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A microscopic model of mixed crystals with orientational disorder and translation-rotation cou-

pling is proposed. The substitutional atoms act as static impurity centers which generate random

strain fields. The static strains play the role of external random fields which couple to the orienta-

tional order parameter. In addition, the orientational modes couple to thermal lattice vibrations.

The thermodynamics is studied within mean-field theory. Above a certain concentration of substitu-

tional atoms, the system does not undergo anymore a transition to a phase with long-range orienta-

tional order. The theory accounts for experimental properties which are characteristic of the qua-

drupolar orientational glass state.

I. INTRODUCTION

Mixed crystals (MCN)„(MX)& „,where M is an alkali
metal and X a halogen ion, have attracted much experi-
mental and theoretical interest. While the alkali cyanides
MCN, with M =Na, K, Rb, exhibit a characteristic phase
transition' from the high-temperature orientationally
disordered phase with cubic symmetry, to orientationally
ordered phases with crystal structures of lower symmetry,
no such transition occurs in mixed crystals above some
critical value of the concentration (1—x) of halogen
atoms. For a review, see Luty. Most remarkable is the
temperature ( T) dependence of the transverse-acoustic
phonons or shear-elastic constants in mixed crystals.
While in KCN, the elastic constants become soft by ap-
proaching the ferroelastic phase transition, in mixed
crystals, above the critical concentration of halogens, the
transverse-acoustic phonon energy passes through a
minimum at T =Tf and increases again at lower T. '

At the same time, a large central component ' at zero en-

ergy transfer grows strongly at low T. The central com-
ponent is elastic within the best attainable resolution of
neutron scattering experiments; ' its intensity has a
characteristic shape in Q space. ' The absence of long-
range order and the appearance of the central peak have
been related to the possible existence of a "dipole
glass". " It has been shown in Ref. 12 that a freezing in
of orientational modes implies a concomitant freezing in
of translational modes (lattice strains). The bilinear cou-
pling of the e modes produces the asymmetries of equal
intensity contours of the elastic line in Q space. These
features are consistent with the hypothesis of an orienta-
tional glass state. Additional indications that the phe-
nomena in M(CN)„X& „are related to glasses have been
obtained from calorimetric measurements. ' '

Nonwithstanding recent work on the theory of quadru-
pole glasses, ' ' the experimental phenomena have not yet
found a coherent explanation. Some of the open problems
have been discussed in Ref. 17.

The result of Refs. 2, 3, 17, and 18 show that the criti-
cal concentration of X ions which is necessary for the ab-
sence of long-range order at low T is twice as large in

bromide as in chloride mixed crystals, (1 —x) is equal to
42% and 20%, respectively. We therefrom conclude that
the interaction between the halogen ions and the CN
molecular ions is an essential mechanism for the existence
of the orientational glass state.

The content of the present paper is as follows. In Sec.
II it is shown that the substitution of CN molecular ions
by spherical X ions leads to additional strain fields in the
crystal. These strain fields couple to the orientational de-
grees of freedom of the molecules or molecular ions (Sec.
III). This interaction plays the role of an external random
field. In Sec. IV we calculate the free energy from a mi-
croscopic model by including the random field. The
method is based on mean-field theory. Above a certain
critical value of the concentration of X ions, the collective
orientational susceptibility is no longer divergent but ex-
hibits a smooth maximum at low T. In Sec. V we study
various properties which are associated with the onset of
the orientational glass state.

II. STATIC STRAINS

We take explicitly into account the influence of the sub-
stitutional X impurities in mixed crystals M(CN)„X&
The forces exerted by the X ion on the surrounding lat-
tice are different from the forces exerted by the substitut-
ed CN molecular ion. In the pure crystal MCN, the
equilibrium positions of the CN ions at lattice sites n
are denoted by X(n). Each CN is surrounded by six
M+ in octahedral positions:

X(n, tt) =X(n)+r(t~), ~=1,2, . . . , 6 (2.1)

here v(l)=(a, 0,0) etc. , with a half the cubic lattice con-
stant. We assume that the mixed crystal still has the the
average cubic structure. We want to investigate the inho-
mogeneous static lattice deformations which are induced
by the concentration fluctuations of impurities. ' To each
lattice site n, we assign a variable o(n) with value + 1 if
the site is occupied by a CN, and value 0 if the site is oc-
cupied by a X . For a given configuration [tT(n)), the
interaction of the concentration fluctuations of X ions
with neighboring M+ ions is written as
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V = g g [1—ir(n) —(1 —x)]V (
~
R(n) —R(n, ic)

~
),

(2.2)

calculate the strain induced in the crystal by the substitu-
tional X ions, we transform Eq. (2.7a), with F ~b,F,
to acoustic displacements s;(k). The result reads as

with

R(n)=X(n)+u (n),
R(n, ic)=X(n, ic)+u (n, ic) .

(2.3a)

(2.3b)

with

u; (k)= —2i sin(k;a) .. b,Fx
m

V„=g u; (k)p( —k, [o ) )s;(k),
k

(2.9a)

(2.9b)

Here u and u are lattice displacements. V is a sum
of atom-atom potentials. Expansion up to first order in
the displacements yields

Vx= Vx + g g [x —cr(n)]v (ic)[u; (n) —u; (n, ic)],

Here m =m~+ m ~ is the average mass per unit cell, with
ma ——xmas~+(1 —x)mx. The static lattice strains are ob-
tained by minimizing the total elastic interaction

(2.10)

(2 4 )
Here

V = —,
' g Mi(k)s; (k)s~(k),

k

(2.11)

g Vx
u; (ic)= (X(n) —X(n, ic)) .

ax,
(2.4b) M represents the corresponding dynamical matrix. The

minimization yields

In Eq. (2.4a), we have used the summation convention for
repeated Cartesian indices i. Cubic symmetry implies

s;(k, [o ] ) =A;(k)p(k, [cr] ), (2.12a)

u; (rc) = —u; (ic+3) (2.5a)
where A(k) represents the amplitude vector of the dis-
placement wave:

and A;(k)=[M '(k)];,u,. (k) . (2.12b)

v; (ic)=F 5;», ic=1,2, 3 .

Defining the Fourier transform

M( )
1 M(k) ik x(n, i»

(NmM )

(2.5b)

(2.6)

and taking into account Eqs. (2.5a), (2.5b), and (2.1), we
rewrite Eq. (2.4a) as

V = i,—gp( —k, [crj)F sin(k;a)u; (k) .
(mM)'"

(2.7a)

The first term on the right-hand side of Eq. (2.4a) is an ir-
relevant constant and has been dropped. In Eq. (2.7a), we
have defined

p(k, [ r] )c= g [x —cr(n)]e
1

n

(2.7b)

gFX FX FCN (2.8a)

where

Where X is the total number of unit cells (also equal to
the sum of CN and X ions in the crystal). Since the
X ions are located in CN sites, we have to subtract
from expression (2.7a) the effect of the substituted CN
ions in spherical approximation. This operation leads to
the replacement of F by

Expressions of the form (2.12a) are well known from the
theory of imperfections in crystals. ' As a consequence of
the elastic anisotropy of the crystal, A(k) is in general,
except for high-symmetry directions in the cubic crystal,
not parallel to the direction of the wave vector k. The
corresponding displacements s;(k, [o ] ) are transverse.
This point is essential for the existence of a coupling be-
tween acoustic lattice displacements and orientational
modes of Tzg symmetry.

III. STRAIN-OREENTATIQN CGUPLING

The interaction of an orientational mode Y at lattice
site r with acoustic displacements reads as

V "=g g cr(r)e'" "Y~(r)u;(k)s;(k) . (3.1)
X

%"hile the potential V" was originally derived for the
dynamic coupling of orientational modes with lattice vi-
brations, we will use it here for the coupling V of orien-
tational modes with the static lattice strains s;(k, [cr]),
which are generated by the substitutional halogens L. In
Eq. (3.1) we consider the three orientational modes with
1=2 of T2s symmetry. (See Ref. 21 for additional de-
tails. ) These modes are relevant for the ferroelastic transi-
tion at 168 in KCN, they are also characteristic for the
orientational glass state. ' The coupling matrix (u;) is
given by

'

CN g VcNF: dQ X H X A~K ~Q 6~)'
4m ax,-

(2.8b)

Here V stands for the interaction of the CN molecu-
lar ion with the surrounding M+ ions, Q—:(H, p) ac-
counts for the orientation of the CN ion. In order to

(v;(k)) = —2i
B
m

sin(k~a) sin(k„a) 0

0 sin(k, a) sin(kra )

sin(k, a) 0 sin(k„a)

(3.2)
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Defining a local displacement field

h (r, [cr}) =—g g [x —o(n)]R (k)
1

n k

where

X cos[k [X(r)—X(n)]}, (3.3)

(k) =u;(k)A;(k) .

We get from Eqs. (3.1), (2.12a) and (2.7b)

Vs~([cr})=go(r)Y (r)h (r, [cr} .

(3.4)

(3.5)

The static strains, which are generated by the substitution-
al ions, act as local fields on the orientational motion of
the CN molecular ion at site r. Expression (3.2) for the
matrix u(k) implies that only transverse displacements
A;(k) couple to the orientational modes of Tzz symmetry.
The field h (r, [cr } ) at site r is due to the superposition of
strains from all substitutional halogens [o }. Denoting the
configurational average by an overbar, we have o.=x and
consequently,

h =0. (3.6)

On the other hand, using o. =o., and neglecting correla-
tions between impurity positions, we obtain from Eq.
(2.7b)

Therefore we conclude that

h hp=x(1 —x)h 5 p,
where as an approximation

(3.7)

(3.8a)

h ——g [R (k)]
k

(3.8b)

Cubic symmetry implies that all three components e are
equal. In addition, we have assumed statistical indepen-
dence of different components a, f3 Properties . (3.6) and
(3.8a) suggest to consider h (r) as a random field with a
Gaussian distribution at each molecular site r. Experi-
mental evidence for the existence of local strain fields in
mixed crystals is provided by ultrasonic (Ref. 17), x rays
(Refs. 22 and 23), and NMR (Ref. 24) data. In Sec. IV we
will apply concepts from the statistical mechanics of ran-
dom field systems ' and calculate the free energy.

So far we have considered the coupling of random
strains to orientational modes of Tzg symmetry, i.e.,
quadrupoles. However, there exists also a coupling be-
tween acoustic strains and orientational modes of T]„
symmetry, i.e., dipoles. ' Replacing u(k) in Eq. (3.4) by
the corresponding coupling matrix u "(k) for the three
orientational modes Y", o,'=1,2, 3, l =1, we obtain im-
mediately the corresponding random field h". Since u "(k)
is quadratic in k (Ref. 21) for small k, while u(k)[Eq.
(3.2)] is linear in k, terms of small k have less weight in
the k sum (3.3) in the case of dipolar modes. On the oth-
er hand, the amplitude A(k)[Eq. (2.12b)] is proportional
to M '(k) and this quantity is most important at small
k. We therefore conclude that the k sums in Eqs. (3.3)

and (3.8b) give smaller contributions in the case of dipolar
modes than of quadrupolar modes. In other words, the
orientational freezing effects exist also for dipolar modes,
but they are less pronounced than in the case of quadru-
polar modes, in particular, the corresponding freezing
temperature should be lower. There exists a large amount
of results from dielectric measurements in mixed crys-
tals. ' In particular, the dielectric loss data reflect
the existence of a wide spectrum of relaxation times in the
mixtures, ' a feature which is related to the distribution
of local random strain fields. It has been suggested ' that
the energy barriers to dipolar orientations depend on the
local deformations of the single ion potential through
quadrupolar interaction forces. In our opinion, the rela-
tion between the dipolar freezing and the quadrupolar
freezing is due to the fact that both processes have the
same physical origin, namely the strain due to the substi-
tutional halogens. However the coupling U and U" are dif-
ferent and therefore the corresponding random fields have
a different strength.

IV. FREE ENERGY

We consider a crystal M(CN)„Xi „,where the substi-
tutional impurities X have a random distribution. The to-
tal potential is given by

VTT+ pTR+ pR+ p RR+ p SR (4.1)

V = g g o(r)ai, Yi (r) . (4.2)

The functions Y~ have the symmetry of the undeformed
0

crystal site (Ais). The term V " represents a direct
orientation-orientation interaction

V~"= —,
' g Y (k)J p(k)Yp(k),

k

where

(4.3a)

J p(k) = g J p(r)e'" (4.3b)

and

Y (k) = g cr(r) Y (r)e1
(4.3c)

With definition (4.3c), we have introduced distribution
weighted Fourier transforms. We rewrite Eq. (3.1) as

V = g u;(k) Y ( —k)s;(k),
k

and Eq. (3.5) as

(4.4)

The first four terms, on the right-hand side have been
considered previously ' for the case x =1. The last term
V accounts for the coupling of the rotational modes
with the random strain fields. The harmonic lattice po-
tential V is given by Eq. (2.11) and the bilinear interac-
tion V by Eq. (3.1). Here we treat the acoustic dis-
placements s;(k) as dynamic variables. In contradistinc-
tion, the displacements s;(k, [a}) which determine the
random fields are static [see Eq. (2.12a)]. The term V
stands for the single particle potential
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V (Io.])=g Y (k)h ( —k, Io]),
k

(4.5a)

where

h (k, Icr])= gh (r, Io I)e1

N
(4.5b)

+ —,[(X ) '+J(k)+1C']Y (k)Y (k)I .

In order to obtain the thermodynamic properties of the
model, one must first calculate the thermodynamic quan-
tity for a given random distribution Io I of impurities i.e.,
of fields, and then take the configurational average.
Details of the calculation are found in the Appendix. Up
to second order in the order parameter variables s' and
Y', we obtain for the configurational averaged free energy

F=Fw+ Q I —,s (k)M(k)s (k)+Y (k)v(k)s (k)
k

0.074 at T =30 K; simultaneously yw(T) increases from
a value of 0.080 at T =300 K to 0.096 at T=30 K. With
decreasing T, the random-field contribution —(h /T )

plays an increasing role in Eq. (4.9). At very low T, our
expression for X becomes negative. This is an artifact
due to the approximations we had to make in calculating
the free energy, in particular the series expansions of Eq.
(A16). In addition, the present theory is no longer valid at
low temperature where a quantum-mechanical treatment
is required. Since the rotational constant of the CN
molecular ion is large and since the local orientational po-
tentials are relatively weak, we expect that a classical
treatment is valid above T=30 K. We notice that in a
two-state Ising system, (h /T ) has to be replaced by
tanh (h IT), as follows from Refs. 25 and 26. For a given
configuration of orientations I Y~(k) j, we minimize
F with respect to the displacements s (k) and obtain

(4.6)

Here Fw stands for the single particle orientational free
energy:

s (k)= —[M '(k)];Jvj ( —k)Y'(k) .

Substitution into Eq. (4.6) yields

F=Fw+ g —,'[(X ) '+J(k)
k

(4.12)

Fw —xNT l——n Tr[ exp( —PW")], (4.7a) +1C'—C(k)]Y' (k)Y'(k) . (4.13)

with

W"= gai Yi (r) —C'g Y (r)
Xp D

(4.7b)

Expressions (4.6), (4.9), and (4.13) constitute the main re-
sults of the present theory. Their physical meaning will
be discussed in Sec. V.

The last term on the right-hand side represents the self-
energy correction '

(4.8a)

where C(k) is the lattice mediated orientational interac-
tion

V. ORIENTATIONAL FREEZINCJ

Using a well-known procedure of statistical mechan-
ics, we derive by means of Eq. (4.13) the collective
orientation-orientation susceptibility

X p(k)—= & Y'(k) Yp( —k) &/T=X [1 XL(k)] p', (5—.1)

where
C(k ) =u(k)M '(k)u'(k) . (4.8b) L(k)=C(k) —1C'—J(k) . (5.2)

In Eq. (4.6), X = 1X stands for the local orientational sus-
ceptibility

X =x(yw/T)[1 —x(1—x)4wh /r~] .

Here y w is the single particle expectation value

yw—:&Y &w=Tr[pwY ],
pw ——[ exp( —PW )]/Tr exp( —PW") .

The coefficient gw in Eq. (4.9) is given by

(4.9)

(4.10a)

(4.10b)

kw=
2yw

4
[3yw —

& Y. &w

+2(yw —
&

Y' Yp & w)(1 —6 p)] . (4.1 1)

The functions gw(T) and yw(T) have to be evaluated by
numerical integrations. Following Ref. 21, we have used
an expansion of W in terms of cubic harmonics K4& and
K6~ with coefficients a4& and a6] having the values of
23.8 and -88.5 K, respectively. We find that gw(T) in-
creases monotonically from a value 0.057 at T=300 K to

The orientational interaction matrix L(k) has its largest
eigenvalue 6 for k~0 along one of the cubic crystal
axes. Then X(k) is also diagonal. We choose
k=(k, 0,0, ) and obtain for the largest elements of X in the
limit k ~0, X23( k ) =X33( k ), with

yo
X22(k) =

1 —6g
(5.3)

2B6= o
—C' —J .ac'„ (5.4)

Here c44 is the bare shear-elastic constant, which is ob-
tained from the dynamical matrix M in the long-
wavelength regime. The constant B accounts for the bi-
linear interaction (3.2). Using results of Ref. 21, we take
for 6 the value 2375 K. In the pure crystal MCN, X22(k)
diverges at a transition temperature Tc, where
6X (Tc)=-1. In mixed crystals M(CN)„Xi „ this condi-

Here the subscript 2 refers to the function Y2= Yz'(II),
with l =2 and T2g symmetry. The eigenvalue 5 is given
by
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yi(Tc x) =y2(Tc~x» x )xc . (5.10)

twofold. First it leads to a reduction of the ferroelastic
interaction such that yq(x, T) & T for x &x„and secondly
the random field favors the local freezing as follows from
the decrease of the local susceptibility for T & Tf. If x in-
creases towards x„Tf approaches To, the lowest tem-
perature where 722, diverges.

For x &x„ the present theory leads to a second-order
phase transition, the transition temperature Tc(x) follows
from Eqs. (5.5a) and (5.5b) by solving

write

= ( gFx Q )2g

where we have defined

S = —g I [wi(k)]'M '(k)w (k) ]
1

N

[ wt(k)]'=(2/v m )( sin(k~a), sin(k„a ),0),
[w (k)]'=(2/v m )( sin(k„a), sin(k~a), sin(k, a)) .

(5.11)

(5.12)

(5.13a)

For x~x„one obtains by means of Eqs. (5.9) and (5.6b)
that Tc~Tp. For x )x, and T & Tc(x ), the crystal is in
a low-symmetry, orientationally ordered phase. Using
Eqs. (5.7) and (5.10), we have calculated the phase dia-
gram which is shown in Fig. 3. Its overall aspect is
reasonably consistent with experiment.

The transition from the high-temperature cubic to the
low-temperature ordered phase(s) is in reality of first or-
der, while we obtain a second-order transition line Tc(x).
This discrepancy is due to the fact that we have neglected
third-order terms in the order-parameter expansion of the
free energy (4.13). Previously it has been shown that
third-order terms lead to cubic invariants which are re-
sponsible for the first-order character of the ferroelastic
phase transition in pure KCN. Combining these con-
cepts with the present model, it is possible to extend the
calculation of the free energy for mixed crystals to third-
and fourth-order terms. Since here we want to restrict
ourselves to the presentation of a new model and its most
simple consequences, we have deferred the derivation and
the discussions of higher-order terms to a separate publi-
cation.

The strength of the random field h is determined by
Eq. (3.8b). Using Eqs. (3.4), (2.12b), (2.9b), and (3.2), we

DISQRDE

CUP(c

T
O

50-
NON

GLAS S ', C UQ(C

10
I I a t I I I I a a

0 o.z x, o.8
X

FIG. 3. Phase diagram for K(CN) Br& as a function of
concentration and temperature, with values g'=0. 06, h =294 K
chosen as parameters. To be compared with Fig. 1 of Ref. 22.
The broken line represents curve T~(x).

( Y (r))=0, ((Y (r))) %0. (5.15)

These properties justify the basic assumptions made in
Ref. 12 about the existence of the elastic central peak.

VI. CONCLUDING REMARKS

Starting from the observation that the quadrupolar
freezing occurs for different concentrations of halogens X
in chloride and in bromide mixed crystals M(CN)„Xt

(5.13b)
In Eq. (5.12), M(k) stands for the acoustic bare dynami-
cal matrix. The values of the cubic bare elastic constants
are c44 ——0.5, c» ——4.0, c&2 ——1.2 in units 10" dyn/cm .
The quantity S is evaluated by numerical integration over
the Brillouin zone. We obtain S =1.0)&10 A /K,
where K stands for Kelvin. The force constants AF and
B are calculated from the interatomic potential by taking
into account Born-Mayer, Coulomb, and van der Waals
terms. From Ref. 21 we have B =1460 K/A. A reliable
numerical estimate of b,F, Eq. (2.8a), is a difficult prob-
lem of quantum chemistry. The determination of the mi-
croscopic potential parameters bears some uncertainties,
in particular the electronic charge distribution of the
CN ion in the crystal is not well known. ' ' Assum-
ing that for the Coulomb forces, AF, =0, for both X=Cl
and L =Br, we retain only the Born-Mayer and van der
Waals forces. Taking the force constants from Ref. 38,
we estimate

b F '=(406—87) K/A, (5.14a)

AF '=(1083—79)K/A . (5.14b)

The first number between parentheses refers to the Born-
Mayer forces and the second to the van der Waals forces.
Here we have taken the distance a =3.26 for the interac-
tion K-CN and, a =3.298 for K-Br, and a =3.147 for
K-Cl. From Eq. (5.6) we then find h =150 K in case of
the bromide mixed crystal and h =450 K in case of the
chloride. Although one should not consider these values
as exact numbers, we estimate that they have the correct
order of magnitude and that h(CI) & h(Br).

Since the overall symmetry of the crystal is cubic, our
considerations hold also for k = (0,k, O) and (0,0, k).
These cases lead to a freezing in of the orientational
modes described by Y] ——Yz' and Y3 ——Y2'. As a conse-
quence of the local breaking of symmetry of the lattice
due to the random strains, the local values of the orienta-
tional quadrupoles ( Y (r)) are different from zero and
proportional to the corresponding random field h (r).
From relations (3.6) and (3.8a) we then deduce
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we have studied the coupling of the orientational modes to
random strain fields. The random strain fields are gen-
erated by the substitutional halogens. The free energy has
been derived for a system of interacting orientational
quadrupoles, coupled to dynamic lattice vibrations and to
the random strain fields. The local orientational suscepti-
bility becomes a function of the random field. The inter-
play of local and collective properties leads to a decrease
of the effective orientational interaction y2(x, T) with de-
creasing temperature (see Fig. 1). Above a certain value
of the concentration (1—x) of substitutional halogens, the
ferroelastic phase transition is suppressed. The collective
orientational susceptibility does not diverge but exhibits a
smooth maximum at low temperature. The position of
the maximum determines the freezing temperature T~.
With decreasing concentration of cyanides, T~ shifts to
lower values. The theory is in qualitative agreement with
many experimental features, in particular, the local break-
ing of cubic symmetry induced by the random strain
fields implies the existence of an elastic central peak. The
temperature dependence of the central peak, the tempera-
ture and frequency dependence of the phonon energy and
of the phonon damping can also be accounted for. These
problems will be treated in a separate paper.

The present treatment is based on classical statistical
mechanics, therefore it is not valid at very low T where a
quantum-mechanical version is required. However the
physical mechanism which is based on the existence of
random strain fields due to substitutional impurities,
should remain valid in a quantum-mechanical treatment.
It is tempting to assume that the ideas and concepts of the
present paper are of interest for the understanding of oth-
er orientational glass systems such as ortho-H2/para-Hz,
(Nz)„Ar& „and Rb& „(NH&)„H2PO&. '

Most interesting are recent investigations on (KCN)
(NaCN) ~ „crystals. ' It is not difficult to reformulate
the present theory in terms of the random strain fields
which are generated by the substitutional counterions in
(NaCN) ~ „(KCN)„crystals. An essential difference
however consists in the fact that the concentration of
molecular ions is unity. Therefore the effective interac-
tion between cyanides is given by

APPENDIX

Starting from the potential (4.1), V([cr]), we first cal-
culate the corresponding free energy F( [cr] ) by following
and extending the method of Refs. 43 and 44. We have

F ( [ cr ] ) = Tr(p V+ Tp lnp), (Al)

where V and the density matrix p depend on the quenched
configuration [o j of impurities. The instantaneous ex-
pectation values of displacive and rotational modes are de-
fined as

s'(k) = Tr[ps(k)], Y'(k) = Tr[pY(k)] . (A2)

The density matrix p satisfies Trp=1. Under the condi-
tions (A2), the density matrix is obtained as

p =(1/Z) Tr exp( —PW), Z = Tr exp( —PP ),
with P= T ' and

P = V—g [At(k)s(k)+y (k) Y(k)] .
k

(A3)

(A4)

Here the Lagrange multipliers X and y play the role of
external fields. We rewrite (A 1) as

F =F'+ g [A. (k)s'(k)+y (k)Y'(k)] .
k

(A5)

Following Ref. 43, we obtain after some transformations

F'=F (sB,h) ——, g A, "(k)M '(k)A(k),
k

(A6)

with

A, (k) =M(k)s'(k) +u'(k) Y'(k), (A7)

(B)= g [ ——,Y (k)L (k)Y(k)
k

where the superscript ~ stands for transposed. Here
Fz(B,h) is defined as

Fs(B,h) = —Tin Tr exp[ —/3W (B,h) —PW ( [o ) )],
(A8)

with

y(T)=oyw(T)[1 —x(1—x)gwh /T l ~ (6.1)
and

+B (k)Y(k)+h (k)Y(k)] (A9)

instead of Eq. (5.5b). The results are symmetric in x and
(1—x), a feature which is borne out by the variation of
T, (x) in Fig. 3 of Ref. 28. On the other hand, in (KCN)„
(KBr)& „crystals, this symmetry between substituted and
substitutional units is spoiled, as follows from the first
factor x on the right-hand side of expression (5.5b) for the
effective interaction.
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W ([o])=V"—C'go(r)Y (r) .
r, a

L(k) is given by Eq. (5.2) and C' by Eq. (4.8a),

B(k)=y(k) —A, (k)M '(k)u(k) .

(A 10)

(Al 1)

Y(k) =Y'(k) —&(k) . (A12)

Here b.(k) accounts for fluctuations, with

(h(k) ) = Tr[ph(k)]=0 . (A13)

The occurence of the random field h in Eq. (A9) is due to
the term V in Eq. (4.1).

The remaining problem consists in the evaluation of the
orientational free energy F~(B,h). In order to perform a
molecular field approximation, we separate the orienta-
tional mode into two parts
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On the other hand, with the density matrix pw(Io I ) de-
fined by means of the potential (A10), W( Io } ), one has

a(k) = —Y'(k)L(k)+3(k) . (A18)

—8 (k)Y'(k)]+Fthm +F„.
Here Fz is the single particle rotational free energy

(A15)

( Y(k))w~( )i= Tr[pw([oI)Y(k)]=0. (A14)

Substituting Eq. (A12) into Eq .(A8) and neglecting
second order terms in b, (mean-field approximation), we
obtain

Fg (B,h) = g [—,Y' (k)L(k)Y'(k)
k

Expression (A17) shows that the random field h occurs as
an additional, symmetry breaking external field. Since the
thermal average ( ) w implies cubic symmetry, we expect
that the lowest-order contributions in the random field are
quadratic. We next perform a cumulant expansion of Fz
and retain contributions up to second order in h and in
F'. Subsequently we take the configurational average by
using Eqs. (3.8a) and (3.8b). The final result reads

Fg —T ln —T—r[ exp( —PW )] . (A16) Fz ——g [at(k)Y'(k) ——,
' goat(k)a(k)],

k
(A19)

F~ is given by where X is given by Eq. (4.9). In obtaining this expres-
sion, we have taken into account

Fg ———Tln exp. — a k +h k 6 k
k w(I~j)

(A 17) and

( Y (k)Yp(k)) w(( ))=5 p ( Y')w, (A20a)

( Y (n~) Y,(nq) Y, (n3) Y,(n&)) w

=5„, ,5„,„,5„,„[5,,5 a,5 ( Y ~ w+5a, a,5a,a ( Y&, Y, ) w(1 —5 )+perm. ]

+[5...,5...,5...,5...,(Y.', ) (Y.', ) (1 5„,„—, )+perm ]. .(A20b)

The subscript W denotes a thermal average calculated with the potential W, Eq. (4.7b). The Lagrange parameter y [see
Eqs. (A5), (Al 1), and (A18)] is obtained from BFtt /By(k) =0, or equivalently

a(k) =(Xo) 'Y (k) . (A21)

Substituting this result into Eq. (A19), taking into account Eqs. (A5)—(A7), (A15), (A16) and (A19) we arrive at the re-
sult (4.6).
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