
PHYSICAL REVIEW B VOLUME 35, NUMBER 3 15 JANUARY 1987-II

Conduction band of Si-Cxe„Sit superlattices using the envelope-function approximation

C. M. de Sterke and D. G. Hall
The Institute of Optics, The University of Rochester, Rochester, Xew Fork 14627

(Received 6 May 1986; revised manuscript received 10 November 1986)

We have calculated the structure of the conduction band in Si-Ge„Si& „superlattices using the
envelope-function approximation, neglecting the transverse directions. Our description of the bulk
materials is valid throughout the Brillouin zone along one direction and consequently takes the mul-

tiple minima of the conduction band into account. We find that in contrast to those for superlattices
made from direct-band-gap semiconductors, the energy bands for Si-Ge„Si& superlattices exhibit a

splitting that we assign to the interaction between the two conduction-band minima along the super-
lattice direction. It is shown that in the limit of infinitely deep wells, the splitting depends
sinusoidally on the well width.

I. INTRODUCTION

The original paper on semiconductor superlattices
(SL's) by Esaki and Tsu (1970),' generated widespread in-
terest in the electrical and optical properties of these novel
solid-state structures. SL's formed from alternating layers
of GaAs and Al Ga& As have attracted the greatest at-
tention, but it is well known that SL's can be fabricated
from other III-V materials, II-VI materials, and silicon
and germanium as well (for recent reviews, see Refs. 2 and
3). The large lattice mismatch ( —4%) between silicon
and germanium hampers the formation of dislocation-free
interfaces, but recent work has shown that good-quality
Si-Ge„Si& „heterostructures can be obtained by choosing
appropriate growth conditions.

We are aware of only two previously published ap-
proaches to band structure calculations for silicon-based
SL's. The first of these was published in 1975, and is in
fact an extension of the Kronig-Penney model. Experi-
ence with GaAs-Al Ga& „As structures has taught that
the validity of these kinds of models is very limited.
More recently, a series of papers has appeared in which
the band structure is calculated using an empirical tight-
binding method. " This is considered to be the most re-
liable method for GaAs-Al„Ga& „As structures, ' but re-
quires rather large computations.

The envelope-function approximation (EFA) is yet
another method that has been developed for GaAs-based
SL's. ' ' In this method, the band structure of the bulk
materials is described using the k p method' and the
bands of the SL are then obtained by applying the effec-
tive mass approximation (EMA). ' Since both GaAs and
Al Ga& As have a direct band gap in the middle of the
Brillouin zone (BZ) (unless x is too large), a correct
description of the band structure of just the region around
the I point suffices to obtain the bands of the associated
SL. In this case, therefore, the Kane formalism' is used,
and a rather simple dispersion relation can be derived,
which is similar in shape to the results of a straightfor-
ward Kronig-Penney calculation. By comparing the re-
sults using the EFA to results based on the tight-binding

calculation, it has been shown that the EFA has a wide
range of validity. '

In this paper we describe the application of the EFA to
Si-Ge„Si

&
„heterostructures. We will neglect crystal

momentum in directions transverse to the SL axis. Our
work is an extension of the III-V work in the sense that a
description of the bands valid in the entire BZ is used.
This is necessary to take the equivalent conduction-band
minima in bulk silicon properly into account. In fact, we
only consider the minibands formed out of this lowest
conduction band in the present paper, as this fu11 BZ
description is the essential new feature of our method.
The fu11 BZ description makes the calculations more com-
plicated; we have not been able to find a simple dispersion
relation, but we are able to find analytic solutions which
require very modest computation.

The contents of this paper are as follows: In Sec. II we
discuss our method and we derive the basic equations. In
Sec. III we apply the formalism to Si-Ge„Si~ SL's; we
observe that, in contrast to the case of GaAs-
Al Ga& „As, the energy levels are split. In Sec. IV we
discuss the results and, in order to explain the splitting of
the levels qualitatively, we derive a simple equation to cal-
culate the energy levels in an infinitely high potential well
made of indirect band gap material. Conclusions are
summarized in Sec. V. In this paper we will use the term
"superlattice" (SL) but our analysis applies to multiple
quantum wells as well.

II. DESCRIPTION OF THE METHOD

The EFA starts out with a description of the bands of
the two constituent materials in the relevant part of the
BZ using the k p method. ' In this method, the energy of
the bands at a certain value of the crystal momentum k is
given by the solution of an algebraic eigenvalue equation.
For example, Cardona and Pollak have shown that, for
silicon and germanium, the b& bands ([100] direction), to
which the lowest conduction band in silicon belongs, are
given as the eigenvalues of the matrix
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E(I, )+k„Tk„T'k„
Tk„E(Ii)+k„O (1)

T'k 0 E(I I)+k„
(atomic units are used throughout the paper). The values
of the energy bands at the I point, in increasing order are
E(I I), E(I,5), E(I ~), and the momentum matrix ele-
ments T and T' are given in the above-mentioned paper.
In this so-called three-band model, the rniddle band with
energy E(I &s) at k=O is the lowest conduction band.
The band mixing for k&0 is described by the eigenvectors
of Eq. (1).

In order to introduce the SL environment, we use the
EMA (Ref. 18). In this method, k is replaced by —iV,
which turns algebraic equations into differential equa-
tions. The eigenfunctions of these equations now
represent an envelope of the wave function. Since linear-
algebraic equations turn into linear-differential equations,
the solution in the bulk material is a superposition of
plane waves and evanescent waves. The wave numbers
can be found by replacing —i V again by k and solving
for k, given a value for the energy. Both real and imagi-
nary as well as complex values for k will be found in gen-
eral, giving rise to the so-called complex band struc-
ture. ' Notice that this procedure is the opposite of
that described earlier, where the energy followed after
picking k.

We now apply the above described procedure to Eq. (1).
This yields a set of three coupled second-order linear-
differential equations. Choosing a value for the energy,
the so obtained characteristic equation will be a cubic
equation in k, so that six roots will be found, arranged in
pairs of k and —k. For silicon, the solutions are given in
Fig. 1. Note that since just the bands following from Eq.
(1) are shown, this is only a part of the entire complex
band structure. For a more complete version, see Fig. 5 of
Chang and Schulman. The short-dashed solutions in
this figure are spurious. They show up for reasons
described by Chang and Schulman and by Schuurmans
and 't Hooft. ' What concerns us now is that these solu-
tions have no physical significance but nevertheless will be
treated in the same manner as the true physical solutions.
This reduces the confidence in the physical significance of
solution as a whole.

We will rid ourselves of the spurious solutions in a
similar way as Schuurmans and 't Hooft' did. We will
neglect the free-electron mass in the lowest of the three
bands described by Eq. (1). This means that the k term
in the 3,3 element in Eq. (1) has to be dropped and that
the parameters have to be adjusted. The characteristic
equation of the matrix now turns into a quadratic equa-
tion in k, thus yielding four solutions instead of six. Ob-
viously the description of the lower band wil1 now be
quite poor, but that does not concern us as long as the in-
teraction with the band we are interested in, the middle
band, is well represented. Applying the EMA, and turn-
ing k into —i%, the following set of differential equations
results:

dE(I, ) — F, —iT F —iT' F =EF, ,
dX dX dX
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By substituting F3 from the bottom equation into the top
line, we are left with two coupled equations. Hence, we
effectively make use now of a two-band model.

The conventional way of solving this system for a SL is
to match the solutions in each of the two materials and
their first derivatives at the two boundaries, and to apply
the Bloch condition. In our case, this would yield an 8)& 8
secular equation that has to be solved for every value of
the energy. A more convenient way of solving Eq. (2)
with the appropriate boundary conditions is the transfer
matrix technique, which has been widely used in connec-
tion with one-band models. ' Using the transfer ma-
trices and given the envelope functions and their first
derivative at an arbitrary position in the superlattice, it is
possible to find them anywhere. The method requires
transfer matrices for each of the materials and for the in-
terfaces. The calculation to obtain the transfer matrix for
a given material is conceptually very straightforward but
algebraically extremely tedious. An outline of the method
and the transfer matrix itself are given in the Appendix.

We also need to know the behavior of the envelope
functions and their first derivatives upon passing an inter-
face. In the EMA, the wave function in the perturbed

FIG. 1. Part of the complex band structure for Si in the [100]
direction as following from the k.p method. Only 5] bands are
shown. The right-hand side of the figure gives the real part of
k, the left-hand side gives the imaginary part. The vertical line
at k„=0.6, indicates the edge of the Si Brillouin zone. Solid
lines denote purely real bands (right-hand side) and purely imag-
inary bands (left-hand side). The long-dashed lines indicate
complex conjugate bands and the short-dashed lines indicate the
spurious bands.
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+(T')
1 F, =0 . (3)

dx E(rI) E dx

Integration of this expression over an interface, keeping in
mind that F& and F2 are continuous, now gives the con-
nection rule:

(T') d

Q(1 I)—E dx

is continuous over an interface. Integrating the remaining
Eq. (2b) in a similar way shows simply that (d/dx)F2 has
to be continuous over an interface. These connection rules
can be written in the form of a diagonal matrix that
operates on the vector with components given in Eq. (A5):

1 0
0 1

0 0

0 0

0
0

0
0

1 —( T')'/[& (1 I ) —&]
1 —( T')'/[E (1 I ) —&]

0 1

(4)

(for transfer from material A to material 8). This
transfer matrix for an interface, together with the matrix
for transfer through the materials given in Eq. (A6), allow
us to determine the envelope functions anywhere in the
structure. To propagate the envelope functions over one
period of the SL, the two types of transfer matrices have
to be multiplied in the appropriate order.

We can now finally obtain the band structure by impos-
ing the Bloch condition which requires that

F(x+d)=e" F(x),
where F is given in Eq. (A5), d is the period of the SL,
and q is a real number that signifies the crystal momen-
tum in the SL. This means that we have to determine the
eigenvalues of the product matrix over a single period;
eigenvalues with unit magnitude correspond to allowed
solutions. An elegant way to find the eigenvalues can be
devised by realizing that since the positive and negative x
directions are fully equivalent; given that exp(iQ, ) is an
eigenvalue ( Q i is an arbitrary complex number),

crystal is expanded in terms of wave functions in the un-
perturbed crystal. In the present work we write the SL
wave function as a linear combination of the periodic part
of the bulk wave functions at I . To be consistent there-
fore, these have to be the same in the two constituent ma-
terials. Although this is not strictly true, the similarity
between Si and Ge assures that this assumption is not
badly violated. That the periodic part of the wave func-
tions at I must be equal, in turn requires that T and T'
have to be the same. It has been shown that it also im-
plies that the envelope functions are continuous at the in-
terfaces.

The connection rule for the derivatives of the envelope
functions can be found by eliminating F3 from Eqs. (2a)
and (2c). This gives

d' . , dE(1 i3) — Fi T' F2-
dx dx

exp( —iQi) must be an eigenvalue as well. Hence, the
four eigenvalues of the product matrix can be written as
exp(iQ&), exp( —iQ1), exp(iQ 2), exp( —iQ2). The trace of
the product matrix is the sum of the eigenvalues, or
2cos(Q|)+2cos(Q2). The product of the two cosine
terms can be found in a similar, but slightly more compli-
cated way. In fact,

1
COS( Q i ) +COS(Q2 ) = —, (m 11 +m 22+ m 33 +V144) (6a)

1

COS( Q t )COS( Q2 ) = 4 ( —2+ m 1i m 22 +m i &
m 33 +m» m 44

+m22m 33+m /2m 44+ m 33m44

12 21 m 13 3] m 14m41

~ 23 ~ 32™24m 42™34m 43 )

III. APPLICATION TO Si-Ge Si, „SUPERLATTICES

In this section we will actually apply the method
described in the previous section to Si-Ge„Si& „superlat-
tices. It has been shown, experimentally and theoretical-
ly, that for germanium concentrations x (0.2 in the al-
loy, the conduction-band minimum is siliconlike, which
means that it appears at 6&. Because we have disregarded
the intrinsic curvature of the lowest band and were re-
quired to take the momentum matrix element T' equal in
the two constituent materials, the data of Cardona and
Pollak cannot be used. The parameters we have used are
given in Table I. The origin of energy is taken at the
conduction-band minima. Note that as atomic units are
used, the unit of energy is the Rydberg (13.6 eV), and the
unit of length is the Bohr radius (0.0529 nm). Since we
are primarily interested in the band structure around the
conduction-band minimum, we have chosen our parame-
ters with emphasis on the accuracy of the position of the

TABLE I. Parameters used for band structure of bulk ma-
terials. The origin of energy is taken at the valence-band mini-
ma.

Parameter Ge

E(r„)
E(r", )

z(r', )

T
T'

0.2131
0.5386

—1.1314
1.382
0.805

0.1931
0.5066

—0.8595
1.382
0.805

(6b)

where the m;i refer to the elements of the product matrix.
The solution of these two equations is made easier by the
fact that the rhs of both equations are real. This is shown
in the Appendix.

Once the two types of transfer matrices have been de-
rived, the remaining calculations are limited to multiplica-
tion of four of these 4&4 matrices and finding the eigen-
values of the product, for every value of the energy. With
the help of Eqs. (6) this is very easy and it comes essen-
tially down to solving a second order polynominal. For
this reason, the computational requirements are very mod-
est.
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conduction-band minima and on the longitudinal effective
mass.

For silicon we have used the well-known fact that the
conduction-band minimum occurs at 5& at about 85% of
the edge of the Brillouin zone. For the longitudinal effec-
tive mass at the band minimum, we have used the results
of Hensel et al. For germanium the data is based on a
local pseudopotential calculation using the form factors of
Pandey and Phillips. Table II gives the results. The
band structure of silicon-germanium alloys has been ob-
tained using the virtual-crystal approximation, ' which
means that the alloy band parameters are taken to be the
weighted average of the parameters of the pure materials.

In Si-Cie„Si& SL s the situation is more complicated
than in the bulk, as the lattice mismatch induced strain
and the band offset have to be taken into account. The
lattice constant of the SL is determined by the substrate
or by a buffer layer on which the SL structure is grown.
It can be different from the bulk lattice constants of either
of the constituent materials, so that both materials can be
under strain. The actual shape of the lowest conduction
band does not change to first order in the strain, but rath-
er it is shifted with respect to the other bands. The uniax-
ial component of the strain in the [100] direction causes
the sixfold degenerate conduction-band minima to split
into a doublet (the two minima in the direction of the
strain) and a quartet (the four minima perpendicular to
the strain). For negative uniaxial strain, the doublet is the
lowest in energy. In this paper we neglect transverse ef-
fects and consequently do not take the quartet into ac-
count.

The band offset between the silicon and germanium
valence bands have been determined recently by van de
Walle and Martin. Combining their results with
phenomenological deformation potential theory, People
and Bean ' have obtained the band offsets of the con-
duction bands as well. The calculations by People and
Bean indicate that depending on the choice of the parame-
ters, the band alignment can be either straddled or stag-
gered and the well for the electrons can be in either of the
two materials. The splitting of the conduction band is
described by the deformation potential:-„, which has
been measured by Balslev. We have used his data valid
at 80 K.

In giving examples of band structures, we have been led
by Abstreiter et al. , who have done extensive experi-
ments with Si-GeQ 5SiQ z SL's. The lattice constant of
their samples is determined by a buffer layer with compo-
sition CxeQ 25SiQ 75 These authors propose a band line up
in which the doublets in the silicon layers form the wells
for the electrons. Based on the calculations by van de
Walle and Martin, People and Bean come to the same

TABLE II. Position of the conduction-band minimum and
longitudinal effective mass as following from the parameters in
Table I.

IV. DISCUSSION OF THE RESULTS

The splitting of the levels, as compared to those for
SL's made of direct band gap materials is one of the most

silicon Slp gGep g

2

150 rneV

106 meV
150 rneV

conclusion and estimate the energy difference with the
lowest alloy band, the quartets, to be 150 meV. Using
Balslev's data to obtain the quartet-doublet splitting, we
finally obtain the band line up given in Fig. 2. It can be
seen from this figure that doublets are 300 meV apart in
energy and this is the band offset to be used for our SL
band structure calculations. As the unit of length of the
wells and barriers we have chosen the lattice constant in
the SL direction. Notice that this quantity depends on the
strain through Poisson s ratio, and will in general be dif-
ferent in the two materials.

Some results of band-structure calculations are given in
Fig. 3. In this figure we have taken equal well and barrier
sizes and we vary the total period of the system. It can be
seen that the levels appear in pairs which seem to cross
periodically. We have also done calculations based on
Bastard's original work' ' for GaAs-based SL's in
which we substituted the longitudinal effective masses of
the constituent materials; in these calculations the indirect
nature of the band gap of the bulk materials is neglected.
It turns out that the results of these two calculations fol-
low each other very closely. The difference is that apply-
ing the expression Bastard derives, one finds single energy
levels, whereas in our calculations the levels appear in two
closely spaced pairs as was mentioned above. In fact, the
single energy levels as following from Bastard's work al-
ways lie in between the paired levels from our calculation,
except in the immediate neighborhood of the crossover.
This is a general feature that has been found to hold for
all cases we have considered. For this reason we will not
give any other examples in the present paper.

kmin

Si

0.520
0.9163

0.486
0.908

FIG. 2. Band lineup for Si-Geo 5Sio & on a Geo»Sio 75 buffer
layer. The "2" refers to the two degenerate conduction-band
minima in the SL direction, and "4" refers to the four minima

perpendicular to the SL direction.
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This requirement can only be satisfied if the subdeter-
minant formed by the elements m», m]4, m23, and m&4
disappears. Substituting for the matrix M from Eq. (A6),
we find after some algebraic manipulations, the following
resonance condition for the energy E:

cos[( k~ —k2)w] ——,
'
psin(k~ w)sin(k2w) = 1, (8)

10 where

g+k', k, c+k', k,p= +
c+k) k2 c+k2 k)

(9)

0 . I I i t 1 l I . L 4 l. s t x & I
5 10 15 20

well size = barrier size (latt. const. )
25

FIG. 3. Position of the energy levels for Si-Geo 5Si05 SL on a
Geo25Sio75 buffer layer. The thicknesses of the wells and the
barriers, measured in lattice constants, are taken equal. The ori-
gin of energy is the position of the conduction-band minima in

the Si layers in the SL direction.

and e=E(I &) and +k, and +k2 are the four solutions for
k in the bulk material for the energy E. It is important
for the forthcoming argument that since (in atomic units)
v=0.5 and k, =k2-0.5 (see Table II), p « l. Equation
(8) can be simplified if we assume that each of the minima
has a parabolic shape. This is certainly a good approxi-
mation for the lower-lying energy levels. Then the aver-
age of k& and k2 coincides with the minimum of the con-
duction band k;„, independent of the energy. Writing
Eq. (8) in terms of k,„and of Ak =k~ —kq, we obtain

distinguishing features of our results. It can be under-
stood in terms of a Fourier analysis of the system. If the
energy is raised, starting at the minima of the conduction
band in the bulk materials, four solutions for k will be
found, two in each of the [100] minima. If a SL environ-
ment is now introduced, points that are exactly X (in-
teger) SL reciprocal lattice vectors (2vrld) away, will in-
teract through the Nth Fourier component of the SL po-
tential. Since the two minima are in so far apart in k
space, the solutions in both of the minima will interact
mutually through rather high Fourier components. The
two solutions in each of the minima are much closer to-
gether and therefore interact through a low Fourier com-
ponent. This last interaction is direct band-gap-like and is
similar to what happens in GaAs-Al Ga& As SL's and
hence gives a simi1ar kind of band structure. It is the mu-
tual interaction of the minima through the weaker high
Fourier components that causes the levels in this band
structure to split. This splitting is very similar to the
valley-orbit splitting observed in shallow donor levels in
silicon and germanium.

It is quite revealing to consider the opposite situation,
that of noninteracting barriers, as well. We will just take
the simplest imaginable case: an infinite potential well for
electrons in a siliconlike material. This problem can be
solved very conveniently using the transfer matrix, de-
rived in the Appendix. Since at both sides of the well the
envelope functions must disappear, we take the first two
elements of the vector F, Eq. (A5), to be zero, transfer
over the width of the well, say u, and require that the vec-
tor thus obtained has the same property; this leads to the
condition

cos(Akw)+ —,
'
p sin[(k;„+ —,

'
b, k) )wsi [n(k;„—,

' Ak)w]—

=1 . (10)

sin(k;„w)
I+/

m&~ krnin~
(12)

where m~ is the (longitudinal) effective mass in the two
minima ( m~ = 1) and

2k min

2~+ k min

(13)

The first term in Eq. (12) is the result for the conventional
case; the second term represents the splitting of the levels.
It is seen to be inversely proportional to the cube of the
well width. For silicon, k;„=0.5 (see Table II), E=0.5,

For free electrons and for electrons in direct band-gap ma-
terials, the conventional case, p =0 and consequently
(bk)w =2mn (n integer; n =0 is not allowed). But even in
our case, the second term forms only a small perturbation,
since p « 1, and we therefore expand (Ak)w around 2rrn

Retaining only the lowest terms in the expansion parame-
ter and in p, the following expression can be derived:

2K 1
b, k = n+ —v'p sin(k;„w) .

LU LO

So we see that, with respect to the conventional case, the
number of solutions indeed has doubled. Using Eqs. (9)
and (11), we can calculate the actual position of the energy
levels. Again retaining only the lowest order terms we
find
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and thus g is of the order of unity. Further, we set
w =a%, where a is the lattice constant of the material
(a =10) and N is the width of the well in lattice con-
stants. Unless N is very small therefore, k;„m &&1 and
consequently the second term in Eq. (12) is much smaller
than unity and vl'ies rapidly with the well width.

We have compared the predictions of Eqs. (12) and (13)
with the calculated splittings for SL's, periodic structures
with a finite barrier height. Figures 4 and 5 show magni-
fied parts of the energy levels in Fig. 3. The vertical lines
indicate the values of the well width for which
k, „tU =nm ( n integer), so that the predicted splitting is
zero. From Figs. 4 and 5 we can see that the vertical lines
seem to be a bit off, but that their mutual distance is
correct. This is a general feature and it has been con-
firmed for all cases we have investigated. The small dis-
placement can be traced back to the application of the in-
terface connection rules. If one assumes that the envelope
functions and their derivatives are all continuous, so that
one would use the unit matrix rather than the matrix in
Eq. (4), the vertical lines coincide exactly with the posi-
tions of zero splitting. As to the amplitude of the split-
ting: for thick barrier layers the results of Eqs. (12) and
(13) are essentially correct. For thin barriers, however, the
predicted amplitude is too small compared to a full calcu-
lation. Clearly, tunneling, which is neglected in the calcu-
lation leading to Eqs. (12) and (13), plays a role for thin
barrier layers.

The accuracy of our results is hard to estimate. The
fact that our results and the results following from
Bastard's work' ' are so similar is encouraging. Com-
parison with the tight-binding calculations of Krish-
namurti and Moriarti " is impractical as their work
does not predict the level splitting. These authors were
primarily concerned with the enhancement of the electron
mobility and consequently calculated only the position of
the very lowest conduction bands.

s
' & 4 1 T
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we11 size = barrier size (1att. const. )

FICx. 5. Magnified part of Fig. 3. The dashed vertical lines
indicate well widths for which Eq. (12) predicts zero splitting.

The experimental observation of the splitting will prob-
ably be difficult as it is fairly small and as it depends
strongly on the well width. Thus interface imperfections
and charge redistribution over the interfaces are likely to
blur the splitting. Further, umklapp processes are not
taken into account in our calculations. In a SL, the per-
turbing potential is one dimensional so only valleys on the
SL axis will contribute to these processes and not, as with
donor impurities (which are intrinsically three dimension-
al), valleys in the fully three-dimensional reciprocal space.
For this reason, we expect umklapp processes to be less
prominent in a SL than in the donor impurity problem.

V. CONCLUSIONS
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Our method shares the general advantages of the EFA
over other methods for band-structure calculations for
SL s in that it is simple and requires very modest calcula-
tions. This is especially true since we have been able to
find analytic expressions for the transfer matrices. More-
over, the analytic expression for the materials transfer
matrix has allowed us to obtain an expression for the en-
ergy levels in an infinite potential well made of an indirect
band-gap material. This explained the variation of the
level splitting we observed in the band structures.

We believe that this method can be extended to more
general problems, for example for taking the transverse
crystal momentum into account. As the complexity is in-
creased, however, it will be more and more difficult to
find analytic expressions for the material transfer ma-
trices. This can be done numerically if necessary, but this
would require extra computations, as this procedure has
to be repeated for every value of the energy.
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APPENDIX

Fz(x)=+Ae ' +Be ' +Ce ' +De
lk lx —lk lx

F~ (x) = iAA—~k~e —iBX&k, e

Ikpx —rk2x—i CA2k2e —iDA. 2k2e

Fz(x)=+iAk, e ' iBk)e—
rk2X —Ek2+iCk2e —iDk2e

where

(AI)

In this appendix it will be shown how the transfer ma-
trix for the materials can be found. For a certain energy,
the solutions and first derivatives to Eq. (2) can be written
as

lklx —lk
1
x ik~x —ik~x

F) (x)= —A A, )e +BR)e —Coze +Dkze

The elements of the matrix M(x) are

m» ——[—kz(E+k & )Ci+kf(E+kz)Cz]/[e(k ~
—kz)],

m &z i——(e+k
& )(e+kz)(kzsi —kiSz)/[kikz T(k

&

—kz)]

m» ——[kz(e+ k
& )S& —k ~ (e+ k z )Sz ]/[k & kz(k &

—k z )],
m )4

——i (e+k ( )(e+kz)(C) —Cz)/[Te(k, —kz)],

mz] =iTk &kz(kzS& —k &Sz )/[E(k &

—kz )]

mzz ——[—(e+kz)C&+(8+k & )Cz]/(k, —kz),

mz3 ——i T(C( —Cz)/(k (
—kz ),

mz4 ——[k)(e+kz)S) —kz(e+k, )Sz]/[E(k, —kz)],
(A6)

m3~ ——k~kz[kz(e+k~)S~ —k~(c+kz)Sz]/[E(kl kz)1

m 3z —I (e+k
& )(e+kz )(C& —Cz)/[T(k, —kz )]

33 —[(8+k ] )C) —(e+kz)Cz]/(k( kz)—
k; +[E(1 )) F]—

Tk;
(A2)

m 34 — i (E—+k
& )(e+ 0 z )(k &S& —kzSz ) /[ TE(k, —k z ) ],

and k& and k2 are found by solving the associated charac-
teristic equation. It follows directly from Eqs. (Al) that

F, (0)= —A. ,A +BE,i
—CAz+Diz,

F,(0)=+A +B+C+D,
F'( (0)= i k, k )A—i k)k )B——i ) zkz C i kzkzD, —

Fz(0)=ik)A ik, B+ikzC IkzD . —

(A3)

F(x) =M(x)F(0), (A4)

where F is the column matrix with elements

(Fi(x),Fz(x),F'i (x),Fz(x)) (A5)

The next step is to substitute F&(0), F&(0), Fz(0), Fz(0) for
A, B, C, D in Eq. (Al) using Eq. (A3). For this particu-
lar problem, we have been able to do this analytically.
The result can be written as

m4( ——ik )kzT(C) —Cz)/[e(k )
—kz )],

m4z ——[kt(E+kz)S] —kz(e+k / )Sz]/(k] —kz),

m43 —— iT(k jS)——kzSz )/(k )
—kz )

2 2

m~4 ——[k f(E+kz)C, —kz(E+k ) )Cz]/[e(k, —k', )],
where S;=sin(k;x) and C;=cos(k;x) and e=[E(I &)

E]
Note that the matrix elements with two even and the

elements with two odd indices are real, whereas the
remaining elements are purely imaginary (this is also true
if k; is complex). It can be seen from Eq. (4) that the in-
terface transfer matrix has the same property, and there-
fore also any product of these matrices. For this reason,
the rhs of Eq. (6) are real, and hence also the sum and the
product of the two cosine terms [Eq. (6)], as was claimed
in Sec. II ~
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