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On the basis of a microscopic model, the dynamic properties of orientationally disordered crystals
with substitutional impurity atoms are investigated. The temperature and concentration dependence
of the acoustic phonon frequencies is studied. The anomalous damping of phonons is explained.
The resonances of the dynamic response function are studied as a function of frequency. The central
peak is obtained as a static phenomenon; its temperature dependence is derived. A theoretical foun-
dation for NMR line shapes and x-ray linewidths is presented, and the relation of these data with
the central peak is established.

I. INTRODUCTION

In the preceding paper, ' to be referred to as I, we have
presented a microscopic model for the description of
mixed crystals M (CN)„X~ „, where M is an alkali-
metal and X a halogen ion. The theory takes into account
the random strain fields which are due to the substitution-
al halogen ions. Above a certain critical concentration of
halogen ions, the random strain fields suppress the transi-
tion to a phase with long-range orientational order. While
the overall structure of the crystal stays cubic, cubic sym-
metry is broken on a local scale. Deformations of the lat-
tice are accompanied by a local freezing in of orientations.
Experimental evidence from neutron scattering ' suggests
such a picture of the orientational glass state.

The onset of the glass state is characterized by interest-
ing experimental phenomena, in particular, the passage of
the transverse-acoustic-phonon frequencies through a
minimum and the concomitant appearance of an elas-
tic central peak. ' ' A straightforward extension of the
dynamic theory of translation-rotation coupling is inade-
quate to account for the experimental phenomena. A dis-
cussion of the shortcomings is given in Refs. 10 and 5. In
particular the description of dynamic phenomena in Ref.
9 is unsatisfactory since the statics which is used there is
inadequate. The results of I give a new description of
statics in mixed crystals and the purpose of the present
paper is to extend this description to dynamics.

In Sec. II we discuss the static displacement-
displacement susceptibility. Next (Sec. III) we study the
dynamic response functions. In particular, we investigate
the dependence of the phonon resonances on the frequen-
cy of the experimental method. The temperature depen-
dence of phonon damping is discussed. In Sec. IV we
study the central peak which appears in the neutron
scattering law.

II. DISPLACEMENTS SUSCEPTIBILITY

In order to calculate the phonon frequencies, we first
need the static displacements-displacements susceptibility.

We start from Eq. (4.6) of I for the free energy,

F=Ftt + g I —,s t'(k)M(k)s'(k)+ Y't(k)v(k)s (k)
k

+ —,[(7 ) '+J(k)+ IC']Y' (k)Y'(k)
I .

(2.1)

Here Y' and s' are the orientational and translational
variables, respectively. The first term F~ represents the
single particle orientational free energy. The terms within
curly brackets account for the elastic interaction energy
with the bare dynamical matrix M, for the bilinear T-R
coupling with interaction U, and for the orientational in-
teraction J. The quantity 5 denotes the single particle
orientational susceptibility and is given by Eq. (4.9) of I:

7 =x(ywlT)[1 —x(1—x)/ah /T ] . (2.2)

Y'(k) = —[(go) '+1C'+J(k)] 'u(k)s'(k) .

Inserting this result into Eq. (2.1), we get F as a function-
al of the displacements

(2.3)

F= —, g s't(k)IM(k) —ut(k)
k

X [(X ) '+1C'+ J(k)] 'u(k)] s'(k) .

(2.4)

Using a standard method of statistical mechanics, " we
then obtain for the displacement-displacement susceptibil-
ity

Here y~ and g~ are single particle correlation functions,
and h represents the amplitude of the random fieId. For
further details about expressions (2.1) and (2.2), we refer
to I.

For a given configuration of displacements Is'(k)], we
minimize F with respect to the orientations Y '(k) and ob-
tain
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X(k)=X [1—X L(k)]

with

L(k)=u(k)M '(k}ut(k) —IC' —J(k) .

(2.6a)

(2.6b)

Taking k along one of the cubic axes, say k=(0,0,k), we
find that all matrices are diagonal. In the long-
wavelength limit, X(k) is given by Eq. (5.3) of I, and from
Eq. (2.5) we find

D '(k) = T '(s' (k)s'(k) )

'(k)[1+ut(k)X(k)v(k)M '(k)] . (2.5)

Here X(k) is the collective orientation-orientation suscep-
tibility, given by Eq. (5.1) of I:

scattering, and neutron scattering are characterized by dif-
ferent frequency regimes, we shall investigate the dynamic
response functions.

III. DYNAMIC RESPONSE

We start from the formulation of the dynamic response
functions which has been given previously for systems
with bilinear translation-rotation coupling. ' We tran-
scribe the expressions of the dynamic correlation func-
tions by taking into account the expressions of the static
susceptibilities for mixed crystals M(CN)„X&

Dynamic equations are most conveniently formulated
in terms of Kubo's relaxation function @" (z), z =co+i @,

e~O. The imaginary part 4&"(cu) is related to the dynam-
ic correlation function by

(2.7a) S" (k, co) = —co[1—exp( co/T—)] '@" (k, co) . (3.1)

Here J=J2z (k=O), and 5 is the largest eigenvalue of
L(k) given by Eq. (5.4) of I. The bare dynamical matrix
M is proportional to the elastic constants c;J in absence of
T-R coupling, while D is proportional to the renormal-
ized elastic constants. In particular

We are interested in the dynamic displacement-
displacement correlation function 4"(k,co) and take
k=[0,0,k]. Then 4&" is diagonal and the relevant ele-
ment N&'& refers to the s —s correlation. The corre-
sponding equation of motion reads' as

D ), (k)/M ) ((k) =c44/c4~, (2.7b) [co —D))(k) —co o(co)]N)')( kco}=[co o(co)][—D '(kl],
~

.
and the temperature dependence of c~ is governed by Eq.
(2.7a). The temperature dependence of c44 is shown in
Fig. 1 for several values of the concentration x of CN
ions. The most remarkable feature is the appearance of
the rounded minimum if x is smaller than the critical
concentration x, which is given by Eq. (5.6c) of I. We re-
call that a minimum in D&& or in c44 corresponds to a
rounded maximum in the collective orientational suscepti-
bility X22(k). The latter has been investigated in I. From
Fig. 1 we see that the position T =T~ of the minimum
shifts to lower values with decreasing concentration x.
This effect has been discovered by Brillouin scattering ex-
periments. The concentration and temperature depen-
dence of the elastic constants is a reflection of the phase
diagram, Fig. 3 of I. The appearance of the minimum has
been found first by inelastic neutron measurements of
transverse-acoustic-phonon frequencies in K(CN)„Br ~

The position Ty of the minimum depends also on the ex-
perimental method. ' ' ' Since ultrasound, Brillouin

o.
) )(co)= b, ) )/(co+i A), .

with

(3.3a)

b i i(k) =M i i (k) D„(k) . — (3.3b)

Expression (3.3a) for cr&, (co) has been obtained under the
assumption that the orientational dynamics corresponds
to a relaxation process with relaxation frequency fik. We
expect that the relaxation approximation is correct in the
case of weak potentials and not too low temperature. ' As
has been discussed in I, the static susceptibilities of the
present theory have been derived in the classical regime
and we expect that for T& 30 K, also the relaxation ap-
proximation for A, is valid. We estimate that AX is of the
order of 1 THz at 240 K which corresponds to the fast re-
laxation regime and is in agreement with neutron scatter-
ing results. ' Since' A, ~~T, we approximate the tem-
perature dependence of A, by the expression
( T /240), where A.o

——1 THz. The resonances of the
scattering function S~'&(co) are determined from the imag-
inary part of N~'~(co). We obtain from Eq. (3.2)

(3.2)

Here D&1 is given by expression (2.7a) and the function
o(co) accounts for the orientational relaxation

0.5—
(3.4)

where we have defined

100 200
T(K)

300 f (co) = ~2+ g2 (3.5)

FIG. 1. Temperature dependence of elastic constants c44/c44
for h =300 and CN concentration x =0.1, 0.3, 0.4, and 0.5.

i2
Dii(k, co) =Mii(k) —b. ii(k)

co +k
(3.6)
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We notice that in the limit co~0, Dii(k, co) reduces to
Di i (k). The quantity D» (k, co) determines the real part
of the resonance frequencies. %'e have calculated
D, i (k, co)/Mii (k) as a function of temperature for several
concentrations and for several values of co. As is shown in
Fig. 2, the minimum is more shallow for higher values of
co, in addition, the position of the minimum becomes fre-
quency dependent. Tf (cu ) shifts to higher values for
larger frequencies m. These results are in agreement with
experimental observations. We remark that h~& plays the
role of an effective translation rotation coupling. From
Eq. (3.3b) it follows that the increase of Dii(k) at tem-
peratures T ~ Tf appears as a decrease of the effective
coupling A~& below Tf. Such a behavior has been inferred
from neutron scattering results. '

We next consider the frequency-dependent damping. In
KCN, the phonon linewidth increases with decreasing
temperature in the cubic phase and reaches a maximum at
the 168-K phase transition. ' This anomalous behavior is
accounted for by the theory of bilinear translation-
rotation coupling. ' ' On the other hand, in
K(CN)„Xi „, with x &x„ the phonon damping first in-
creases with decreasing T ~ Tf, passes through an
anomalous large maximum which is located near Tf and
then decreases with decreasing T & Tf. The large damp-
ing near T=Tf has been confirmed by various tech-
niques, especially by ultrasonic experiments. ' ' Most re-
cently, the temperature variation of the phonon linewidth
has been investigated by Brillouin spectroscopy. As is
discussed by the authors of Ref. 20, the previous dynamic
theory, although it takes into account some effects of
phonon dispersion, is not able to describe qualitatively the
temperature dependence of the phonon linewidth. From
the denominator of Eq. (3.4), we see that the frequency-
dependent phonon damping is given by

minimum. Both the overall temperature dependence of I
and the slight shift of the maximum with respect to
Tf (co ) are in qualitative agreement with experimental re-
sults. The shift of the maximum can also be deduced '

from the data on the elastic properties. '

IV. CENTRAL PEAK

A characteristic feature which is associated with the
orientational glass state is the appearance of a central
peak in the neutron scattering law. The width of the
peak is below the resolution of neutron spectroscopy. '
Therefore Rowe et al. have proposed that the central
peak is a static phenomenon which is due to the freezing
in of orientational modes on a local scale. Following Ref.
5, we write for the instantaneous value of the orientational
mode Y at lattice site I

(4.1)

The first term on the right-hand side represents a local
average and is time independent, the second term accounts
for time-dependent fluctuations around the equilibrium
value with (5Y (I,t)) =0. The separation of Y (I,t) in a
frozen in local part and in a fluctuating part is similar to
the point of view taken by Halperin and Varma for the
description of displacement fields in the presence of
frozen interstitial defects.

While in Ref. 5, ( Y (1))&0 was taken as a working
hypothesis, we will show now that the first term on the
right-hand side of Eq. (4.1) follows directly from the mi-
croscopic model of I. Indeed the random strains which
are generated by the substitutional halogens couple to the
orientational modes of the residual CN molecular ions.
The corresponding interaction is given by Eq. (3.5) of I:

P' ~([o])=g o(n)Y (n)h (n, [o.)) . (4.2)
I (co) =cob, iif(co) . (3.7)

The temperature dependence of I (co), for a fixed value of
the frequency co, is also shown in Fig. 2. The maximum
of I (co) occurs at a temperature which is slightly below
the corresponding Tf(co), where D» (k, co) has its

Here o(n) accounts for the occupation of the CN ions
on the lattice and equivalently [crI determines the given
configuration of substitutional impurities. The random
strain field h has been explicitly discussed in I. Apply-
ing linear-response theory, we obtain for the frozen in
orientation which is induced by V at lattice site I

1.0
I

1.0

( Y (I ) ) = —cr(1)(yii /T)h (I, [oI ) . (4.3)

Here y~ is the single particle expectation value, given by
Eq. (4.10a) of I. From property (3.6) of I, we obtain for
the configurational average (denoted by an overbar),

0.5

0.2

T{Kj

( Y (I))=0.
On the other hand, Eq. (3.8a) of I implies

( Y (I))(Yp(I ')) =5tt 5 px'll,

where the glass order parameter 4' is defined by

4=x(1—x)yw(h /T ) .

(4.4)

(4.5a)

(4.5b)

FECx. 2. Temperature dependence of D]&(k,co)/M]~(k) for
co=0.2 THz (curve b); co=0.0 (curve a). Dashed curve shows
damping E (u)/M~~(k), co=0.2 THz. En all cases, x =0.4 and
h =300.

The strength of the random field is given by Eq. (3.8b) of
I. It has been shown in Ref. 5, that the separation of the
orientational mode in a frozen in part and in a fluctuating
part leads to the dynamic structure function for orienta-
tional motion
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S~p(q, co)=x5 ii+5(co)+o ii(q, ~) . (4.6)

The first term on the right-hand side gives rise to the cen-
tral peak, while the second term accounts for the dynami-
cal part of the scattering law. The intensity of the central
peak increases as T with decreasing temperature as fol-
lows from Eq. (4.5b) for 4. We recall that yii is only
weakly temperature dependent. Here again we should ob-
serve that the present theory is not valid at very low T
where a quantum-mechanical treatment is required (see
remarks of I, Sec. IV). While a T behavior of 4 leads
to a divergence at T =0, a quantum-mechanical treatment
should yield a saturation of 4 at T =0. A saturation is
indeed observed by experiment. ' The T dependence
is the result of a lowest-order treatment in h /T, it de-
scribes qualitatively the increase of 4' below Tf.

As has been discussed previously, a local freezing in of
orientations entails a freezing in of lattice displacements.
From Eq. (3.10) of Ref. 5, we have

(si(n)) = —g GJ~(n, l)P~; 'o(1)(Y (1)) . (4.7)

(4.&)

The matrix P~z
' is related to the bilinear coupling matrix

u, Eq. (3.2) of I, by the long-wavelength relation

u J(k)= —(i/v m )kpPp~g'. (4.9)

The locally frozen in orientation ( Y (I ) ) which occurs in
Eq. (4.7) is determined by Eq. (4.3). Therefore the con-
comitant lattice displacements (4.7) are temperature
dependent. At this point we should insist on the differ-
ence with the static lattice displacements s;(k, I

o.
I ), which

have been derived in I, Eq. (2.12a). The latter are static,
temperature-independent lattice displacements, which are
generated by the presence of the substitutional halogen
impurities. From Eqs. (4.7) and (4.4) we deduce

(s;(n)) =0.
Using Eqs. (4.5a) we find

( s;(n) ) (s, (n') ) =5„„6;,Q;; 'x 4,
where

(4.10)

(4.11a)

Q;; =
~ gkpPp, ' [M '(k)];;k~P~~'[M '(k)]'; .

1

Xm

(4.11b)

The temperature dependence is contained in the factor 4'.
In obtaining this expression, we have neglected correla-
tions between sites n and n'. Cubic symmetry of the con-
figuration averaged expression implies that all three com-
ponents a of QJ

' are equal and that i=j The resul. t
(4.11a) and (4.11b) is equivalent to expressions that have
been derived in Ref. 5 in order to explain the elastic con-
tributions to the neutron scattering law. In particular, it

Here G~~ is the spatial derivative [BX~(n)/8] GJ(n, l) of
the elastic Green's function

G J(n, l) = g [M '(k)];zexpIik. [X(n) —X(l)) I .
1

XM

was shown that the coupling of frozen in orientational
modes to frozen in lattice strains accounts for the asym-
metric shape ' of the elastic intensity contours in Q
space. The asymmetric intensity contours are the clear
signature of the fact that translational and orientational
modes of T2g symmetry are frozen in.

The temperature dependence of the frozen in acoustic
displacements has further consequences for the interpreta-
tion of experiments. X-ray diffraction experiments in
K(CN)„Bri „show a drastic increase of the linewidth of
the powder diffraction lines at temperatures below Tf in
the nonordering compounds. As has been suggested by
the authors of Ref. 23, the line shapes can be translated
into a distribution of inhomogeneous T2g shear strains,
centered around zero strain, and the width can be directly
interpreted as the mean random field order parameter of
the glass state. These properties are reflected in our re-
sults (4.7) and (4.11a). Additional information about the
local deformations of the lattice is provided by NMR ex-
periments. In Na(CN)„Cli „ the quadrupole moment
of the Na nucleus interacts with the static part of the
electric-field-gradient (EFG) tensor. Deviations from cu-
bic symmetry on a local scale in the lattice are reflected in
a distribution of EFG s which should lead to an inhomo-
geneous broadening of the central line and to a wide
spread of satellite transitions. The distribution width of
the EFG's is a measure of the mean local deviation from
cubic symmetry at the Na sites. Experimentally one
finds a drastic increase of the distribution width with
decreasing temperature. These results reflect the increase
of local deformations in the lattice with decreasing T.
Combining Eqs. (4.3) and (4.7), we obtain the
temperature-dependent local displacements

( s (n) ) = (yii /T ) g G,J&(n, I )P&, 'o'(1)h (I, I o]), '

I

(4.12)

with property (4.10) and distribution width (4.11a). It has
been pointed out as an experimental fact, that the width
of the (220), x-ray diffraction line and the distribution
width of the electric-field gradient at the Na sites in Na
(CN)„Cli „have the same T dependence. Our theory
leads to an understanding of these results. In addition we
find that the intensity of the central peak has the same
temperature dependence since it is also proportional to the
quadrupolar glass order parameter ql, Eq. (4.5b).

V. CONCLUDING REMARKS

We have applied a microscopic model' of M(CN)„Xi
to the description of elastic and inelastic scattering laws.
In particular we have studied dynamic effects such as
phonon resonances and their linewidth as a function of
temperature and CN concentration. The theory ac-
counts in an unified way for many experimental facts: oc-
currence of a rounded minimum in the phonon frequency
at Tf, shift of Tf to lower values with decreasing CN
concentration, frequency dependence of the position of the
minimum. In particular the theory reflects the differences
which are related to the specific frequency regimes of ex-
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perimental methods: ultrasound, ' ' Brillouin ' and
neutron scattering. ' The anomalous temperature depen-
dence of the phonon linewidth is obtained.

The central peak, which has been discovered by neutron
scattering, is derived as a static phenomenon, in agree-
ment with a previous interpretation. We calculate the
temperature dependence of its intensity which increases
strongly below Tf. ' In addition to the static, tempera-
ture independent strains which are due to the substitution-
al impurities, we investigate the temperature-dependent
static strain fields which are a consequence of the bilinear
translation-rotation coupling. The temperature depen-
dence of the width of the distribution of strain fields, Eq.
(4. l 1a), reflects experimental results of x-ray profile
linewidths and NMR line-shape distributions.

In the present paper we have only investigated phenom-
ena of Tz~ symmetry, i.e., associated with the quadrupolar
glass state. Many interesting phenomena in mixed crys-
tals are related to dipolar symmetry. In particular dielec-

tric measurements ' provide relevant information. It is
a subject of further work to extend the microscopic model
of I to the study of the dipolar glass state.

The present theory has been based on classical statisti-
cal mechanics (see also discussion in I). An extension to a
quantum-mechanical version is required if one wants to
understand low temperature properties of orientational
glasses. Such an extension is also necessary if one wants
to investigate possible relations between the quadrupolar
glass state in K(CN)„Br& „and in ortho-parahydrogen
mixed crystals.
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