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Ubiquity of logarithmic scaling, 1/f power spectrum, and the x/2 rule
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For disordered systems governed by activated processes with a broad distribution of barrier
heights, the susceptibility should obey logarithmic frequency scaling, and the associated noise

power spectrum should be of the 1/f-type (with logarithmic corrections). Further, various "tt/2
rules" can be derived from the Kramers-Kronig relationships. The results are valid both near
T 0 and near a phase transition when the latter exists. Two new examples of this very general
behavior are discussed: the thermal properties of ordinary glasses and the impurity conduction
and dielectric response of insulators.

INTRODUCTION

The response of many real systems to external perturba-
tions should be governed by a broad distribution of relaxa-
tion times. This distribution may be due to a variation in
the height of the barriers that the constituent units (ions,
molecules or molecular orientations, electric dipoles, spins
or spin clusters, electrons) have to cross in order to effect
the response to the external field. It is natural to expect a
rather broad distribution of such barriers in a disordered
system where the barrier is determined by some local ar-
rangement of the elements of the systems. Well-known ex-
amples are magnetic clusters in disordered magnets (e.g. ,
spin glasses, random field systems), two-level systems and
similar phenomena in ordinary glasses, defect motion in
ordinary crystals, and, e.g. , donor excitation energies in
semiconductors or insulators. The latter may not be uni-
form, due to changes in the local environments of the
donors and/or donor-donor interactions that depend on the
particular configuration of neighboring donors, etc.

Such a distribution of relaxation times has been known
to produce, in special cases, some interesting phenomena,
such as logarithmic scaling of the response function in

spin-glasses, ' with resulting approximate 1/f-type power
spectrum of the associated fluctuations' and certain rela-
tionships between the real and imaginary parts of the
response function. Earlier, 1/f-type fluctuations in con-
ductors have also been shown to possibly be due to distri-
butions in the activation barriers limiting the motion of
some defects. It is the purpose of this Rapid Communica-
tion to point out the extreme generality of these effects.
They should exist in almost any system with some ran-
domness.

After reviewing briefly the existing theoretical ideas,
generalizing from the cases of 1/f noise and disordered
magnets, we shall analyze along those lines two totally un-
related examples: the time-dependent specific heat of or-
dinary glasses and the frequency-dependent dielectric con-
stant and conductivity associated with impurity conduc-

SHORT REVIEW OF THEORETICAL IDEAS

In the case of a simple relaxation model the noise spec-
trum of a system governed by a relaxation time z is given
by5

S(co) =—1 1/r
tr co2+(1/z)2

Consider the case where z is thermally activated

r(a) = roe

Let us suppose that the system has a distribution of activa-
tion energies given by a (normalized) distribution function
P (6). The total spectrum of the system will be given by

S(~)=„" P(~)S(~,~)d~ . (3)

One is usually interested in a certain range of m, say
m& (co ~ m2, hopefully containing many decades, where,
typically, coz, « 1. The relevant range of h, is given by

1»(cozro) I
« «

I »(cot ro) IkgT
(4)

tion of insulators. To the best of our knowledge, these
have never been analyzed in this way. We find that a
surprisingly good description of the above two cases is pro-
vided by the above picture. The fit to many trends in the
data is better than that of popular phenomenological forms
which have previously been used to discuss these data, usu-

ally with no theoretical motivation.
We propose that this picture should be applicable to

many relaxation and response phenomena (e.g. , dielectric,
thermal, magnetic, ultrasonic. . . ) in disordered systems,
and that one should try to both fit much of the existing
data to these ideas and to obtain new data.

Finally, we shall discuss the low temperature versus
T T, scaling and mention some possibly related situa-
tions such as variable-range hopping conduction at finite
frequencies.
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The function

rpexp(a/kg T)S d, co
1 + co rp exp(25/kg T )

is a strongly peaked function of h. with a width of order
kgT. If P (d ) is a smooth function, it is reasonable to as-
sume that it does not vary much in the range of
kg T In(co2/ro~ ) (usually 4—1 eV, while kg T is —300 K or
much less). Thus we can factor out Po =P (ho) where
ho= —k~Tln(corp) is the value of 5 at which S(h, m)
peaks. The remaining integral is elementary, and we ob-
tain

kgTS (co) a: P ( —kg T ln (coro) )

From the fluctuation-dissipation theorem,

we obtain L"(co), the imaginary part of the associated sus-
ceptibility. It follows that a broad distribution of activa-
tion barriers leads to 1/f noise (with logarithmic correc-
tions) and to susceptibilities which exhibit logarithmic fre-
quency dependences,

Z"(co) =Z"( kgT In(ro—ro)) .

Such 1/f noise has been observed in the ordered phase of
spin glasses. '

It should be emphasized that the particular form of
S(co), Eq. (1), is not important as long as S(co,d, ) is a
strongly peaked function once we have substituted Eq. (2)
for r(A).

x/2 RULES

The real and imaginary parts of the susceptibility are re-
lated by the Kramers-Kronig relations, e.g. ,

where g is the correlation length and 8 a dynamic critical
exponent. That is, in this case the effective barrier
W =cg ~ as T T„whereas for the derivation
presented above the effective barrier, W =6/kg T ap-
proaches ~ as T 0. If in the phase-transition case we
similarly assume a broad distribution of relaxation times,
one obtains the logarithmic scaling form

x"(co) =Z"( —Inro/g e), (i 3)

completely analogous to Eq. (8) except that k~T is re-
placed by I/g .

Thus, a logarithmic scaling form is obtained near T, in
phase transitions in disordered systems with c in Eq. (12)
playing the same role as 4 in Eq. (2). The logarithmic fre-
quency dependence may, however, be obtained much more
generally at low temperature in disordered systems,
whether or not such systems undergo phase transitions.

In addition to the x/2 rule given by Eq. (11),there is an
analogous relationship involving the temperature deriva-
tive

x 1 d
2 In(coro) dT

(i4)

The analogue of this low-temperature relationship near a
phase transition with activated scaling (such as the ran-
dom field Ising model) is

Svedlindh, and Beckman for the ordered phase of spin
glasses. It was obtained (as in the derivation above) on the
assumption that the probability distribution of relaxation
times in a spin glass is slowly varying in ln~. In Ref. 5 this
m/2 rule was derived, not in the limit T~ 0 but in the lim-
it T T„ in the case of a phase transition in a disordered
system with transition temperature T,. An example is the
random field Ising model for which the spin-relaxation
time near T, is believed to behave as '

(i2)

Z'(co) =— dho'
1 t ",Z"(co')

(9) gll K 1 (ge)2 8 X
2 In(corp)

(is)

If Z"(co) is taken to have the form of Eq. (8) it is con-
venient to change variables with y = —kgT In(co'ro) and
z = —kgTln(coro). Making use of the fact that Z"(co) is
an odd function of frequency, Eq. (9) then becomes

If we set (=
~
T —T, ~

", this can be rewritten,

(T —T, ) dz'
2 In(coro) v8 dT

1 1X'(z) =— ' dy Z"(y)
z kgT"—

1

e (y —z)/I;x+1

1

(y —z )/k~ Te
(io)

the form of which is closely analogous to the low-
temperature expression

x 1, dX
2 In(corp) dT

In the limit kgT 0 both terms in the integrand factor in
brackets effectively approach step functions. Then, taking
a derivative with respect to z C-. into one finds,

7r dz'x = ——
2 dlnco

The condition for the validity of Eq. (11) is that Z" vary
slowly over the widths of the "step functions" in Eq. (10).
This "x/2 rule" relating the real and imaginary parts of
the susceptibility was first derived by Lundgren,

In terms of conductivities in activated systems at 1ow tem-
peratures, the x/2 rules take the forms

O' K d 0'

2 d inc) a)

1 d a"
2 In(cozo) dT c0

(i9)

The relevant response functions here are (o '/co) and
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(cr"/co) because it is the susceptibilities, rather than the
conductivities themselves, which are expected to vary slow-

ly (logarithmically) as functions of co.

APPLICATION TO ORDINARY GLASSES

T —Tg

vO

as a fitting parameter. For v0=1 the fit gives the value
T~ = 180 K for glycerol.

An earlier attempt to fit Eq. (14) in spin glasses gave,
similarly, a value of zp which was unreasonably small
(inrp= —230). However, since the data were taken in
the neighborhood of the spin-glass transition temperature,
a fit to Eq. (16) instead may possibly yield a more reason-
able value of zp.

IMPURITY CONDUCTION IN INSULATORS

The frequency dependence impurity conduction is found
to be well described in many cases by a power law,

(7 =A co (20)

0' =A co (21)

where o.' and cx" are the real and imaginary parts of the
conductivity and A' and A" are constants. The exponent s
is near one, and both s & 1 and s & 1 are observed experi-
mentally. ' We suggest that the appropriate forms for cr'

and o." may be

a' =A 'o)f '( —ln co rp ),
cr" =2 "cof"(—1ncorp),

(22)

(23)

such that (cr'/co) and (cr"/co) will have the requisite slow
variation in co to make the x/2 rule, Eq. (18), apply. We
have looked at the classic paper of Pollak and Geballe. '

As shown in this paper, a good description of the data was

Recently, some very pretty experiments have been per-
formed' which measure the real and imaginary parts of
the product c~rc in several glasses. Here c~ is the specific
heat at constant pressure and K the thermal conductivity.
Glasses are expected to be well described in terms of ac-
tivation over barriers with a broad distribution of their
heights. Thus the ideas presented in this paper should be
expected to apply to this case.

The data were analyzed in terms of a Williams-Watts
function. However, the logarithmic derivative of the real
part closely follows the imaginary part, as expected ac-
cording to Eq. (11). For both glycol and glycerol where
Reczx and Imc&K were measured for three different tem-
peratures we find the z/2 rule, Eq. (11), to be satisfied in
all cases to within about 15%, even though the data are
very far from the T=0 limit. This rule has previously
been tested for spin "and dipolar glasses where it was
also found to be satisfied, at least approximately.

If we apply Eq. (14) to the temperature dependence of
Rec&K and Imc&K' we find a value of zp which is much too
small (inrp = —100). If instead we use Eq. (16), we ob-
tain a reasonable fit to the data using

obtained either with the power-law fit, Eq. (20), with
s =0.8 or the form of Eq. (22) with f'=( —lncorp) and
zp =1.410 ' . The latter form was also derived theoreti-
cally from a model with a distribution of relaxation times.
We have tested the n/2 rule in the form of Eq. (18) and
found this rule to hold quantitatively to within about 10%
for the data presented in Ref. 13.

From the relationships

s(co) = 1+4'(co),
~p

s(co) =1+ icr(co),4x.

(24)

(2S)

it follows that

1 G' (co) ga( )
Gp CO

and the noise spectrum Eq. (7) takes the form

c)kgTS = ( —incorp)

or for the power-law fit, Eq. (20),

kI3 TS =c2
CO~

(26)

(27)
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where p =2 —s. We prefer the logarithmic form. We be-
lieve this is another example where activated processes
give rise to logarithmic co dependence and 1/f-type noise.
It is interesting to note that an exponent s & 1 in the con-
ductivity gives an exponent p & 1 for the 1/f noise and vice
versa. A related possible example is finite frequency hop-
ping conduction which was argued' to produce a colnco
conductivity due to Coulomb interactions.

In conclusion we note that logarithmic scaling, 1/f
noise, and various x/2 rules are all intimately related and
should be observed in a large number of unrelated disor-
dered systems both near phase transitions and, much more
generally, at low temperatures, whether or not such sys-
tems undergo phase transitions. In addition to spin and di-
polar glasses, and the random field Ising model, for which
many of these ideas have been previously considered, we
have briefly discussed here two additional examples: the
thermal properties of ordinary glasses and the frequency-
dependent conductivity of insulators. We suggest that the
proper descriptions of these data are in terms of logarith-
mic frequency dependences (the Williams-Watts function
has power-law frequency dependence for small co, and the
conductivity data are usually analyzed in terms of powers
co' with s = 1). There should be associated 1/f noise be-
havior for appropriate correlation functions (with logarith-
mic corrections), and appropriate x/2 rules should be sat-
isfied. We suggest that analyzing the data of many other
disordered systems along these lines may be a fruitful ap-
proach.
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