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the (6d7s) electrons as well as from the localized Sf
electrons. The conduction-electron contribution will, due
to differences in cross sections, be dominated by 6d elec-
trons. This d band extends somewhat more than 2 eV
below the Fermi energy' and might give rise to rather
sharp features in high-resolution spectra. Such features
have, for example, been observed in the valence-band
spectra for ytterbium and lutetium. ' '

The contribution from the Sf ~Sf ionization will
also be rather extended in energy due to the energy separa-
tions between the final-state multiplet levels. ' The spec-
tral shape for the f ~f photoionization process has
been calculated by Gerken and Schmidt-May. ' From its
form (see curve denoted 5f final states in Fig. 1) it is
clear that this contribution alone cannot account for the
experimental spectrum. "

Due to the high surface sensitivity obtained with He?I
excitation it is clear that the observed spectrum contains
not only contributions from bulk americium atoms, but
also a substantial contribution from surface atoms.
Theoretical considerations for the rare-earth elements
showed that a surface shift of about +0.4 eV is to be ex-
pected for these metals. ' ' Experimentally one has
found shifts varying from about 0.4 eV in the early
lanthanides up to 0.7 eV in lutetium. ' For americium
one would on the same theoretical grounds expect a sur-
face shift of similar magnitude. If a surface contribution
(shifted by 0.6 eV) with 30% of the bulk intensity is add-
ed, one reproduces quite well the spectrum in the 2—3-eV
range (compare Fig. 1).

The remaining unexplained feature is located at 1.8 eV
below the Fermi energy. Since americium is the sister ele-
ment to europium one certainly expects tendencies to-
wards divalency in this actinide element. ' This tendency
should be enhanced at the surface, something which has
actually been observed for samarium metal. Samarium
is a trivalent metal in the bulk and has on its surface a di-
valent layer. ' ' ' Assuming that at least part of the
americium surface atoms are divalent we include also a
calculated f ~f contribution to the interpretation of the
spectrum. As seen in Fig. 1, such a contribution can very
well explain the 1.8-eV peak. Furthermore, the lowest
multiplet level of the final f configuration is then situat-
ed only 0.1 eV below the Fermi level, consistent with a
just barely stable divalent state at the surface. However,
in Ref. 15 doubts were raised about whether a planar sur-
face of americium could indeed become divalent. Only
for a very rough surface should one expect some divalen-
cy. However, the experimental spectrum in Fig. 1 was ob-
tained after argon sputtering and without annealing, a
treatment which is known to produce rough surfaces.

Furthermore it cannot be totally excluded that the 1.8-eV
signal is extrinsic, namely due to some impurities which
at the surface facilitate the formation of some divalent
americium.

A divalent state should also be observable in the core-
level spectrum. The experimental 4f spectrum of americi-
um" contains a main line as well as a weak contribution
at 4-eV less binding energy. This peak has been interpret-
ed as a shakedown satellite, "' similar to what has been
observed for lanthanum, cerium, praseodymium, and neo-
dymium. However, a divalent americium atom would
have a 4f binding energy close to this satellite position.
Thus, unfortunately, it is not possible to use the 4f core-
level spectrum to answer the question about a partly di-
valent americium surface.

Another possible interpretation of the 1.8-eV feature
can be obtained from a comparison with the 4f contribu-
tion in the valence-band spectrum for cerium metal. In
cerium one observes two features, one d-screened 4f sig-
nal located quite far from the Fermi energy and a 4f
screened hole close to the Fermi energy. Thus the
1.8-eV feature in americium could be looked upon as a 5f
screened final state, i.e., 5f ~Sf Sf '. Unfortunately,
nothing is presently known about the distribution among
the various final-state multiplets for such a process, which
makes it impossible to judge if this is a reasonable
interpretation or not. In the low-photon-energy spectra
Hel (hv=21. 2 eV), there are also structures observed
rather close to the Fermi surface. " Again, this might be
due to a 5f screened state. However, it might also
originate from 6d conduction-band states which are now
more clearly seen in the spectrum because of less domi-
nance of the Sf contribution at these low-photon energies.
The HeI spectrum was furthermore recorded at better
resolution. We also note in Fig. 1 that after subtracting
the 5f emission features which are used to explain the
peaks at 1.8 and 2—3 eV, one obtains a 1.5-eV broad
structure closest to the Fermi level which has the shape
expected for the d emission from a trivalent metal.

In summary we have tried to give an interpretation of
the experimental valence-band photoelectron spectrum for
americium metal. This involved a bulk and a surface
f ~f contribution. Furthermore, a divalent surface
peak was also proposed (f ~f ) but for which much less
certainty could be achieved. The lowest-level position for
the bulk f ~f ionization was found to be 2.3 eV, which
agrees quite well with the theoretical calculation in Ref.
15.
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