphere radius for a 100 keV electron in-

cident axially on an aluminum sphere. A free-electron €(w)
response function has been used in the calculation.

big radius, it tends, as it should, to the thick-slab result
Pwp =1/(2v) first derived by Ritchie.!” As can be seen in

the figure, the bulk correction shows oscillations in the ex-
citation probability as a function of the sphere radius.
This is a new result which illustrates the usefulness of Eq.
(9). A qualitatively similar behavior showing oscillations
of the bulk plasmon scattering probability for small
aluminum spheres as a function of the sphere diameter
has been recently reported by Batson.!® Further work, ex-
perimental and theoretical, is necessary to achieve a quan-
titative understanding of the oscillations in Baston’s data,
particularly the dependence of the oscillations on the
probe size.

We shall now concern ourselves with planar-geometry
configurations, in which we have an electron beam in-
cident on a semi-infinite medium with dielectric response
€(w), bounded by the plane z =0, and located in the z <0
space region. The screened interaction is obtained, as in
the spherical case, by solving Poisson’s equation.

A well-focused incident beam can be described, as in
the spherical geometry case, by a & function in the trans-
verse direction and a plane wave in the direction of
motion. Then from Eq. (3) we reproduce, for a free-
electron response, the energy-loss results of Nufez
et al.,’° although we obtain a more general result that can
be used with any e(w) response function.

For a general beam configuration, we can take plane
waves in the direction parallel to the surface and a set of
states ®,(z) in the direction normal to the surface. We
obtain from (3)

e—1

1 d*Q
20:;‘”—22‘[ Q fda) )
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+Iml

m

+2Im l—z——
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ite | (0]e%O(—2)|n)|?],




1524

where |0) and | n ) are the initial and final states associ-
ated with motion normal to the surface with energies E,
and E,,, ©(x) is the step function, and AE,=E,, —E,,.
Equation (13) is a general expression which can be used to
calculate several quantities of interest. The first term,
which is the only nonzero term when the wave functions
do not penetrate into the solid, reproduces the result of
Manson and Ritchie?! when their prescription is used to
define a local z-dependent self-energy. Equation (13) can
also be used to calculate the binding energy and effective-
mass correction of an image state at a metal surface, 2~ 14
taking into account the penetration of the wave function
into the crystal.?? It also provides a valuable tool to
evaluate the contribution to bulk losses due to the penetra-
tion}of part of the incident electron packet into the crys-
tal.2

If the electron is assumed to be always outside the solid,
only the first term of Eq. (13) is nonzero. A further sim-
plification might then be achieved by neglecting AE, in
the denominator of Eq. (13). This will give an upper-
bound approximation to 2,. We can then use the closure
relation to sum over intermediate states and obtain a local
z-dependent self-energy using the prescription of Manson
and Ritchie?'

e—1 e 202

e+1

xfdcolm

> .
w+QT—v-Q—i8

(14)

An important new feature of this result is that precisely
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at small distances from the surface, where greater surface
sensitivity might be obtained, recoil effects avoid unphysi-
cal divergences at the origin, which are always present in
the classical treatment.>?*2* Note as well a different w
dependence of the energy-loss function with respect to the
classical solution which only depends on @ through the
term (1+¢)~ 1.

In conclusion, a self-energy formalism has been used to
describe the interaction between the incoming electron
and the target. A very general formula has been derived
for the complex electron self-energy of interest in electron
microscopy, LEED, RHEED, and, in general, in any
problem related to electrons interacting with surfaces. It
also offers much possibility for insight into the problem
of inelastic electron scattering near small structures at the
nanometer scale. The real part of the self-energy defines
the dynamical image potential, while the imaginary part is
directly related to the probability of energy loss, a quanti-
ty directly measured in electron microscopy experiments.
We present here, for the first time, new general formulas
valid for any dielectric response function and thus not re-
stricted to free-electron gas models, both for planar and
spherical geometries and for different beam configura-
tions. Earlier results, when existing, can be easily derived
and the different approximations leading to them made
clear as particular cases of our formulas.
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