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Correlation between charge and current corrugations in scanning-tunneling microscopy
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The aim of this paper is to investigate how charge and current corrugations in scanning-tunneling
microscopy are compared. A Si(111) surface is analyzed and a method to calculate tunneling
currents from localized states is proposed. The main result of this model is that charge corrugations
are always greater than current corrugations, although they only differ significantly for large corru-
gations.

The key question concerning the recently developed
technique of scanning-tunneling microscopy (STM) is the
correlation between charge and current (measured) corru-
gations. ' Some of the theoretical models proposed to in-
terpret the STM images use the local density of states of
the sample. ' In a different approach a full calculation of
the tunneling current through the matching of tip and
sample wave functions ' is performed. In these refer-
ences ' both the tip and sample were described by means
of a jelliurn model.

The purpose of this paper is to present a full calculation
of the tunneling current for a Si-metal configuration. Al-
though the voltage drop controlling the total current is
determined by a diffusive process inside the semiconduc-
tor, the surface corrugation measured by STM only de-
pends on the tunneling process between Si and the metal.
Surface corrugations are studied by analyzing the local
charge and the current densities as a function of the dis-
tance between the tip and the sample. We assume the
tip's curvature to be large enough for the tip to scan with
high accuracy the surface corrugation. The results given
in Ref. 4 show that the total tunneling current has two
factors: one is associated with an effective curvature of
the tip and the sample (measuring the effective area for
the total current), the other one is related to the terms ap-
pearing in the case of two planar surfaces located at the
same distance as the tip and the sample (measuring the lo-
cal current density at the tip's center). Assuming that the
effective curvature of the microscope's interface is con-
trolled by the tip's curvature allows us to reduce the
analysis of the tunneling-current corrugation to consider a
planar surface for the tip. On the other hand, as tunnel-
ing from Si is assumed to occur through surface states, a
method suitable for this case will be proposed. Most cal-
culations of tunneling currents in the parent experimental
technique of field emission are based upon the WKB ap-
proxirnation. ' Our method provides a new approach to
the calculation of tunneling currents from localized states.

As stated above, the tungsten tip and the semiconductor

will be taken as flat parallel surfaces. We shall consider a
Si(111) unreconstructed surface and a jellium model for
the tip. Of course surface corrguations for this surface
will not be similar to the large values found at the
Si(111)7)&7 surface. ' Instead, our model will illustrate
the kind of corrugations which can be expected at less
corrugated surfaces or even regions of the 7&&7 surface
having a local structure similar to the ideal surface. On
the other hand, this system provides an appropriate case
to compare charge and current corrugations.

The barrier height will be taken from recent experimen-
tal data, ' according to which it depends significantly on
the distance between the tip and the sample. Two abrupt
barriers will be placed at the tip and the sample surfaces,
adequately shifted to account for charge neutrality. "'
The vacuum potential in between will be taken constant
and adjusted to give the actual barrier height. ' The semi-
conductor band structure will be described by means of an
empirical pseudopotential, including 27 plane waves in
first-order perturbation theory. Details of the surface cal-
culation can be found in Ref. 11. Electron-electron in-
teraction will not be considered since it does not affect the
electron density of states at the Fermi level, ' the energy
region actually contributing to the tunneling current. '

We turn now to discuss the method proposed here for
calculating tunneling currents. It should be noticed that
as surface states are localized, no current can be, in princi-
ple, built up through them. The source of charge is pro-
vided by conduction through the semiconductor bands;
electrons or holes falling to the surface states maintain a
constant current through the surface states. This process
will be modeled by a 5 function at zo (the position of the
abrupt barrier for the semiconductor); its weight will be
adjusted to provide the appropriate current.

The following equation defines the wave function Pq we
are going to use in order to calculate tunneling currents:

——,
' V' Pk+ [V(p, z) E]Pq Ce'"'~5(z —z—o) . ——
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FIG. 1. Effect of the inhomogeneous term of Eq. (1) in one
dimension. Note the outgoing wave function in the metal.
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Here, V(p, z) is the full crystalline potential of the metal-
semiconductor interface and Ce' '~6(z —z0) is the kind of
interface source creating the tunneling current we are
looking for (C is a constant to be adjusted below, k is a
two-dimensional reciprocal vector); Fig. 1 illustrates in

one dimension the kind of wave function provided by Eq.
(1). Notice that the boundary conditions in the metal
have to be chosen such that {t)k represents an outgoing
wave function. Equation (1) has the following solution:

3
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FIG. 2. Half-widths of surface states (rk ') in eV at points Pl
and P2 of the two-dimensional Brillouin zone (irreducible part
also shown in the figure} as a function of the distance between
the tip and the semiconductor (d). The shaded area coincides
with the filled part of the Brillouin zone.

P),(p,z, E)=Ce'"'~ g e's ~G, (k+ g, z;k, zD', E),
8

(2)

where g is a two-dimensional reciprocal-lattice vector.
The Green's function G, is that corresponding to the
whole system and is calculated by means of the surface
Green's-function method. "' ' The current associated
with {t)k is given by (atomic units are used in this paper)

j(p,z;k;E) =Im[{t I*, (p, z;E)V,Pk(p, z;E)],
and the corresponding local density of states,

Dg(p, z;E)=
~ Pk(p, z;E))

~

5(E E) ), —

(3)

where E
&

is the energy of the surface state for a given k.
Equation (4) gives the local density of states associated
with {t), which, in principle, would be different from the
local density of the actual system. Ho~ever, we can show
that both quantities are the same if the constant C, intro-
duced in Eq. (1), is appropriately chosen. The point to be
noted is the following: The function It)k is a given com-
ponent of the Green's function of the whole system; this
Green's function is quite close to the Green's function of
the vacuum-semiconductor interface. For this last ease,
the Green's function has poles at the surface-state ener-
gies, and at those energies the Green's function is deter-
mined by the surface-state wave function, i.e., the residue
at the poles is

~ p (p,Iz;E,
~

. For the slightly changed
Green's function given by Eq. (1), we can expect that with
a high aeeuraey P), behaves in the same way if we choose
the energy to be close enough to the surface-state level
E,(k). The constant C introduced in Eq. (1) can be
chosen by analyzing the z component of the total current
per unit area associated with {t))„this can be calculated by
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FIG. 3. Contours of constant charge as a function of p and z
0

for d =3.5 A. Values referred to the charge at p=0, z =0.
Origin of z at the semiconductor midbond. The position of sur-
face atoms is indicated by circles (atoms are actually a half bond
behind z =0).

multiplying Eq. (1) by {tI, and subtracting the complex
conjugate equation. The result is the following:

J,(k,E)= f d pj, (p,z;k;E)=2TT
~

C
~

n(k, zD, E), (5)

Z)Zp

where

n (k, zD, E)= ——ImG, (k,zD;k, z0;E) .
1
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Now, we choose
~

C in order to obtain the following
general result

J,(k, E) =n (k, E)/re, (6)

where rq is the state half-life (this time is obtained by
calculating the broadening of the corresponding surface
state in the metal-semiconductor interface) and n (k, E)
the density of surface states for a given k and E. Equa-
tions (5) and (6) yield

FICx. 4. Same as Fig. 2 for the z component of the current
density.

0

4.5 A (actual distances between atomic planes should be
around 2.5 A larger). Note that calculations for smaller
values of d are meaningless as the barrier height rapidly
vanishes for d less than 2.5 A. Our results for the local
charge and the z component of the current densities are il-
lustrated in Figs. 3 and 4 (d =3.5 A). As regards charge
density the following results are worth being outlined: (i)
For a given distance between the semiconductor and the
tip, corrugation decreases for z closer to the tip (notice
that corrugation is defined here by the curves of constant
charge density; (ii) the corrugation nearest the tip surface
decreases as d increases, being 0.63 A for d =2.5 A, 0.2
A for d =3.5 A, and 0.1 A for d =4.5 A; and (iii) corru-
gations as a function of z for z & 1.5 A are nearly in-
dependent of d. Contours of constant current j, for
d =3.5 A are shown in Fig. 4 (corrugation is defined in
this case by the tip's distance for which the current densi-
ty is a constant). The result is rather intuitive: Near the
semiconductor surface the current density is much higher
on top of the surface atom. Then, current lines open,
leading to an overall decrease of j, on top of the atom,
and increase midway between atoms. Similar results were
obtained for other d.

Comparison between the corrugations yielded by the
current can be alternatively (and more clearly) carried out
by defining the ratios Rq (charge) and Rz (current) be-
tween their values on top of the surface atom and midway
between atoms, for a given d and at the tip plane (z =d).
We obtain

2e 5 A& Rq 1 o 9& Rj 1 ~ 63

3 5 A Rq 1 4 Rj 1 35

' 1/2
n (k,E)

2mrgn (k,zo, E)

This normalization factor provides the full wave function
(2) and the current and charge densities (3) and (4). [In
our calculation we have checked independently that the
factor given by Eq. (7) is correct, by comparing Eq. (4)
and the local density of states given by n (k,zo;E) after
Eq. (5).]

The current and local charge density should be calculat-
ed by taking an average over the surface electron states at
the Fermi level (EF). The resulting mean value will be
multiplied by the total density of states at EF and by the
voltage drop at the interface. In our calculations, we have
only considered the two points at the Fermi surface shown
in Fig. 2. For each point we have calculated Pq and rk.
Figure 2 shows ~k

' for those two points as a function of d
(distance between the end of the tip's jellium and the plane
passing through the midpoint of the broken semiconduc-
tor surface bonds). Note that rq decreases exponentially
with d, being smaller for Pq, the point with larger

~

k ~,
as expected. This means that for large d, points with the
smallest

~

k
~

will give the largest contribution to current
and charge densities.

We have performed calculations for d =2.5, 3.5, and

0

These results show that for d =2.5 A charge corrugation
is 14% greater than current corrugation (measured),
whereas for d =3.5 A it is only 3% larger. A case with
larger corrugation can be considered by recalling that for
z & 1.5 A corrugations are nearly independent of d. Then
for z =1 ~ 5 A, a plane for which charge corrugations is
around 1 A, our calculations lead to a ratio Rq/Rj —1.3,
showing again that the difference between charge and
current corrugations increases for greater corrugations.
These results show that for large corrugations current cor-
rugations cannot be replaced by charge corrugations: Er-
rors can be as large as 30% for corrugations of 1 A.

In conclusion, we have presented a full calculation of
tunneling currents from a crystal surface. In particular,
we have studied the Si(111) surface in which tunneling is
likely to occur through surface states. A method to per-
form a full calculation of tunneling currents through lo-
calized states has been proposed. The results suggest that
while current corrugations (STM results) for weakly cor-
rugated surfaces are very similar to charge corrugations,
the latter are significantly greater than current corruga-
tions for strongly corrugated surfaces.
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