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Nonlinear effects in quasielastic neutron scattering:
Exact line-shape calculation for a dimer
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An exact solution of a discrete nonlinear Schrodinger equation, obtained recently for the site occu-
pation probabilities in a two-site system such as a molecular dimer, has shown that the probabilities
evolve in the form of Jacobian elliptic functions and exhibit a self-trapping transition. On the basis
of that solution, we examine the effect of nonlinearities on the quasielastic scattering function in a
dimer. The calculation is appropriate to the scattering of probe particles such as neutrons off mov-

ing quasiparticles which interact with lattice vibrations strongly enough to produce nonlinear effects
while moving in the lattice. A well-known example is provided by hydrogen atoms diffusing among
sites around impurities, e.g., oxygen, in metals such as niobium. Our calculation results in explicit
expressions for the scattering spectrum. They exhibit the phenomenon of motional narrowing even

in the absence of true damping. Comparison of the results for the undamped nonlinear dimer and
the damped linear dimer uncover striking similarities as well as differences.

I. INTRODUCTION

dc (t)
dt

i+V—„c„+iX)c )
c

and the specific observable studied is the quasielastic neu-
tron scattering function S(q, co).

An example of a physical system described by (1.1) is a
quasiparticle, such as an exciton, an electron, or a light
interstitial atom (a hydrogen atom or an "isotope" such
as a muon), moving among the sites of a crystal and in-
teracting with the vibrations of the crystal. In (1.1), c is
the amplitude for the system to be in state

~

m ), V „ is
the intersite matrix element describing the transfer of the
particle from state

~

n ) to state
~

m ), and X is the non-
linearity parameter. The state

~
m) is the (localized)

Wannier state centered on site m, V „directly gives rise
to the bandwidth of the bare particle, and the nonlinearity
parameter X is the energy lowering due to polaronic ef-
fects. In the small-polaron literature the quantity 5 is
often written as a sum of the products of the vibrational
energies of the participating modes and the square of their
coupling constants with the moving particle. The non-

The purpose of the analysis presented in this paper is to
gain insights into the effects that nonlinearity in the evo-
lution of quantum systems can have on experimentally ob-
servable quantities. The nonlinear evolution of interest is
that typified by the discrete nonlinear Schrodinger equa-
tion'

(1.3)

At high temperatures, the self-correlation function I(q, t)

linearity in the evolution inherent in (1.1) arises from the
strong interaction of the moving quasiparticle with the vi-
brations of the crystal. There has been a resurgence of in-
terest in this area. ' Two types of questions are
relevant: What is the particular kind (and strength) of in-
teraction between the quasiparticle and the vibrations that
will lead to (1.1) or similar nonlinear equations. And,
what are the consequences of equations such as (1.1) for
specific experimental observations? The first question ad-
dresses the validity of the assumptions made and pro-
cedures employed in the derivation of (1.1) for given Ham-
iltonians. ' " The second seeks to elucidate what effects,
if any, would appear in observable quantities as a conse-
quence of the nonlinearity. ' In the present paper our in-
terest lies solely in the second question.

The dynamics of particles such as light interstitial
atoms, e.g., hydrogen atoms moving in a solid, is often
studied with the help of the scattering of probe particles
such as neutrons. ' ' In such studies, attention is
focused on the scattering function S(q,co) which measures
the extent of scattering of the probe particles with
momentum transfer q and energy transfer co (A'= 1

throughout this paper). The scattering function S(q, co) is
connected to the self-correlation function I(q, t) through
the well-known van Hove relation' '

+ 00

S(q, co) =(1/2m. ) f dt e '"'I(q, t), (1.2)
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S(q, cir) =5(co)cos q, +S(co)sin~q, (1.5)

where qi is the (dimensionless) projection of the momen-
tum transfer vector q on a unit vector along the direction
connecting the two sites in the dimer. Henceforth in
this paper, we shall be concerned only with the quantity
S(co).

As our interest lies in the dimer, we take m, n in (1.1) to
assume values 1 and 2 only. Thus, (1.1) takes the form

dCI
i =Vcr —X~c,

~

c, ,
dt

(1.6)

can be well approximated by the space-Fourier transform
of the probability propagator, i.e., of the probability that
the moving particle is at site m in the crystal at time t if
it were at site 0 at the initial time. ' We take the solid
under consideration to be a crystal, and therefore, as a re-
sult of translational invariance, use only one index —m-
to describe the propagator. This high-temperature con-
nection between I(q, t) and the probability propagator
may be obtained trivially from (1.3) by taking the limit
P~O and therefore replacing e ~ by the identity opera-
tor. ' ' ' ' The calculation of S(q, co) for arbitrary tem-
peratures can be carried out through an extension' ' ' of
this high-temperature procedure.

The analysis in the present paper will be restricted to
quasiparticles moving between the sites of a dimer, or of a
collection of independent dimers. In the area of light in-
terstitial transport, an example is provided by trapped
hydrogen atoms which move among sites in the neighbor-
hood of impurity atoms such as those of oxygen placed in
a metal, e.g. , niobium. ' ' The hydrogen atoms, more
precisely protons, interact strongly with the lattice and are
believed to exhibit polaronic effects. Neutron scattering
experiments' ' have probed this motion, have uncovered
interesting line shapes, and have been interpreted in terms
of a coexistence of tunneling and hopping of the protons
among a small number of trapping sites. If, as is often
done for simplicity, this number is taken to be effectively
two, the system under investigation becomes a dimer.

For the dimer, q in the expression (1.2) for the scatter-
ing spectrum takes on two values, 0 and ~, and the cor-
responding space-Fourier components of the probabilities
are, respectively, the sum and the difference of the two
probability propagators for the dimer. The former equals
1 for all times —as a result of the conservation of
probability —and has the trivial time-Fourier transform
S(O,co)=6(co). The nontrivial quantity which contains in-
formation about the evolution of the dimer is S(~,co), and
is given by

+ oo

S(co) =S(vr, co) =(1/2m) J dt e ' 'p(t), (1.4)

where p(t) is the difference of the two probability propa-
gators. The observed S(q, co) in an actual experiment is
given by the weighted sum of S(O,co) and S(n, co)

—
~
c2

i
. For the infinite-temperature case, the initial

condition to be used in obtaining p (t) is that of single-site
occupation. The resulting expression for S(co) is derived
in Sec. II and the behavior of the scattering function for
infinite temperature explored in some detail. Interesting
similarities of these results for the nonlinear undamped
dimer with those for a linear damped dimer are uncovered
during this exploration. They are elaborated upon in Sec.
III. The theory is extended for arbitrary temperatures in
Sec. IV and a discussion is presented in Sec. V. Details of
derivations are to be found in the Appendix.

II. SCATTERING FUNCTION FOR
LARGE TEMPERATURES ( T~ oo )

The mathematical exercise at the heart of this paper
consists of two steps: the calculation of p(t) from (1.6)
and (1.7), and the evaluation of its time-Fourier
transform. A conversion of (1.6) and (1.7) to evolution
equations for the density matrix, followed by an exact
elimination of the density-matrix elements off-diagonal in
the site representation, leads' to the following nonlinear
equation for p (t):
d p
dt2

=Ap —Bp

A =(X'/2)po —4V' —2VX(p2I+ pie)oi B=(X'/2) (2.2)

where the subscript 0 denotes the initial value (at t =0).
The general solution of (2.1) is given by'

p( t) =C cn[( CX/2k )(t —to )
~

k ]

=Cdn[(CX/2)(t to) i
1/k—],

1/k =2+(1/C )[(4V/X) +(SV/X)(p2]+p]p)p —Zpo]
(2.4)

(2.3)

where C and to are arbitrary constants to be determined
from the initial conditions, e.g. , the values of p and dpidt
at t =0. Although the cn and dn (elliptic) functions in
(2.3) are interrelated through the well-known Jacobi (real)
reciprocal transformation, normal usage represents the
function as cn if k (1 and as dn if k ) 1. To avoid con-
fusion we stress that, in this paper, we have used the sym-
bol k to represent the elliptic parameter of the cn func-
tion, irrespective of whether k ) 1 or A: (1. Details of the
passage from (1.6) and (1.7) to (2.1) and (2.2), and of the
evaluation of C and to are in the Appendix.

Since, in this section, our interest lies only in the
infinite-temperature result, we seek p(t) for the condition
that only one of the two sites is occupied initially. The
quantities po and (dp/dt)0 are then, respectively, 1 and 0
with the consequence that, in (2.3) and (2.4), C equals 1

and to equals 0. Equation (2.4) shows that k equals X/4V
for this initial condition, and the full solution of p(t),
which we require for the calculation of the scattering
function, is given explicitly by

dC2
=Vcl —X~cq

~
c2 .

dt
(1.7)

The goal of the analysis in this paper is the calculation
of the scattering function S(co) as the time-Fourier
transform of the probability difference p (t) —=

~

c I i

cn (2Vt
~

X/4V) for X &4V,
p(t)= . sech(2Vt)=sech( 2Xt) for X=4V,

dn( , Xt i4V/X) f—orX&4V.

(2.5a)

(2.5b)

(2.5c)
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Detailed comments concerning the time behavior of the
solutions (2.5) may be found elsewhere. ' The time-
Fourier transform of p(t), required here for the calcula-
tion of the scattering function, can be written down im-

mediately from (2.5) since each of the two Jacobian ellip-
tic functions in (2.5) can be expressed explicitly as an in-
finite series of cosines. Thus, for instance, the conjunc-
tion of (1.4) and (2.5a) leads to the scattering function

S(to)=vr[kK(k)] '[Q" +'~ (1+Q "+') '][5(co—cu„)+5(co+co„)] for X&4V, (2.6)

valid for the "free" case, i.e., for X & 4V. In (2.6), the frequencies co„are given by [mV/K(k)][2 n+ 1], the so-called nome

Q equals exp[ —mK(k')/K(k)], K is the complete elliptic integral of the first kind, k=X/4V, and k'=(1 —k )' . By
dividing the summand in (2.6) by Q"+', the scattering function can be expressed as a sum of sech functions. Indeed,
the three respective expressions for S(co) corresponding to (2.5) are

n[2kK(k)] ' g [sech(coR & )][5(co—co„)+5(co+co„)] for X &4V,
n=0

S(co)= (I /4 V)sec h(cour /4 V)=(I/X)sech(con. /X) for X=4V,

m.[2K(1/k)] ' 5(co)+ g [sech(coR & )][5(co—co„)+6(co+~„)] for X)4V,
i

�n=1
(2.7a)

(2.7b)

(2.7c)

where n )0 as in the summation in (2.7a), and the quanti-
ty V,tt=[m V/2K(k)] is the effective intersite-matrix ele-
ment' which describes the effective reduced bandwidth or
velocity of the moving quasiparticle. On the other hand,
in (2.7c), i.e., on the "self-trapped" side of the transition,
the frequencies are given by

co„=n [~X/2K ( 1/k )] for X)4 V, (2.9)

with n ) 1 as in the summation in (2.7c). Equations (2.7)
constitute one of the central results of the present paper.
The solutions (2.5) for the probability difference in the
time domain correspond, in cases (2.5a), (2.5b), and (2.5c)
to free motion, transition behavior, and self-trapped
motion, respectively. The cn solution, i.e., case (2.5a) de-
scribes the oscillations of the moving quasiparticle, e.g. ,
the hydrogen atom, between the two sites of the dimer in
a manner similar to linear motion in a degenerate dimer.
This behavior arises when the nonlinearity parameter is
not too large, specifically when 7~4V. As X/4V in-
creases in value, the nonlinearity increases in importance,
the cn function departs increasingly from its tri-
gonometric limit, i.e., cos(2Vt) (which it equals in the ab-
sence of the nonlinearity), and the quasiparticle moves
more and more sluggishly between the two sites. At the

where R & (k ) equals (1/2 V)K(k'), and R (k)
=(1/k)R &(1/k). Both tend to ~/4V=~/X at the tran-
sition. It should be noted that k equals X/4V on both
sides of the transition, that the index n runs from 0 to ao

in (2.7a) but from 1 to oo in (2.7c), and that the frequen-
cies co„ in (2.7a) are different from those in (2.7c). In
(2.7a), i.e., on the free side of the transition, the cu„are
given by

cu„=(n+ —,
'

)[2m V/K(k)]=(n+ —,
' )4V,tt for X &4V,

(2.g)

the spectrum of S(co) is shown to consist of the two 5-
function lines at +2 V appropriate to a dimer with no non-
linearity. This is seen in Fig. 1(a). As the nonlinearity pa-
rameter X becomes nonzero, an infinite number of 5-
function lines appear throughout the ~ region, specifically
at co„=+(n + —,

' )(hco), where bc@ is given by (for X &4V).

AQ7 =4 V ff —4 V[ (2/m )K(X/4 V) ] (2.10)

As P/4V increases, the intensity of the two original lines
decreases whereas that of the new lines increases. All
lines march towards the origin. No lines appear on the

transition, i.e., when 7=4V, the quasiparticle takes infi-
nite time to move between the two sites and p(t) becomes
identical to sech(2Vt). This is the case of (2.5b). Beyond
the transition, as X exceeds 4 V, p (t) oscillates incomplete-
ly (i.e., the probability of the initially unoccupied site nev-
er reaches 1) as in the case of a linear nondegenerate di-
mer. Eventually, as X/4V~ oo, p (t) tends to the constant
value 1 for all times and the quasiparticle never leaves the
initially occupied site.

This interesting behavior of p(t) is naturally reflected
in the scattering function S(co) as given by (2.7). In the
free region (X & 4V), symmetrically placed lines appear on
the co axis but there is no peak at co=0. In the self-
trapped region (X)4V), however, an additional peak ap-
pears at co=0, corresponding to the fact that the average
of p(t) for this case does not vanish, in keeping with the
effective energy mismatch which arises in this region as a
result of the nonlinearity in the evolution. Figures 1 and
2 show the detailed evolution of S(co) as the nonlinearity
parameter is changed. In the absence of the nonlinearity,
k =0 in (2.7). In this limit K(k) tends to ~/2 while
K(k ) tends to infinity. Utilizing the limiting identity

lim (1/k) I exp[ —~K(k'))/2K(k) I
= —,

'
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FIG. 1. Quasielastic neutron scattering line shape (scattering function) for a dimer, showing the effect of nonlinearity in the evolu-
tion in the free region /&4V) for several values of P/4V: (a) 0, (b) 0.9, (c) 0.999, (d) 0.999999. As the nonlinearity increases, the
lines are shifted towards the origin and the frequency interval Ace decreases.

origin side of the original (largest intensity) lines. The fre-
quency interval between any two neighboring lines in Ace.
The decrease of Ace and the march of the lines is seen
clearly in Fig. 1 for successively higher values of 7/4V.

When 7 equals 4 V, the quasiparticle motion undergoes
the free-to-self-trapped transition. The transition is re-
flected in S(co) in a collapse of the 6 functions onto a con-
tinuous finite scattering function, viz. , sech(vrco), as given
by (2.7b). Figure 2(a) shows this transition case. It is in-
teresting to compare (2.5b) and (2.7b) and note here that,
like the Gaussian, the sech function is invariant under a
Fourier transform.

As the nonlinearity increases beyond the transition
value, i.e., as 7 ~ 4V, the continuous finite scattering func-
tion sech(nro) breaks up into a infinite number of 5-
function lines again. A line appears at cu=O and it grows
as the nonlinearity parameter increases. It represents the
effective energy mismatch arising from the nonlinearity in
the evolution. The other lines march outwards away from
the origin and decrease in intensity as 7/4V increases.
This fascinating behavior of S(co), which is shown expli-
citly by (2.7c) and Figs. 2(b) —(d), is nothing other than
motional narrowing which is well known in the case of the
scattering spectrum for a linear damped system.

The frequency interval b,co is given by (2.10) for X &4V,
but by

hru =X[(2/rr)K(4V/X)] (2.11)

for 7 & 4V. In Fig. 3, we show its variation for all values
of 7/4V. At the transition, Ace equals zero and marks the
collapse of the 5 functions of S(co) onto the finite func-
tion as given by (2.7b). On both sides of the transition,
Ace rises as shown, its limiting value being 4 V in the free
region and 7, therefore infinite, in the self-trapped region.
A good approximation to its value in the neighborhood of
the transition is given by

4Vm/In[16[1 —(X/4V) ]
'

J for X (4V
grr/In[16[1 —(4V/g) ] '

I for X)4V .

(2.12)

(2.13)

III. COMPARISON WITH RESULTS
FOR THE LINEAR DIMER

We have seen in Sec. II that the scattering spectrum for
the nonlinear undamped dimer, as given by (2.7) and

The results of this section are valid for temperatures T
large enough, i.e., P=(1/k~ T) small enough, to allow the
replacement of e ~ by the identity operator. In an ap-
proximate sense this requirement may be expressed as
V & kz T, i.e., that the bandwidth be small with respect to
the thermal energy.
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FIG. 2. Scattering function showing the effect of nonlinearity in the evolution in the transition and self-trapped regions +&4V)
for several values of 4 V/g: (a) I, (b) 0.999 999, (c) 0.999, (d) 0.9. The 5 functions collapse onto a finite curve in the transition case (a).
As the nonlinearity increases beyond the transition, the 5 functions return, the central line grows, the other lines march outwards
from the origin, and the frequency interval hen increases to infinity.

4—

shown in Figs. 1 and 2, possesses an envelope that exhibits
the phenomenon of broadening in the free region and that
of motional narrowing in the self-trapped region. This
behavior is strikingly similar to that obtained in a linear
damped dimer as a comparison of Figs. 1 and 2 with Fig.
4 below will show. We explore these similarities and in-
vestigate the differences for these two systems in this sec-
tion.

The evolution equation for a particle moving between
the sites of a linear damped dimer is expressed con-
veniently in the form of the stochastic Liouville equa-
tion' ' (SLE) for the density-matrix elements. The
equation for p» is identical to (Al) but that for p12 is dif-
ferent:

dp12~dt t l (P22 P 11) t2P12 . (3.1)
0

0

FICr. 3. The frequency interval hco between lines in the
scattering spectrum of the nonlinear dimer as a function of the
nonlinearity parameter P/4V. An increase in the latter results
in a decrease (increase) in hen in the free (self-trapped) region.
At the transition, Ace equals to zero.

d2 dp+a -p +4V'p=O
dt dt

(3.2)

Corresponding equations describe the evolution of the
other two elements. The parameter a is the rate of damp-
ing or of scattering of the "Bloch" states of the dimer.
The equation obeyed by the probability difference p(t) is
the same as that obeyed by the damped harmonic oscilla-
tor with suitable correspondences:
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and results in the following well-known solution for p (t):

e ' ~ [c os(Q &t)+(a/2Q &)si n(Q &t)] for a(4V,
p(t)= 'e ' ~ [1+(ta/2)]=e '[1+2Vt] for a=4V,

e ' ~ [cosh(Q & t )+(a/2Q & )sinh(Q & t )] for a & 4V .

(3.3a)

(3.3b)

(3.3c)

Here Q& is given by [4V —(cz/2)]'~, and Q by [(a/2) —4V ~' E uation] q p
e o . w ic escribe the nonlinear undamped dimer.

The time-Fourier transform of (3.3) is trivial to calculat Th 1a cu a e. e resu ting scattering spectrum is given by

[2+(co/Q&)]W (co+Q&)+[2—(co/Q&)]W (co —Q&) for a(4V,
S(co)= 2I 1+cos[2tan '(2'/a)]]W (co) for a=4V,

[W+(co)+(a/2Q )W (co)] for a~4V,

(3.4a)

(3.4b)

(3.4c)

where W~(co ) is (1/2') times the Lorentzian
(a/2)[(a/2) +co ] ', and W+(co) equals W (co)+ a —20+

+2n(co). We have chosen to display the spectrum
expressions in the form (3.4) rather than in the more com-
monly encountered simple form

mS(co)=(4V a)[(4V —co ) +(era) ] (3.5)

0.4

0-
—5 —4 —3 —2 —1 0 1

u/2V
3 4 5

FIG. 4. Scattering function for a linear damped dimer, show-

ing the effect of damping for several values of a/4V: (a) 0.1, (b)
0.5 (c) 1 (d) 1, ( ) .5. The familiar phenomena of broadening and
motional narrowing are evident.

to facilitate their comparison with the nonlinear expres-
sions (2.7). The spectrum S(co) is shown in Fig. 4 for
various values of a/4V The spectrum starts out in the
absence of damping (a =0) as the two 5 functions as in
Fig. 1(a). However, the damping inherent in a brings
about a true broadening of the spectrum rather than a
splitting of the two original lines into an infinity of lines
as observed for the nonlinear undamped case. An increase
in the damping parameter cx/4V leads both to an increase
in the broadening of the two peaks and to a shift of the
peaks towards the origin. When a=4V, the two peaks

coalesce into a single peak at the origin. In the language
of the damped harmonic oscillator, one has critical damp-
ing. As cz/4V increases further, the central peak is seen to
grow, turning into a 6 function at the origin for
a/4V~ (x) .

The comparison of the linear damped case with the
nonlinear undamped case is straightforward. The transi-
tlQn situation X=4V in the latter corresponds to critical
damping n=4V in the former. Both represent infinitely
sluggish equalization of site probability on the two sites
and result in a finite line shape for the scattering spec-
trum. When the damping parameter a (correspondingly
the nonlinearity parameter X) is smaller than 4V, the
ine-shape peaks march towards the origin with increasing

u/4V (correspondingly X/4V). The peaks are finite in the
linear damped case but 6 functions in the nonlinearinear un-

amped case. The frequency interval between the peaks,
viz. , Ace, is given by 4V,f~ in the latter case and may be
approximated by 2Q& in the former. Figure 5(a) shows
that the variation of Ace in the "underdamped (free)" re-
gion is quite similar in the two cases. Equation (2.7c)
shows that, with increasing g/4V in the self-trapped re-
gion, the line at co=0 grows at the expense of the rest of
the spectrum. Equation (3.4c) shows similarly that, with
increasing a/4V in the "overdamped" region, the peak at
co =0 grows at the expense of the rest of the spectrum. In
thee nonlinear case, the intensity of the growing part of the
spectrum, relative to that of the entire spectrum, is given
by rr/[2E(4V/7)], the coefficient of 5(co). Although it is
more difficult to select an appropriate quantity to describe
the relative growth of the central peak in the linear case
because of the absence of 6 functions, we take it to be
2Q&/a, the ratio of the value of [W (co)] o to that of
[ +(cu)] o. Figure 5(b) shows that the variation of the
relative intensity of the growing part of the spectrum at
co=0, defined in this manner, is also quite similar in the
linear and nonlinear cases.

he source of this impressive similarity can be traced to
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FIG. 5. Comparison of spectral features of the nonlinear undamped and the linear damped dimers showing similarities. In (a) the
position of the main (largest) peak in the "free/underdamped" region is plotted as a function of a, the nonlinearity parameter P/4V
for the nonlinear dimer, and of b, the damping parameter a/4V for the linear dimer. In (b), the relative intensity of the central peak
(see text) is plotted as a function of a, g/4V and b, a/4V. The behavior is similar in the two cases for both (a) and (b).

the fact that, if the nonlinearity parameter X in the origi-
nal amplitude equations (1.6), (1.7) for the nonlinear un
damped dimer is taken to be imaginary (e.g., X=ia with
a real), the off-diagonal part of the resulting density-
matrix equation is identical to that of the stochastic Liou-
ville equation (3.1) for the linear damped dimer. Thus, al-
though the nonlinear equation (2. 1) and the linear damped
equation (3.2) for the probability difference p (t) have
completely different appearances and solutions, they both
arise from (1.6), (1.7). If X is purely real, (2.1) and non-
linear undamped dynamics results, whereas, if P is purely
imaginary, (3.2) and linear damped dynamics is the out-
come. If X is taken to be generally complex, a nonlinear
integro-differential equation can be derived, the real part
of X being the nonlinear parameter and the imaginary part
the damping parameter. That equation, which leads to a
scattering spectrum which interpolates between that
shown in Fig. 1 and that in Fig. 4, will be discussed else-
where. Needless to say, whenever one uses a 7 which is
not purely real, the diagonal part of the p equation must
be left untouched (in the same spirit as in the construction
of the standard SLE) to ensure that the total particle
probability does not decay.

The major difference between the scattering spectrum
for the nonlinear undamped and the linear damped dimer
is thus, that (with the exception of the "transition/
critical" case) the line shape of 5 functions in the former
but is finite in the latter. Although no 6-function lines ex-
ist in a real system, the difference between the two spectra
would be discernible experimentally, at least in principle,
if the following three requirements are met: (i) The in-
strument broadening width should be small enough, (ii)
the frequency interval bco [see (2.10), (2.11)] should be
large enough, and (iii) the neighboring peaks should not be
disparate in intensity. The spectrum for the nonlinear di-
mer will then consist of a multitude of peaks while that
for the linear dimer will have at most two peaks. Re-
quirement (i) refers to the quality of instrumentation and
the extent to which the lines are free of extraneous in-
terferences. Given a specific instrument broadening
width, requirement (iii) places a window on the value of

X/4V(a/4V) for which the difference in the two spectra
is easily discernible. In Fig. 6(a) we show explicitly the
difference that could arise in an experimentally deter-
mined spectrum depending on whether the interaction
with the lattice results in damping as in (3.2) or in non-
linear evolution as in (2.1). Peak multiplicity is a clear
signature of nonlinearity in this context. For contrast, we
show Fig. 6(b) in which no direct clue appears in the
shape of the spectrum which would allow one to distin-
guish between damping and nonlinearity. The values of
the damping ratio o;/4V and the nonlinearity ratio 7/4V
have been taken to be identical to each other in Fig. 6(a)
(0.95) and Fig. 6(b) (0.1), and the extent of instrument
broadening, i.e., the width of the Lorentzian with which
all line shapes in Fig. 6 have been convoluted, has been
taken to be 0.05 (in units of 4 V).

Another obvious difference between the spectra for the
linear damped and the nonlinear undamped dimer is in
the spectral moments P„, which are defined as

dcoco"S(co). For the nonlinear dimer, we can calcu-
late the even moments directly from the evolution equa-
tion (2.1) with the help of the relation

~/, „=( —1)"[d'"p(t)/dt'" j,

The second and fourth moments are found to be 4V and
4V2(4V ++2), respectively. For the linear damped di-
mer, the second moment is 4V as in the nonlinear case;
however, the fourth and higher moments all blow up as a
result of the well-known breakdown of the damping
model for short times, equivalently high frequencies. The
odd derivatives of p(t), as given by (3.2), are equal in
magnitude but opposite in sign when evaluated on the two
sides of t =0. Thus (dp/dt)o ——0 but (d p/dt )0
=+4V cx. It follows from this multivalued nature of
(d p/dt )0 that the fourth moment of the spectrum for
the linear damped dimer is infinite. This is also seen from
(3.5). The damping model of (3.2) cannot be taken seri-
ously for large co in S(co) or for large n in ~„. On the
other hand, our expressions (2.7) for the nonlinear dimer
do not suffer from these shortcomings and can indeed be
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FIG. 6. Comparison of spectral features of the nonlinear undamped and the linear da p gm ed dimers showin differences. Both spec-
i n of width 0.05 (in units of 4 V), representing instrumental broadening as would appear in experi-tra are convoluted with a Lorentzian o wi t . in uni s o

mental observations. a ues o e syb
' . Values of the system parameter [g/4V for curves a and a/4V for curves b are a . , an . . a s ow

in ex erimentallthe clear manifestation o non inearity in e mu ip
' 'f l th lt licity of peaks and illustrates a possible manner of distinguishing experimen a y

between the effects of nonlinearity an o amping.f d f d (b) shows how the difference could be masked in observed spectra.

used through moment expressions to extract the value of
the nonlinearity from observed spectra.

M= —,(M++M )

& (Tre PH) —1( PH iq—x+eiqxe ——PH)
2 (4.6)

IV. SCATTERING FUNCTION FOR
ARBITRARY TEMPERATURES

S(q,co)=e~S( —q, —co) . (4.3)

The prescription (1.2), (1.3) for the calculation of the
scattering spectrum S(q, co) is therefore exactly equivalent
to the alternate prescription

Our analysis of the scattering function has been re-
stricted so far to the case of infinite temperatures. This
has been done for the specific purpose of showing the new
effects of nonlinearity on the scattering observables
without bringing in distractions that further aspects, such
as finite temperatures, would introduce. We return to the
case of finite temperatures in this section.

To analyze S(co) for T& oo, it is necessary to return to
(1.3). By cyclic permutation of the operators in the trace
in (1.3), one may write I(q, t ) as

I(q t ) Tre —iqxe —itHM eltH (4. 1)7

where M+ =(Tre p ) 'e p e'q". It follows that
I( —q, —t ) is given by

I( —q, —t)=Tre 'q"e " M e"H

where M =(Tre p ) 'e'q"e p . Straightforward ma-
nipulations from the general form of the response func-
tion lead' to the well-known result that, irrespective o
the particulars of the system under analysis, S(q, co) and
S(—,—gati) are interrelated through the detailed balance—q, —~
relation

The infinite-temperature limit of (1.2) and (1.3), which
we used in Sec. II, has the convenient feature that the
scattering spectrum is given as the time-Fourier transform
of the space-Fourier transform of the probability of site
occupation. The advantage of the new prescription
(4.4)—(4.6) over the straightforward use of (1.2) and (1.3)
is that this convenient feature is retained for arbitrary
temperatures. However, the probability whose double
transform is the scattering spectrum, is to be calculated
for a special initial condition' dictated generally by the
temperature. The special initial "density matrix" is M,
with M given by (4.6). This manipulation of the general
response function which makes the arbitrary temperature
prescription practically identical to the infinite tempera-
ture prescription was given and used earlier in the analysis
of frequency-dependent mobilities ' and also of the

16scattering function on a linear chain.
The program of calculation to be followed for arbitrary

temperatures is thus to obtain p(t) (which, as explained in
Sec. I, is the only nontrivial component of the space-
Fourier transform in the case of a dimer) by solving its
nonlinear evolution equation (2.1) not for the initial condi-
tion of occupation of a single site as in Sec. II, but for the
initial density matrix, M, and then to evaluate the time-
Fourier transform of p(t). The value of q to be used in
(4.6) is, as before, n. Taking the matrix elements of the
position operator to be given by ~& 1 ~~ x ~~1 ~ =
(2~x ~2)=1, (I ~x ~2)=(2~x

~

l)=0, the matrix e' "
is written explicitly as

dt e '"Is(q, t),
S(q, co) =[e~/ sech(Pco/2)]

X(1/2~) f (4.4)

(4.5)

1 0
0 —1

The elements of M therefore satisfy

(4.7)
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(4.8)

M(2 —M2) ——O=M)2+Mp), (4.9)

independently of the temperature detail contained in the
elements of e ~ . The remarkable result is therefore that
S(~) is given simply by

[S(to)]T——[S(co)]T [e~~ sech(Pro/2)] . (4.10)

We conclude that the scattering spectrum for arbitrary
temperatures can be obtained directly from the infinite-
temperature result arrived at in Sec. II by simply multi-
plying it by the detailed balance factor. The resulting ex-
plicit expressions constitute an exact calculation of the
scattering spectrum of a nonlinear dimer for arbitrary
temperatures. We rewrite them here in a modified form:

B g [5(co—co„)e " +5(co+co„)e " ],
n=0

S(ro) = . (1/2V)e~~ I cosh[(co/2)(p+~/2V)]+cosh[(co/2)(p —vr/2V)] I

m.[2K(1/k)] '5(co)+B& g [5(co—co„)e " +5(to+co„)e " ] .
n=1

(4.11a)

(4.11b)

(4.11c)

As in (2 7), the three cases (4 1 la), (4 1 lb), and (4 1 lc) refer to P & 4V +=4 V, and X & 4V respectively. The symbols B&

and 8& are given by

B =n[kK(k )] '
I cosh[(to/2)(p+ 2R ( )]+cosh[(co/2)(p —2R ( )] ]

B) ——m [K(1/k )] '
I cosh[(co/2)(P+2R )]+cosh[(m/2)(P —2R ) )]J

Illustrative plots of the scattering spectrum for noninfinite temperatures are shown in Fig. 7.

(4.12)

(4.13)

0.0 0.0—
—4 —3 —2 —1 0 1 3 4

0.8

0.6—

0.4—
(Jl

(b)

FIG. 7. Scattering function for the nonlinear dimer for arbitrary temperatures. In (a) and (c), the spectrum is shown for
k~T/2V=0. 2 in the free region Q'/4V=0. 999999) and the self-trapped region (4V/a=0. 999999), respectively. The skewness of the
spectrum arising from detailed balance is evident. In (b), which shows the spectrum for the transition region /=4V), the dependence
of the spectrum on temperature is seen clearly as the skewness increases with a decrease in temperature. The value of k~ T/2V is for
curve a, ao, for curve b, 1; for curve c, 0.1; for curve d, 0.04.
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V. DISCUSSION

The discrete nonlinear Schrodinger equation (1.1) ap-
pears to provide a powerful alternative to more traditional
starting points in the study of quasiparticles interacting
strongly with the lattice. Although its range of applica-
bility and precise connection to microscopic details con-
tinue to be debated, ' '" the richness of the physics it
contains suggests strongly that it is important to explore
its consequences in specific observable quantities. The
present paper is the result of such an exploration in the
particular context of the scattering function in a dimer.

Our calculation has the advantage that it involves no
approximation procedures. However, it is directly applic-
able to a rather small system, viz. , a dimer. The results of
our analysis should find two uses: in the qualitative
understanding of the effects of nonlinearity in extended
systems, and in the quantitative interpretation of observa-
tions carried out specifically on systems of noninteracting
dimers. Hydrogen atoms moving among trapping sites
around impurities in metals' '' constitute only one of the
examples for which our analysis is applicable. Others are
excited dimers in aromatic hydrocarbon crystals such as
1,2,4,5-tetrachlorobenzene ' studied with microwave
probes via optically detected magnetic resonance, and
"stick-dimers" consisting of poly-L-proline oligamers of
controllable length studied via measurements of fluores-
cence depolarization.

The point of departure of our analysis is (1.6) and (1.7).
Our final results are Eqs. (2.7) for infinite temperature
and the generalization (4.11) for arbitrary temperature.
Our primary findings are that the scattering spectrum for
the nonlinear dimer exhibits motional narrowing as well
as broadening in its envelope as seen in Figs. 1 and 2, and
that, for appropriate parameter values, it consists of a
multiplicity of peaks. The first of these findings shows
similarity in behavior to the linear damped dimer whereas
the second shows a marked difference. A comparison of
Figs. 1 and 2 with Fig. 4 stresses the similarity, as do
Figs. 5 and 6(b). On the other hand, the difference is
shown in Fig. 6(a). Our motivation for carrying out the
comparative analysis of the linear damped and the non-
linear undamped dimer arises from the fact that strong in-
teraction with the lattice can give rise to nonlinearities as
well as damping in the evolution of the quasiparticle. In
view of the substantial apparent difference in the form of
the equations obeyed by the probability difference p(t) in
the two cases [Eqs. (2.1) and (3.2), respectively], it is re-
markable that the spectra possess profound similarities.
Also of interest is the fact that those dissimilar equations
arise from the same amplitude equations (1.6) and (1.7)
when P is purely real in one case and purely imaginary in
the other. We believe that it will be fruitful to view mi-
croscopic interaction of the quasiparticle with the lattice
in analogy with electromagnetic interaction of charges
with matter. Just as detailed charge-matter interactions
are reformulated in terms of a complex "dielectric con-
stant" whose real (imaginary) part describes propagation
(attenuation), detailed lattice-quasiparticle interactions
might be reexpressed in terms of some complex "medium
constant" whose real part X (imaginary part a) would be

(4V/X)+2(pz)+p&z)0 ——0 . (5.1)

Reexpressing the density-matrix elements in (5.1) in terms
of the amplitudes c~ and c2, one arrives at

responsible for nonlinearities (damping) in the evolution
of the quasiparticle.

What are the experimental manifestations of the non-
linearity inherent in (1.1) which would not be present in
an appropriate linear counterpart? This question is
answered by Fig. 6(a). Peak multiplicity is the conse-
quence of nonlinearity. The frequency interval between
those peaks is not some vibration frequency as would be
the case, e.g. , in the optical spectrum of an impurity
whose electronic excitation interacts strongly with vibra-
tions. The frequency interval is given by (2.10) or (2.11).
It is proportional to an effective value of the bandwidth in
the free region and of an energy mismatch in the self-
trapped region. The absence of any striking difference in
shape in the two spectra in Fig. 6(b) points to the possibil-
ity that observations which have been interpreted in the
past in terms of a linear damping interaction could actual-
ly be stemming from a nonlinear interaction with little
damping. Both g and a contain in them information con-
cerning the interaction with the lattice. It is not incon-
ceivable, therefore, that appreciable revision in the values
of quasiparticle-lattice coupling constants might be the
outcome of a reinterpretation of scattering spectra.

The generalization of the infinite-temperature result
(2.7) to (4.11), which is valid for arbitrary temperatures,
requires comment. The prescription of Refs. 16 and 21,
which has made that generalization possible, would be
normally sensitive to the temperature detail present in M,
the special initial density matrix of (4.6). However, it is a
happy accident that the detail becomes irrelevant for a di
mer. Although the elements of M do contain temperature
information, the difference of the diagonal elements of M
(in the site representation) equals 1 and is therefore in-
dependent of temperature. Furthermore, the off-diagonal
elements of M are zero. The initial density matrix is thus
formally "localized on a single site." The calculation of
the symmetrized scattering function is then formally iden-
tical to that for infinite temperature and does not require
additional information that would be present in the gen-
eral solution (2.3) beyond (2.5).

If the simplification referred to above had not been
operative in the dimer, a more complex analysis from (2.3)
would have been necessary. Among the quantities that
would have been required in that analysis are the coeffi-
cients in an expansion of the stationary states of the non-
linear dimer in terms of the site states. We mention in
passing how these may be obtained from (2.3) and (2.4).
When the system is in a stationary state, all elements of
its density matrix, and consequently dp/dt as well as p
[see (A3)—(A5)], are time independent. Equating d p /dt
to zero in (2.1) leads to p =0 or p=(A/B)'~ . The for-
mer value of p corresponds to the usual delocalized sta-
tionary state with equal coefficients for both sites but the
latter values represents a self-trapped state with unequal
site occupation probabilities. When substituted in (2.2),
p2 p02 3/B yields
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i
c1

~

=(1/2)' [1+[1—(2V/X) ]'

~
c2 i

=(1/2)' 2[1—[1—(2V/X) ]' j
' (5.3) +(X/4V)(p' —po)] j .

(5.2) d(p21 p—12)/dt = tp—I2V+X[(p21+p12)o

Equations (5.2) and (5.3) are clearly representative of an
effective energy mismatch and agree with results obtained
earlier for the stationary state coefficients.

The system under analysis in this paper could appear at
first sight to be too trivial to deserve attention because it
consists merely of two sites. However, the importance of
understanding the physics of dimers has been amply real-
ized in various different contexts. For instance, consider-
able effort has been devoted to the study of two-state sys-
tems in the field of energy transfer in molecular solids, on
the experimental ' ' as well as the theoretical
front. ' ' The motivation for that effort, as well as
that for our own analysis here, comes both from the direct
applicability of the dimer results to experiments, and from
the insights that dimers can provide for the understanding
of more complex extended systems. Along the latter lines
we hope that the results reported in this paper will be of
use to general investigations concerning the statistical
mechanics of solitons in extended systems.
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APPENDIX

1. Derivation of the nonlinear equation (2.1)
from (1.6) and (1.7)

dp 3

dt
i—2V(p21 —p12)o+ ds[Ap(s) Bp (s—)],0

(A8)

3 =(X /2)po —4V —2VX(p21+p12)o,' B=(X /2) . (2.2)

The differentiation of (A8) finally leads to

6
d

=Ap —Bp (2.1)

2. Evaluation of the arbitrary constants
in the general solution (2.3)

The solution of the nonlinear equation (2.1) has been
written down in Sec. II as

p( t) =C cn[(CX/2k )(t —to)
i
k]

=Cdn[(CX/2)(t —to)
~

1/k] . (2.3)

In order to evaluate the arbitrary constant C in terms of
po, (dp/dt)0, and k [or (p21+p12)0], one differentiates
(2.3) and uses the standard identities

sn +cn =1, dn +k cn = 1 —k (A9)

where k is the elliptic parameter (modulus) of each of the
three elliptic functions, to obtain

(dp/dt)0 (X/2k) (C —po——)[C (1—k )+k po] . (A10)

(A7)

The cubic nonlinearity, i.e., the p term, is already evident
in (A7). When (A7) is substituted in (A3), one gets

dp11/dt = —i V(p21 —p12),

P12/d = 'V(P22 P11)+'X(pll P22)P12 i

(A 1)

(A2)

In terms of the density-matrix elements p11
——c1c1,

p12 ——c1 c2, etc. , Eqs. (1.6) and (1.7) are rewritten as
Defining g through

g = —,[(4V/X) +(8V/X)(p21+p12)0]

and rewriting (2.4) as

(A 1 1)

with corresponding equations for p22 and p2&. They lead
to the following coupled equations for the probability
difference p(t)—:p11 —p22, the difference p21 —p12 of the
off-diagonal elements of p, and their sum p2&+p&2.

1/k =2[1+(1/C )(g —po)], (A12)

one eliminates k between (A10) and (A12). The final ex-
pressions for C and k are

2 1/2

dp
dt

12V(P21 P12)

d (p21 p12 )

dt
= —i 2 Vp —iXp(P21+P12),

(A3)

(A4)

C'=po —g'+ P+(2/X)'
dt

1+(po —g') P+ (2/X)'
2

- 2- 1/2

(A13)

(A14)

d (P21 +P12 )

dt
= —1Xp(p21 —p12) .

Using (A3), one may rewrite (A5) as

dp
d(p21+p12)/dt =(X/2V)p

dt

d=(X/4V) P
dt

(A5)

(A6)

The formal solution of (A6), when substituted in (A4),
yields to ——(2k/CX)F(cos '(po/C), k) . (A15)

For the initially localized condition used in Sec. II,
(dp/dt)o equals zero. Equations (A13) and (A14) show
that, for that condition, C=po ——1 and k=(4V/X). The
other arbitrary constant, viz. , t0 is obtained readily by
putting t =0 in (2.3) and inverting tPe cn function. With
the standard definition F(g, k) = J dP'(1 —k sin P')
of the normal elliptic integral ol the first kind, to ls
evaluated by substituting the explicit expressions for C
and k in
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