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Meissner effect in anisotropic superconductors
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The Meissner effect in non-s-wave superconductors is studied. In contrast to the isotropic s-wave

case, it is shown that even in transverse gauge one must, in general, include contributions from col-

lective modes of the order parameter, in particular the phase mode, in the expression for the screen-

ing currents induced in a superconductor by a magnetic field. Expressions for the screening currents

applicable to the case of heavy-fermion superconductors are given. Anisotropy of London penetra-
tion depth is shown to occur in general for anisotropic superconductors.

The discovery of unconventiona1 superconductivity in
the heavy-fermion compounds' has led to renewed interest
in the properties of non- s-wave superconductors.
Theoretical studies, in various approximations, of such
properties as ultrasonic attenuation, upper critical field,
and proximity and Josephson effects have already ap-
peared. For a critical discussion of this literature see Ref.
2. Here, we add to this literature a microscopic ca1cula-
tion of the linear response for a superconductor in a static
magnetic field. We show that the calculation of the
Meissner effect in anisotropic superconductors differs in
an important and apparently previously neglected way
from the standard calculation used for isotropic supercon-
ductors. We also obtain formulas for the screening
currents in terms of the structure of the gap matrix and
the Fermi surface. We show that for non-s-wave super-
conductors there is anisotropy in the London penetration
depth. Its precise magnitude depends on details. What
can be said in general is that in a cubic crystal, the aniso-
tropy will be largest near T, and will go to zero as the
temperature T~0.

The Meissner effect has been studied previously, but
the expression given for the screening current in Ref. 3 is
incorrect because it omits the contributions of collective
modes of the order parameter. After this work was sub-
mitted, another work appeared in which the Meissner ef-
fect was analyzed using a phenomenological hydrodynam-
ic formalism. The calculation presented here amounts to
a derivation of the formalism of Ref. 4 from a microscop-
ic theory.

It is shown in this work that to ensure current conser-
vation, one must, in general, include all collective modes
in the linear-response kernel, but that in the heavy-
fermion systems, pinning of the order parameter by lattice
and spin-orbit effects combined with the large effective
mass means that the only important collective mode is the
phase mode (except possibly near T =T„as discussed
below). The effects of this mode can be easily calculated,
and shown to guarantee current conservation.

One may understand the necessity of a collective mode
contribution to the current from the continuity equation,
which in the static limit requires that the current be pure-
ly transverse. Now in isotropic s-wave superconductors
one studies the Meissner effect by calculating the screen-

Hp =g E(k)CgaCg& + g [6&p(k)CkpC k& +H. c.] . (2)
k, a k, a, P

Here a, /3 are pseudo-spin-indices (used instead of spin
indices in the presence of spin-orbit scattering in a crys-
tal ) and b, is the gap matrix defined by

b, p(k, q)= —,
' g V(k.p)(C tg2 C,q2 p) .

P

(3)

In (3) k is the relative coordinate for paired electrons (k
is confined to the Fermi surface and so only its direc-
tion is relevant) and q is the center of mass coordinate.

ing currents j induced by a vector potential A. One may
use any gauge. In a transverse gauge, isotropy ensures
that j is also transverse. The screening currents may then
be calculated by the naive linear response in which collec-
tive mode contributions are neglected. In a gauge with
longitudinal components of A, however, the naive
method leads to a longitudinal term in j. As Anderson
first showed, in this case the phase mode gives rise to a
purely longitudinal current which cancels the longitudinal
term in j given by the naive terms. In an anisotropic situ-
ation, even a transverse vector potential will give rise to a
longitudinal term in the current (in the absence of collec-
tive mode terms). A "backflow" collective mode term
must then be excited to cancel this unphysical longitudi-
nal term; but in an anisotropic situation this collective
mode term will not be purely longitudinal. Its transverse
part will then contribute to the physical current.

We now proceed to derive equations for the linear
response of an anisotropic superconductor coupled to a
static magnetic field, which is specified by a vector poten-
tial A(r) which couples to the current density j(r) in the
usual way via a perturbing Hamiltonian

H~= d rAr. jr (I)

We make the standard assumptions of weak coupling
superconductivity, and also assume that the superconduct-
ing order parameter is uniform throughout the material.
Whether the superconductor is spin-singlet or spin-triplet
paired is irrelevant here; the treatment that follows applies
to either case. Within these assumptions we can write an
unperturbed Hamiltonian
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dS~A pk;q Vkp =Voh pk, q (4)

Here dS& is the measure on the Fermi surface (i.e. , up
to a constant, the angle dependent density of states), and
Vo is the strength of the pairing potential.

We assume, as is common in studies of anisotropic su-
perconductivity, that the unperturbed gap matrix is uni-

Note that b, p(k, q) = —hp ( —k, q). In equilibrium
4 p(k, q) =0 unless q=0; hence we write the unperturbed

gap matrix as 5 p(k). V(k.p) is the usual weak-coupling
pairing potential, taken to be spin-independent to save
writing. To study "pure" L,-wave superconductivity in an
isotropic Fermi liquid, one would take V(k p)
= VOPL (k p), with PL (k p) =g [Yz™(k)]YL (p). Here
PL is the order L, Legendre polynomial and the YL are
the spherical harmonics, which form a basis for the angu-
lar momentum L, representation of the rotation group
O(3). In the crystals studied here, the symmetry group is
some crystal-symmetry group, which will have various
representations, which we denote by L. In particular, we
will refer to the case in which the pairing potential and
the gap function are invariant under the full crystal-
symmetry group as s-wave superconductivity. For the
various representations we can define analogs of PL and
YL . We will not need the explicit forms of these func-
tions; we will assume that we have the crystalline analog
of pure L wave sup-erconductivity. The effects of mixing
different Ls have been studied in the case of an isotropic
Fermi liquid and found to be negligible. ' In the crystal-
line analog of the pure J -wave case we have

6 ~(iso —E(k))
G ~(k, co)=

co +e(k) +b, (k)
(5a)

b p(k)F ~(k, co) =
co +e(k) +b. (k)

We now study the system via "self-consistent linear
response, " in which it is assumed that the perturbation (1)
muses also a perturbation in the gap function,
b, ~(k)~b, p(k)+ b,"~(k,q), and hence an additional term
in the perturbing Hamiltonian,

(5b)

H' = g [6, ~ "(k,q)C~ 1~2~ ~C k I/2q, +H c ]
k, q, a, P

Then one studies the response of the system to the com-
bined perturbations (1) and (6), determines the variation in
the gap function self-consistently, and finally computes
the current. This is equivalent to solving diagrammatic
equations for vertex functions in the ladder approxima-
tion.

Straightforward calculations yield

tary in the sense that b, ~(k)bpr(k)=b, (k)6 r. b, (k) is
a number, the magnitude of the energy gap in direction p,
and we denote the average of the gap over the Fermi sur-
face 6 . Unitarity is not a trivial assumption: nonunitary
states can have persistent currents in the ground state,
and hence may have a more complicated response to a
magnetic field than the unitary states we consider here.

It is also convenient to define the Gorkov G and F
functions via

6' ~(k, q) = —g V(k p)[F "(p—1/2q, co)br'~' (p, q)F ~(p —1/—2q, co)
p) co

+ G~r( —p —1/2q, —co)A'r's(p, q)G (p —I/2q, ~)]

+ ~ g V(k.p)p &(q)G "(p—I/2q, —~)F (p+ I/2q, ~),
p) co

r

J(q) = ig V(k.P)P[F~r(P ——1/2q, —co)Ar&'(P, q)G 0(+P—I/2q, co) GBr(P+—1/2q, —co)mrs '(P, q)F (P —1/2q, cu)]
p) co

r, s

p[p.A(q)][G P(p+. I/2q, co)GP (p 1/2q—,co)+F P—(p+1/2q, co)FPr(p 1/2q, cu)] . — (

Here co is a Matsubara frequency and the equation for
is the complex conjugate of that for A.

Consider first the self-consistent equations for 5 and
They are complicated; their full solution requires

specification of all collective modes of the system, an im-
possible task without further assumptions. We shall as-
sume that the order parameter is rigidly pinned by
crystal-field and spin-orbit effects, so that the only
relevant mode is the phase mode, for which

6"p(k, r) =(e'~"—l)h p(k) .

This is reasonable because gapless modes arise from the
breaking of a continuous symmetry; in a crystal there is
no continuous rotation symmetry for the spatial degrees
of freedom and spin-orbit effects lock the spin degrees of
freedom to the spatial degrees of freedom; thus the phase
mode is the only gapless mode left. Note that by con-
struction, q.j=0; also, we compute only the reactive part
of the response kernel. Thus plasmon effects do not
enter; the phase mode is gapless for our purposes. In the
non-s-wave case (in contrast to the s-wave case), nonphase
modes may contribute to the current, however, these other



35 MEISSNER EFFECT IN ANISOTROPIC SUPERCGNDUCTQRS

(10)

where

[~'+~'(p) l'"[~'+~'(p)+I/4u~(p q)']

We may now set q =0 in (10) and (11) because even at
T =0 the fact that 6 may vanish along a line on the Fer-
mi surface leads only to a very weak singularity of the
form x log(x) (x =u~q/b, && I), and thus to corrections
which are negligible. Note that Eq. (10) is valid in any
gauge. The textbook procedure for finding the response
to a magnetic field involves finding a gauge in which P(q)
vanishes. As can be seen from (10), this gauge will, in
general, not be easy to specify, nor will the Maxwell equa-
tion relating current and vector potential in this gauge be
simple. If instead one works in transverse gauge,
q. A(q) =0, one finds that P(q) =0 for a general direction
of A only if the crystal is cubic, and one is either at T =0
or one has s-wave superconductivity.

Substituting (10) and the rigid pinning condition into
(8) yields

modes will have finite energy gaps Es, where Eg CC b, , and
so will contribute to the current via terms of order
qv+ /Eg where q is the wave vector of the perturbation
and vz the Fermi velocity. These terms will be negligible
in the limit qvz &A. This limit, however, may be the
relevant limit for heavy fermions, because the standard re-
sult for penetration depth, A. , may be written ' as
A. =c(m*/m)'~ b, ', where c is a constant and m*/m is
the ratio of effective mass to free-electron mass. Thus, as

q ~ A.
' and u~ ~ (1/m*), the parameter quz/b, is

(m*/m) ~ times smaller than in a free-electron system
with the same number of electrons. For m */m = 100 this
ensures that qvF/6 &~1.

This approximation may break down as T~T, if the
pinning energies go to zero faster than 5 does, because q
is proportional to the inverse penetration depth, which is
of order b, . This occurs for those triplet phases which are
listed by Blount as transforming according to a two-
dimensional representation of the crystal group. In these
cases, the discussion given below does not apply as
T~ T, . This point is discussed further in the Appendix.

Applying the rigid pinning approximation to the above
equations, and using the gap equation and unitarity, one
obtains [here P(q) is the Fourier transform of the spatially
varying part of the overall phase of the superconductor
introduced in Eq. (9)]

f dSpR (p)(p. q)p A(q)

f dS~R (p)(p.q)

In a noncubic crystal this is to be expected; in a material
of cubic symmetry, such as UBe~3, anisotropy of the
penetration depth would imply non-s-wave superconduc-
tivity. In a cubic crystal the anisotropy of penetration
depth is driven by the anisotropy in R (p). This is maxi-
mal at T=T, and goes to zero as T~O.

The magnetostatic problem posed by Eq. (12) and the
relevant Maxwell equation V.B=O is very difficult to
solve in an arbitrary geometry. For example, the fields
produced by the screening currents in a sphere of aniso-
tropic superconductor in a uniform field would not have
the perfect dipole form obtained for an s-wave supercon-
ductor. In the conventional plane-parallel Meissner effect
geometry, in which the superconductor occupies the half-
space z &0 and one takes a field in the x-y plane, which
may vary in the z direction (and which approaches a con-
stant as z~ oo ), one discovers that for z & 0 the magnetic
field is constant in space, but for z & 0 we may choose x
and y axes so that Eq. (12) may be written as

j;(z) =A.;A; (z) (i =x,y),
where A, and A~ may easily be computed. For a non-s-
wave superconductor A. will not, in general, equal A~.
The field will then change direction as it attenuates in the
crystal. In Fig. 1 we have plotted the ratio, A,„/A~ as a
function of temperature, for a polar superconductor
oriented so that b (p) =b, p„. In this case one discovers
P(q) =0, so we need only the first term in (12). For sim-
plicity we have assumed that A=T, /(I —T/T, )'~~, and
have used a spherical Fermi surface in performing the an-
gle integrals.

Note, however, that although anisotropy in the penetra-
tion depth is in general expected for non-s-wave supercon-
ductors, there exist many special orientations of the order
parameter with respect to material surfaces for which j is
parallel to A and for which the penetration depth is iso-
tropic over the relevant range of orientations of A. One
possibly important example is a superconductor in an axi-
al state with axis oriented parallel to q. Then one has ro-

C)

c5
CC

J(q)= f dS&(R (p)p[p. A(q)+p q(q/m)P(q)] . (12)

From (11) and (12) one sees that q-j(q) =0, as is re-
quired by current conservation. Without the contribu-
tions from the phase mode, this would not in general be
the case.

More interestingly, it follows from (12) that j is not
necessarily parallel to A: the penetration depth, and
indeed the full magnetic response kernel, are anisotropic.

I

2 Tc

Temperature

Tc

FIG. 1. Plot of the ratio of maximum to minimum London
penetration depth as a function of temperature for a supercon-
ductor in a polar state in the geometry discussed in the text.
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tational invariance in the plane perpendicular to q. But it
has been argued' that an axial superconductor will orient
itself so that its axis is normal to an interface, while in a
Meissner effect experiment the field varies in the direction
normal to the interface and is directed parallel to the in-
terface. Thus in this situation k„=A».

In conclusion, this paper presents formulas for the
current induced in a superconductor by a magnetic field.
The formalism includes collective mode contributions
which are necessary to ensure current conservation. The
penetration depth may be easily calculated from these for-
mulas.
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APPENDIX

We consider solving Eqs. (7) and (8) near T=T, . In
this limit the equations reduce to the equations one would
obtain by solving the Landau-Ginzburg equations in a
weak magnetic field by assuming a solution of the form
b, =b, ' '+6"' (where b, ' ' is the solution to the Landau-
Ginzburg equations in zero field) and working to linear
order in 6'" and A. The equations are notationally com-

plicated: one should expand b,"' in terms of the Y func-
tions discussed in the text, with the coefficients functions
of q; one then obtains a matrix equation for the vector
whose components are these coefficients. One may write
the resulting equations schematically as

q'Fa"'+G~'"=qH(A) . (A 1 )

Here H is a vector (in the space of Y depending linearly
on 3 and arising from the derivative terms in the
Landau-Ginzburg equation. F and G are matrices acting
on the vector 6'". F comes from the derivative terms and
G from the nonderivative terms. G contains the pinning
forces which force the gap to have a particular angular
form and a particular orientation with respect to the crys-
talline axes. It is in general of order ( T —T, ). One then
obtains b"'=(q F+G) 'qH(A). The discussion given
in the text shows that this is small for heavy fermions.
However, if 6'" is merely a phase change, then GA"'
must vanish, because the free energy is invariant under
phase changes. In this case, the one treated in the text,6'"~ (1iq)F 'H(A), which gives a nonnegligible contri-
bution to the current.

In genera1, the phase mode is the only soft mode in a
crystal with spin-orbit scattering. However, for certain of
the triplet phases enumerated by Blount the continuous
rotation symmetry is only broken in the sixth-order term
of the free-energy functional. Then as T~T, we would
have G ~ ( T —T, )3r2 while q cc ( T —T, ). ' Then the esti-
mate given in the text does not apply, and the nearly soft
modes may contribute to the response kernel.
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