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The dc electrical transport parallel to the walls of a quasi-two-dimensional quantum well, with a
magnetic field B=Bz applied normal to its barriers, is considered. The influence of scattering by
optical phonons on the dc current is investigated at high temperatures and strong electric fields
(nonlinear transport). Certain values of the electric field induce transitions of the carriers between
neighboring Landau levels and the usual magnetophonon maxima, reported previously, convert into
minima and vice versa. This behavior of the magnetophonon extrema has been recently observed in
n+-n -n+ structures. For scattering by impurities at very low temperatures and weak electric
fields (linear transport) the dc conductivity o. „oscillates with period (cF—~n )/Rmo, where c~ is
the Fermi level, n denotes energy-level quantization in the z direction, and co is the energy of the
lowest level. For strong electric fields, transitions between neighboring Landau levels can occur,
leading to an additional oscillatory structure. The Hall conductivity o.

~ is evaluated. The possibili-

ty of transitions between the levels n in wide wells is also investigated. The dependence of the con-
ductivities (or currents), inverse scattering rates, and level widths on the magnetic field, the thick-
ness of the well, and the temperature is shown explicitly.

I. INTRODUCTION

Recently, there has been considerable interest in under-
standing the nonlinear behavior of hot electrons in two-
dimensional or quasi-two-dimensional systems. Unusual
effects, such as the breakdown of the integral quantum
Hall effect or a new type of conduction mechanism in
n+-n -n+ GaAs structures, when the relevant currents
or electric fields exceed certain values, have been reported.
The results of Ref. 3 indicate that, for submicron devices,
the conductivity a. depends on the layer thickness.

In a previous paper, following earlier investigations of
the low-field (electric) dc transport in quantum wells
in the absence of a magnetic field, we studied magneto-
phonon oscillations in quantum wells for all types of pho-
nons. The same approach has been used in Ref. 8 but
with less explicit results. For optical phonons the well-
known resonances, occuring when mL ——Peso, where P is
an integer and coL and coo are the phonon and klystron fre-
quencies, respectively, were readily obtained. Also, an ap-
proximate treatment of the elastic scattering by acoustical
or piezoelectrical phonons at low temperatures led to ex-
pectation of resonances, in very pure samples, when
Pfmo ——EF —co, where cF and co are the Fermi level and
lowest subband energy, respectively. The conductivity 0.
and the inverse scattering rates were shown to depend on
the thickness of the well.

The study, in this paper, of rnagnetophonon resonances
in a quantum well, at strong electric fields is motivated by
the unusual results of Ref. 3. After the presentation of

the formalism in Sec. II, it will be shown in Sec. III that
certain values of the electric field can induce transitions
between neighboring Landau levels and this is connected
with the conversion of the low-field magnetophonon max-
ima into minima and vice versa. Only optical and polar
optical phonons are considered. Moreover, we are not
aware of any treatment of the influence of impurity
scattering in a quantum well, when a magnetic field is
present. This is taken up in Sec. IV both for weak and
strong electric fields, corresponding to linear transport
and nonlinear transport, respectively. In the former case,
it will be shown that the conductivity o. „,parallel to the
walls of the well, oscillates, at very low temperatures, with
period (eF —E. )/fzci)p, where E„ is the highest occupied
subband in the well (E„=eon ).

The rest of the paper is organized as follows. In Sec. V,
the Hall conductivity cTyz is evaluated and is shown to de-
pend on the thickness of the well. Conclusions follow in
Sec. VI. Appendix A contains certain formulas necessary
for the calculations. The inverse scattering rates (or level
widths) are given in Appendix B. Finally, Appendix C
contains an outline of the derivation of the formulas used
for the conductivity or current density.

II. THE FORMALISM

A. Basic expressions

We consider a many-body system described by the
Hamiltonian
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H =H +A, V—A F(t) . (2.1)

H is the largest part of H which can be diagonalized
(analytically), A. V is a binary-type interaction, assumed
nondiagonal and small compared to H, and —A F(t) is
the external field Hamiltonian with A being an operator
and F(t) a generalized force.

1. Linear transport

The average value of the current density operator J at
time t, denoted by ( . . )„is given by

( J),=T[p(t)J], (2.2)

+(n~), a„g), p=x, y, z, (2.3)

where A is the volume, q is the charge of the carriers (fer-
mions), F(t) =qE(t), and where A= g,. (r; —(r; ),q)
= g,.a;, with (r; ),q, r;, being the positions of the ith car-

I

where p(t) is the density operator associated with (2.1).
For linear responses, i.e., small electric fields E(t), and
within the Born approximation the current density associ-
ated with the diagonal part of p(t) (in the representation
of H ) is given by

rier before and after the application of the electric field,
respectively. Furthermore, a„&——(g I

a
I g),

I
g) is theP P

one-particle eigenstate of h (H = gh ) with eigenvalue
c~ and average occupancy (n~)„A~(n~), is the collision
integral of the quantum Boltzmann equation and d
stands for diagonal. The second term of Eq. (2.3) is the
usual ponderomotive current. The first term represents
the many-body contribution of collisions to the current
and has been termed "collisional current;" in a semiclassi-
cal treatment, this term is absent.

When we have only collisional current, the dc conduc-
tivity component o&&(0) reads [cf. Ref. 9, Eq. (2.84)]

2

o„"„(0)= g (ng), q(1 —(ng ),q)
g, g', spin

(2 4)

where 13= 1/k~ T with k~ being Boltzmann's constant,
and T the temperature; ~~~ is the binary transition rate,
given by the "golden rule, " and (n~),„ is the Fermi-Dirac
distribution function. Equation (2.4) is valid for both
elastic and inelastic scattering. The component cr& (0) is
given by (2.4) with —,(a&~—a&~) replaced by
(a g

—a g )a„g.
The nondiagonal ( nd) part of p(t) leads to the following

dc conductivity formula [cf. Ref. 9, Eq. (3.21)]

o& (0)=QRi g (n~ )(1—(n~ ),q)(g'
I j, I

g")(g"
I j& I

g')(1 —e ~ ~ )l(F~ —s~)
gl /II

(2.5)

where j=qa/Q is the one-particle current operator. The
prime on g means g'&g". The main feature of Eq. (2.5)
is that it is independent of the nondiagonal part of the in-
teraction, i.e., of A. V; the diagonal part of the interaction,
if any, will simply shift the energies e~ appearing in Eq.
(2.5). The total conductivity o„„ is given by o„,=cr„

nd+ (jingo
The above formulas are very general and not tied to a k

space description. So far they have been applied to situa-
tions as diverse as mobility in metal-oxide-semiconductor
field-effect transistors (MOSFET's), ' conduction through
localized states in amorphous materials, " integral quan-
tum Hall effect, ' quantum wells, etc. An outline of the
derivation of these formulas, in Ref. 9, is given in Appen-
dix C.

When electrons interact with phonons (assumed to
remain at equilibrium) the transition rate ~« is given by

-«=g[Q &., ).,+Q-(1+&.,)„], (2.6)

where

(2.7)
Q+ and Q correspond to absorption and emission of a
phonon with wave vector q, and energy Eq, respectively.
(Nq ),q is the equilibrium number of phonons and F(q) is
the Fourier transform of the electron-phonon interaction
(A. V). We consider only longitudinal phonons in the de-

formation potential model.
When electrons interact with randomly distributed im-

purities (assumed to remain at equilibrium) the transition
rate is given by

X I
U(q) '

I
(&'

I

e"
I

&) I
'~(eg —eg»

(2.8)

where Nt is the impurity concentration and U(q) the
Fourier transform of the impurity potential U(r —R); r
and R are the positions of the electron and the impurity,
respectively.

The application of the above formulas is a rather stan-
dard procedure provided that Born approximation and
linear response theory are valid. Usually, the Born ap-
proximation is assumed to hold. The validity of linear
response theory, however, i.e., the values of the electric
field Et for which the theory is valid, depends on the par-
ticular problem. ln general, one assumes or proves under
general conditions' that the potential energy eE~l is much
smaller than k&T, where l is some characteristic length,
e.g., the mean free path. For transport in strong magnetic
fields and transitions between Landau levels, which is our
case, the Born approximation applies' and / is the mag-
netic length I =(film *coo)'~, coo is the cyclotron frequen-
cy, and m* is the effective mass. For T, m*, and coo

given the condition eEI 1 ~& kz T specifies the values EI for
which the linear response formulas (2.2)—(2.5) are valid.
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Above E~ starts the hot carrier regime which is discussed
below.

fc (1 fg—)cc cg], —(2.9)

where the distribution function (n~) =f~ is determined

by

(2. 10)

For linear conduction in crossed electric and magnetic
fields, Eq. (2.9) reduces' ' to (1& ) = cr&@(0)F., with
c7&„(0) given by Eq. (2.4). This is also true for the present
case [c.f. Eqs. (2.12)—(2. 14)]. The main difference of Eqs.
(2.4) and (2.9) is that in the latter the quantities a„~, f~,
and ~~~ depend on the electric field E, whereas in the
former they do not. For more details concerning the
derivation of Eq. (2.9) see Appendix C.

For nondegenerate statistics, i.e., for high temperatures,
1 —fr= 1 —f~ =1 and Eq. (2.9) takes the simpler form
((J„)=—J„)

2. Nonlinear transpor t

For values of E above E~ the response of the system,
described by (2.1), is no longer linear, i.e., it is qualitative-
ly different: for E &E~ the quantum states of the system
are modified and the transport coefficients, in general,
cannot be expressed as correlations of equilibrium quanti-
ties leading to the simple expressions (2.3)—(2.5). As ex-
amples, we may mention phonon drag effects, '" the break-
down of the integral quantum Hall effect, etc. The prob-
lem of evaluating the conductivity tensor becomes much
more complicated since the scattering system (phonons or
impurities) may no longer be at equilibrium and the distri-
bution functions are different from their equilibrium
values. In general, it is assumed that the scattering sys-
tem remains at equilibrium so that one does not have to
solve coupled equations for, e.g. , the distribution func-
tions of electrons and of scatters. ' ' In this case the
evaluation of the current is still possible and, to all orders
in the electric field, the following result obtains for the dc
current density

( J„)=(q/2II) g(a„( —cc„c)[fc(I fc )~g—

L, and an electric field is applied in the x direction. In
the Landau gauge the one-electron Hamiltonian, states
and eigenvalues read' '

h =(p+qA) /2m*+eEx, A=(O, Bx,0)

(r
~

g):(2/LyL ) PN(x —xo)
ik y

&ate ~ sin(ntrz/L, ), n =1,2, 3, . . . ,

eg=eN, k =(N+ —, )ficoo+n eo —RVdky

+m*Vd/2, N=0, 1,2, . . . ,

(2.12)

(2.13)

(2.14)

(0 I

x
I

4') = —I'«y —«/~o@NN &k, k

+(1/V2)(V N +15 NN+)

+~+ ~N', N —1)~k, k' (2.15)

lk')= (I o/' 2)( —&N+14,N

+ N ~N', N —1)~k, k' ~

= (I~o/&2) [«N + 1 oN', N+ I+ t/N oN', N ])—(2.16)

(eF. /m *coo)6N—N ]6kk

where 6~q ——6«6~ ~ . Furthermore,

(2.17)

I (0
I

e +-"'14')
I

'=
I
F- (+q. )

I

'

where Vd=E/B is the drift velocity, co An——/2m*L, ),
—xo 1(k»——+eF /Sicko), and where PN rePresents har-
monic oscillator wave functions. X is the Landau level
index and n denotes quantization of the energy spectrum
in the z direction. We have assumed a spherical effective
mass m* but the results hold for m~ &m,* as well. The
dimensions of the sample are Lz Ly L„ky is the wave
vector in the y direction and A is the vector potential.
The last two terms of Eq. (2.14) represent the potential
and kinetic energy of the electrons in the electric field. In
the absence of this field these terms are zero as well as the
second terms of h and xo. Thus, the effect of including
the electric field in h is to lift the ky degeneracy of the
energy spectrum and to shift the center position of the or-
bits by &El /Acuo.

For the calculations of this paper we need the following
matrix elements' in the representation (2.13):

J~ =(q/2") X(~~~ —~~~)[f~ (2.1 1) x I~NN(u) I'&k k +qy (2.18)

Strictly speaking, Eqs. (2.9) and (2.11) are valid when
the scatterers are at equilibrium. As an approximation,
however, they could be used for the case when the scatter-
ers are not at equilibrium, i.e., for not too strong electric
fields.

Equations (2.4)—(2.11) will be used to evaluate the con-
ductivity (or the current density) in a quantum well. The
necessary one-electron attributes are given below.

B. Quantum well in crossed electric and magnetic fields

We consider a quantum well with a magnetic field 8
applied perpendicular to its barriers (z direction). The
distance between the barriers, assumed infinitely high, is

F„„(+q,)=(2/L, ) f e ' si ( n~zn/L, )

Q sin(n'~z/L, )dz, (2.19)

/
JNN (u)

/

=(N'!/N!)e "u [LN (u)]

f ~
F„„(+q,) dq, =(~/L, )(2+5„„),

(2.20)

(2.21)

where u =I (q„+q~)/2 and where LN (u) is a Laguerre
polynomial. For details concerning the derivation of Eqs.
(2.18)—(2.21) see Ref. 4, Sec. IIB and references cited
therein. Interestingly, the matrix element (2.18) is in-
dependent of the electric field. We also note that for the
linear case E is not included in h and the last term of
Eq. (2.17) is zero.
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We can now proceed to the evaluation of the conduc-
tivity components o. and o.„„ for linear transport or of
the current density for nonlinear transport. For linear
transport, Eqs. (2.16) and (2.17) show that the pondero-
motive current [second term of Eq. (2.3)] is zero but the
"collisional" current is not. Thus as far as diagonal con-
tributions to cr„„are concerned we have to evaluate o.„
using Eq. (2.4). The nondiagonal contribution o"„,given
by Eq. (2.5) for p=v=x, can be shown to vanish identi-
cally for the states (2.13) by a procedure identical with
that of Ref. 12, Sec. II. Concerning the component oyer
we remark that [cf. Eq. (2.4)] it vanishes because a„~ is
zero for p=y. Using Eqs. (2.16) and (2.17) we can also
show that the ponderomotive contribution o.

~~ vanishes
identically [cf. Ref. 9, Eq. (2.55)]. We are thus left with
o»„as given by Eq. (2.5). This component, which in the
first Born approximation does not depend explicitly on
the interaction, will be evaluated in the last section. For
nonlinear transport we will evaluate the current density
using Eqs. (2.10) and (2.11).

III. SCATTERING BY OPTICAL PHONONS:
NONLINEAR TRANSPORT

In the case of linear transport, the electron-LO phonon
interaction in a quantum well has been investigated previ-
ously both in the absence and in the presence of a mag-
netic field. ' Following this work we assume that the vi-
brational spectrum of the quasi-two-dimensional system is
identical with that in a bulk material, i.e., that the LO
phonons, to a first approximation, are not affected by the

presence of the quantum well. Deviations from this bulk
behavior, such as interface' modes or slabmodes are
neglected. We also assume that the phonons are disper-
sionless, i.e., Eg =~1 -constant, where coL is the phonon
frequency.

Since optical phonons are important at high tempera-
tures, we use Eq. (2.11) in which we substitute Eqs. (2.6),
(2.14), and (2.18)—(2.21). Since we are considering a uni-
form system, we take

fr„=fN,.= exp[f3, (EF—sN, .)]

which is a spatially uniform (k» independent) solution
of Eq. (2.10); EN n =EN, n, o (N+Y~ ~)0+n Eo and

P, = Ilk i', with T, being the electron temperature. '

The sum over k„, performed with the use of periodic
boundary conditions and the constraint 0 & l ( k»
+eEIAcop) &L„, gives a factor Ap/2irl . To get tract-
able integrals over q, we neglect (only for polar optical
phonons) the q, dependence of the factor

~

F(q)
~

. In-
stead of the phonon equilibrium distribution function
Np = [ exp(PficoL ) —1 ] ' we use the approximate none-
quilibrium distribution

Nq Np[ 1 +q'Vd l(Act)L —q Vd ) ]—:Np

for nonlinear transport in strong magnetic fields. ' It is
expected that this distribution describes the scattering sys-
tern (phonons) better than Np. Further, we set
N' —N= —M in the emission term and N' —N=+M in
the absorption term. Then, the first term of Eq. (2.11),
J„', proportional to ~~&, gives

J„' =(el2L, A) g e ' '~" (2+5„„,)
N, N', n, n'

X g (F(q)
) q» (

JNN(u)
)

[NO5( Mficup+b, „„+A—Vdq +ficoL )

q&

—(1+No )5(Miruup+ b.„„—iri Vdq» —Amor )], (3.1)

where b„„=(n —(n') )sp. The integral over q» can be done immediately, but the resulting integral over q„must be
done separately for each N and N and is very difficult to evaluate analytically. To simplify the calculations, we replace
q», in the argument of the 5 function, in Np, and in front of

~
JNN (u) ~, by eB M Iiri, where bX is a constant, of the or-

der of I, which will be specified later. This approximation is equivalent to assuming an effective phonon momentum:
eVdq» =eEhx. The sum over qz is transformed into an integral using polar coordinates. Equation (3.1) takes the form

J„'=C g SX e " ' " f JNN (u) ~' ~F. (q)
~

du [No5( Mficop+eEhx+fico, ) ——(1+NO)5(MAcop eEbx —Ace, )]—
N, N', n

+2C g bx[ ] g [+b,„„], (3.2)
N, N', n n'

where [ . ] is the same as in the first line and where the
notation [+Ann'] indicates the same quantity as in

[
. .

] with h„„added to the argument of the 5 func-
tions. The constant C is equal to Be Ap/277l L,A. The
other term of Eq. (2.11), J„,proportional to ~~~, is given
by Eq. (3.2) as is easily shown by interchanging g with g'
in Eq. (2.11), since neither (a&~ —a&~) nor

~
(g

~

exp(+iq r)
~

g')
~

d. epend on the electric field, cf.
Eq. (2.18), and since f~ is an even function of the electric
field ' [ T, =f(E )].

A. Optical phonons

As usual, we take

~

F(q)
~

'=e'D'I2npir, ) =D'In, (3.3)

where p is the density of the material and where D is a
constant.
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1. Narrow wells

We assume that the thickness L, of the well is so small
that no transitions between the levels E„(E„=Epn ) can
take place by, e.g., varying the magnetic or electric field.

In this case b,„„=Oand the second term of Eq. (3.2) is
twice the first term. The integrals over u are given by
(Al) and (A2). If several levels E„are occupied, Eq. (3.2)
leads to ( J„=J„+J )

N, M, n

" [Np —(1+Np)(N —M)!/N!]6(M —~~/happ), (3.4)

(3.5)

where C'=2C/ficopfI and coL =a~L+eEhx/fi Co. mparing Eq. (3.4) with Eq. (3.10) of Ref. 4, valid for the linear case,
we see that the approximation AVdq~=eEAX leads to a displacement of the resonance peaks from Mmo ——~I to
Meso ——col +eEhx/A. Now the 6 function is replaced by a Lorentzian of width I N and shift zero and the sum over M is
performed as in Appendix A. If we approximate the factor (N M)!/—N! by an average value N' we can perform the
sum over N for both terms, if N is large, provided AX is independent of 2V. We then obtain

P (c~ —con ) —2m.s( I ~ /%coo)J„=3C'D'gbX e ' [Np —(1+Np)N*] 1+2 pe ' cos(2irscol /cop) 2sinha,

where a =P, ficop/2 and where I z is given by (81).
At resonance, rpL ——peep, p integer, and the quantity in the large parens is equal to coth(irl ~/iricpp). For small electric

fields, i.e., for E~O, Eq. (3.5) shows clearly the usual magnetophonon resonances, cpL ——peep, for rrl &&&ficop For.
cpL ——peep the cosine factor, in Eq. (3.5), becomes cos(2irseE bx/vari). Hence, by varying the electric field a usual magneto-
phonon maximum (cuL ——pcop) can convert into a minimum and vice versa. This behavior, as well as the displacement of
the resonant peaks with increasing electric field (current), has been recently observed in polar materials, see Sec. III 8 in
which the constant Ax is defined.

2. Wide wells

When the thickness L, of the well increases the energy levels c.„come closer to each other and transitions between
them can take place by varying, e.g. , the electric field. If we consider transitions only between neighboring E„ levels, we
have n'=n or n'=+1. We then obtain the results (3.4) and (3.5) plus two additional terms corresponding to an upward
(n'=n +1) and a downward (n'=n —1) jump. These two terms are not the same because the energy spectrum c„ is not
equidistant. Corresponding to (3.5), we obtain

2sinha,P (c —c. n2) GO

J„=(3.5)+2C'D'g Ax e ' N — 1+2 pe cos(2~sap /happ)— (3.6)

where N+ =Np, N = —(1+Np)N*, and co+—=cur —(1+2n) p/EA. For simplicity we have assumed the same I z in the
additional terms.

The transition between the levels c„due to an increase in the electric field could be seen easier by studying the behavior
of the magnetophonon extrema as a function of the electric field. In this case pcpp ——col and the factors cos( ) in Eq.
(3.6) become cos(2rrseE Ax /iii) and

cos [2irs [eE bx —( I +2n)Ep] /finpj

for the first and second term, respectively. Hence, starting from a usual magnetophonon extremum (corresponding to
E=O) and increasing the electric field, while keeping the magnetic field constant, we may see oscillations of the ex-
tremum amplitude in wide wells for which 6„„+&«Acro.

B. Polar optical phonons

We proceed as in Sec. III A with

~E(q)
~

=(3/Qq )=A'/Qu, (3.7)

where A'=Al /2 and where we assumed qi &&q, for transport in the (x,y) plane. This approximation allows us to do
the integrals over q, . A is the constant of the polar interaction. Again, we make the approximation q~ =eB Ax/A in the
argument of the 5 function and the factor (a„&—a ~)/u. The integrals over u then are again given by (Al) and (A2). J„
is still given by Eqs. (3.4) or (3.5) with D'AX replaced by 3'/bx, provided bx is independent of N. If bx depends on N,
then instead of Eq. (3.5) we obtain

s= 1N, n

J„=3C'3'ge ' '" [Np —(1+Np)N*] 1+2 pe ' cos(2irsct)i /clip) (3.8)
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The comments following Eq. (3.5) apply equally well to
Eq. (3.8) but with I z given by (B3). Magnetophonon
maxima convert into minima by increasing the electric
field and vice versa, as reported in Ref. 3. The values of
the electric field for which the amplitude of the usual
magnetophonon extremum, coL ——peep, becomes zero are
given from the solution of

g e ' cos(2irseE bX/Asap) =0 . (3.9)
s=1

Due to the exponential it is expected that the first term
(s =1) gives the largest contribution to the sum. Equa-
tion (3.9) is then approximately obeyed for

eE bX=(2m +1)ficpp/4, m =0, 1,2, . . . . (3.10)

Now for transitions between neighboring Landau levels

the wave-vector change 6k~ =qz is about 1/l, cf. Eq.
(2.15). But the spatial extension bx~ of P~(x —xp)
determined from the mean-square deviation, 2~ is of the or-
der I/q~: hx~ =(&N +1/2)1. Hence, we may take
M =(M~+bx~+&)/2. For m =0, the values of the
electric field, for which Eq. (3.10) is obeyed, differ from
the corresponding values, obtained from Eq. (3) of Ref. 3,
by a multiplicative factor V'2/2. Hence, we obtain almost
the same relationship but for narrower samples, since the
results of this section are valid for L, of the order of a
few hundred A (for GaAs), whereas the narrowest sample
of Ref. 3 had L, =0.25 pm. The physical interpretation
of Eq. (3.10), elaborated further in Ref. 3, is that the po-
tential energy gained from the electric field is of the order
of Atop and that the wave functions of neighboring Landau
levels develop a significant overlap at values of the electric
field given by Eq. (3.10).

Finally, we notice that the oscillations in Eq. (3.8) are
damped at strong electric fields since I N, as given by
(B4), is roughly proportional to E Further . damping may
come from P„since, in general, T, = Tf(E ), cf. Ref. 21.

8'ide wells

where N +— and co — are defined as previously, cf. Sec.
III A 2.

IV. SCATTERING BY IMPURITIES

We assume that the electrons are scattered by randomly
distributed impurities. We consider very short-range po-
tentials, which correspond to perfect screening and give
results in closed form, and long-range potentials with the
screening treated as in inversion layers.

A. Linear transport

1. Very short-range interaction

We take U(r —R) = Vp5(r —R). The Fourier transform
of this potential is constant: U(q) = Vp. Using Eqs. (2.4),
(2.8), and (2.13)—(2.15) with E=0, and Eqs. (2.18)—(2.21)
we find after the summations over k~ and q, the result

PCI g (2+5«)f&„(1 fz „.)—
N, Ã', n, n'

u JNN~ u du

X 5((N N')ficpp+ b,—„„), (4.1)

where Cq ——(NI /4rrfi)(e Vp/L, 1 ) For simp. licity, we con-
sider only narrow wells for which n = n '. The case n &n '

can be treated as in Sec. IIIA2. The integral over u is
given by (A3) and Eq. (4.1) takes the form

Proceeding as in Sec. III A 2 we obtain

J„=(3.8)+2C'A'ge ' " ""N /b,x-
N, n

cr~ =3PC g f~ „(1 f~ „)(2N+ 1—),
N, n

(4.2)

—2n.s( I ~ lhcoO)1+2 e
s=1

X cos(21rscp /cpp)

(3.11)
I

where C =Cl /2~Scop.
Apart from the constant C, Eq. (4.2) has the same form

as Eq. (3.19) of Ref. 4.
For very low temperatures, Pf~ „(1 fz „)=5(sz „—
sF). We can t—hen perform the sum over N using the

Poisson's sum formula; we obtain

cr =3C(ficop) ' g eF 1+2 g ( —1)'e cos(2nsKF)
s=1

(4.3)

where eF ——(sF —Epn )/ficpp. I ~ is given by (B7). Hence,
for I"

N «Scop, the conductivity oscillates with period cF.
This period, however, may change as the Fermi level
moves through the subbands c,„because the quantity
cF —con may not be the same for all subbands. A change
of the period, as the second subband gets occupied, has
been observed in heterostructures. It is interesting to
take the zero temperature limit for n= 1. In this case,

sF = (N + & )ficpp+ Ep, cos(2vrsEF ) = ( —1 )', the quantity in
large parens is equal to coth(irI &/ficpp), and Eq. (4.3) be-
comes simpler:

lim cr" =(3C/ficpp)coth(irl ~/ficpp)(N+ & )
T~O

=(3C/vrI )(N+ —), 7rI v « ficpp . (4.4)

Thus, the zero temperature conductivity decreases with
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increasing magnetic field B and well thickness L„and it
goes to zero for B~ao. The exact dependence, however,
on these parameters is tied to whichever of the two
approximations, cothx = 1/x or cothx = 1/x +x /3
—x /45, x =vrI ~/duo ois used, cf. (87) or (B2) with b, re-
placed by

b,l (2A'——L, /rrNI V03nm * .

and
L L

F(q)= f f IP(z)
I

e ~ ' ' IP(z')
I

dzdz',

(4.7)

with

P(z) = V 2 sin(nnz/L, ) I~L, .

F(q,z;)
U(q, z; ) =

qk 1+q,F(q) Iq
(4.5)

where q is the two-dimensional wave vector, k is the
dielectric constant of the medium (well), q, is the screen-
ing constant, and where

L

F(q,z;)= f P*(z)e ' P(z)dz, (4.6)

2. Long-range interaction

The Fourier transform of the potential due to a singly
ionized impurity situated at z;, U(q, z; ), is given by

I U(q)
I

=NI(2ne /k) /q~(b+q, /qq) (4.8)

where b = 1+5q,L, /4' n . Corresponding to (4. 1) we
now obtain

The last two expressions can be evaluated exactly [cf. Eqs.
(A7)—(A9)], but the resulting integral over u [cf. Eq.
(4.1)] becomes very cumbersome. En any case, the major
contribution to this integral comes from very small values
of u =l q /2. To linear order in q we have
F(q) = 1+5qL, !4' n and F(q, z; ) = l. Assuming then a
random distribution of impurities, N(z; ) =Nl ——const, we
obtain

=PDI g (2+5nn')fx, n( fx', ') f I
J»'(u)

I
(b+q. /v'2u ) du5((N N')~0+~

N, N', n, n'
(4.9)

rr~~=3PDI(2/q 1 ) gfxn(1 fx, n)(2N+1» (4.10)

where DI ———(NII2vrfi)(ne IkL, ) . We again consider
only the case n =n'. Now the integral over u is very dif-
ficult to evaluate in closed form for b &0 but its main
contribution comes from very small values of u due to the
exponential of the factor

I
J» (u) I, cf. Eq. (2.20).

Therefore, for values of L, comparable to those of 1 and

q, l ))1 the factor b can be neglected. The integral then
over u is easily done using (A3) and, corresponding to
(4.2), we obtain

B. Nonlinear transport

1. Short-range interaction
The only difference from the Sec. IV. A 2 is that we

start with Eq. (2.9) instead of Eq. (2.4) and that Eqs.
(2.13)—(2.15) contain the electric field (E&0). As in Sec.
III, we approximate q~, wherever it appears raised to
power 1, by eB« IA. With b, „=0the term of Eq. (2.9)
proportional to ~~~ (labeled J„)becomes

«f~ „(1 f~ „)f I
J» (u) —'du

N, N', n

N, n X 5((N N')ficuo+ eE «), — (4.12)

where DI ——Dl/2Mcoo. The similarity of this result, valid
for q, l &) 1, to the one valid for perfect screening, i.e., Eq.
(4.2), is evident. All the analysis following Eq. (4.2) ap-
plies equally well to Eq. (4.10). From either of these
equations we can get another interesting result valid for
very strong magnetic fields such that e « 1, a
=/3[EF —(N+ 2 )Sicko —Eo] when only one c„ level is occu-
pied. Expanding the factors f~, and 1 f~, we obtain, —
to order e

where
C' = ( 3BNI /4rrfi)(e Vo /L, 1)

and where f~ „ is a spatially uniform distribution func-
tion given by the Fermi-Dirac function with T replaced
by the electron temperature T, . The integral over u is
unity [cf. (Al)] and the sum over N' is performed approx-
imately with the help of (A6). Equation (4. 12) then gives

J„=C'g« fx „(1 fx+s„)—
N, n

0' „=3PDI(2/q, 1 )(2N+ 1)e (4.1 1)

since only the level N contributes appreciably. Thus, as a
function of the temperature T, the conductivity o- „shows
a simple activated behavior: or~~ -e ' /T.

1+2 g e cos(2ows5), (4.13)
s =1

where 5=eE LV/Acro and C'=C'/2m6coo. I N is given by
(B7). The other term (J„) of Eq. (2.9), proportional to

is given by Eq. (4.13) with N and N+5 inter-
changed. The sum of the two terms can then be written
as (J„=J„'+J„)

N, n s=1
J„=C'g« f+ „(1 f~ „)[fz+s„If&„+(1 f&+—s „)/(1 fz „)] 1+.2 —g e —' cos(2~s5) (4.14)
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At very low temperatures P,f~ „(1—f~ „)=5(c~ „—sF ), and, upon using (A6), Eq. (4.14) takes the simpler form

J„=(2C'/p, iricpp) gbX 1+2 g ( —1)'e ' cos(2irssF )
s=1

—2ms( I ~ /%coo)1+2 g e " ' cos(2irs5)
s=1

(4.15)

where ZF ——(E~ s—pn )/%cop If. bX is a function of N then
N must be replaced by (sF s—pn )/%cop ——, . Comparing
(4.15) with (4.9) we see that (i) we have oscillations with
period sz, as in the linear case, and (ii) oscillations with
period 5 due to the electric field provided that cF does not
vary much as a function of the electric field.

V. THE HALL CONDUCTIVITY
cd& LINEAR TRANSPORT

If the nondiagonal matrix elements of p(t) are neglected
the Hall current density (and consequently the Hall con-
ductivity) can be obtained directly from Eqs. (2.2) and
{2.17) as shown in Refs. 16 and 18. As shown previous-
ly"' this neglect can be avoided in the linear case. In
what follows we give the result for oy„of a quantum well
as described in Sec. II B.

As explained at the end of Sec. II 8 the only nonvanish-
ing contribution to o»„ is given by Eq. (2.5). The matrix
elements of j and j„(v=x, p=y) are given by (2.16) and
(2.17) with E =0, respectively. Due to the Kronecker del-
tas in these equations we find from (2.14) that

Eg- —Eg (N" N')Pic——op +fu—up . —— (5.1)

Using periodic boundary conditions in the y direction and
the constraint 0 & —xo ——I ky (L„we find

g~(Ly/2') jdk» =A p/2irl (5.2)
ky

where spin was not taken into account; if spin is included
(5.2) is multiplied by 2. We take again a spatially uniform
distribution (n~) =f~„. Using Eqs. (2.5), (2.16), (2.17),
(5.1), (5.2), and proceeding exactly as in Ref. 12, Sec. II A,
we obtain [o„„(0)=—o»„].

2. Long-range interaction

As in Sec. IVA2. , we limit ourselves again to the case
q, l &&1. The results then (4.12)—(4.15) can be taken over
with Vp replaced by (2ire /k) (2/q, ). o.»„=(e /hL, ){N+1)n . {5.6)

For n =1, very low temperatures and strong magnetic
fields such that e «1, a=P(eF —sz„), Eq. (5.5) be-
comes

o»„=(e /hL, )(N +1)(1—e ), (5.7)

the exponential factor representing the deviation from the
zero temperature value. From (5.7) and (4.11) we obtain
[ho»„( T) =o»„(0) o»„(T)]-

ho»„(T)/o~(T) =(e q, I /613DlhLz)

X(N+1)/(2N+1) . (5.8)

This kind of relationship has been observed in the studies
of the integral quantum Hall effect. If PNI is constant
(DI ~ N~ ), i.e. , if thermal activation of the carriers occurs,
the ratio b,o»„(T)/o. (T) is independent of the tempera-
ture.

At high temperatures,

fw, .= exp[f3(EF —sw, .)1,
s~ „——(N + —, )%cop+ spn

the sum over N, in Eq. (5.5), is easily performed for high
N, and Eq. (5.5) takes the form

P(c —c n~)
o„»=(e 2/hL, )[2 isnh(Pfico p/2)] 'ge (5.9)

Hence, oy„depends on the thickness L, through the fac-
tors 1/L, and f~ „, where f~ „——[1 + exp[P(E~ „

s—F)] I
'. For free electrons, the equilibrium density np,

as determined from

np ——g J5(s—e~ „)f(E)dE/II,
N, n, k„

is equal to gz „k f~ „/0 and (5.5) takes the well-known

form cr»„=enp/B At ze. ro temperature fz„——1 and (5.5)
becomes

o» =(e /hL ) g(N+1)f~n(1 f~+) )—
n, X

X(i —e ') .

We now remark that

fn(,.(1 f~+ i,.) exp{ —% p) ={1—fx,.)f~+ i,. —
and with that we can rewrite (5.3) as

o»„=(e /hL, ) g(N+1)(f~ „f~+&„) . —
n, N

(5.3)

(5.4)

Comparing Eqs. (5.7) and (5.9) we see that the tempera-
ture dependence of o.„ is more complicated at high tem-
peratures due to the factor sinh(pirirpp/2).

With regard to the thickness dependence of cry we re-
mark that only the result (5.6), at zero temperature, shows
a simple dependence on L, . Since the energy spectrum
depends on L, so does cF and this makes the L., depen-
dence of the results (5.5), (5.7), and (5.9) more complicat-
ed.

VI. CONCLUDING REMARKS

cr»„(e /hL, ) gf~„. ——
n, N

(5.5)

The change N+1~N is made in the second term and
this leads to the final result

In this paper we have evaluated dc conductivities paral-
lel to the walls of a quantum well, in the presence of a
magnetic field normal to its walls, when linear response
theory is valid, i.e., for weak electric fields, and dc
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".urrents for nonlinear responses.
In the linear case, we have shown that scattering by

short-range or long-range (q, l »1) impurity potentials
leads to oscillations of the conductivity cr „with period
(sF —eon )/fmo. To our knowledge, this result is new,
and the only pertinent approximation made in obtaining it
was the replacement, at very low temperatures, of
Pfv „(1 f~ —„) by 5(s~ „—sF). Essentially, the same re-

sult (with n = 1) was reported previously for elastic
scattering by acoustical phonons but it was obtained with
an additional approximation. Since usually, impurity
scattering dominates at very low temperatures, it is quite
possible that the (acoustical) phonon contribution to cr „ is

masked by the impurity contribution. It any case, it
would be desirable to perform experiments, similar to
those of Ref. 3, in much shorter n+-n -n+ structures, of
the order of a few hundred A, to check the validity of the
result as well as the thickness dependence of the conduc-
tivity.

The Hall conductivity cd„has been evaluated for the
linear case and is shown to depend on the thickness of the
well. To our know1edge, this result is new. We have not
investigated the possibility of the integral quantum Hall
effect in a quantum well but in analogy with superlattices,
where the effect has been observed and treated theoreti-
cally, we expect it to be the case if only the lowest sub-
band (n = 1) is occupied and the Fermi level is pinned in
the gaps of the energy spectrum since the sample becomes
quasi-two-dimensional. If that is the case, the results
(5.5)—(5.8) could be used, and it would be interesting to
see whether the finite thickness of the quasi-two-
dimensional layer has any measurable effect on o~„as it
does, for example, in the activation energy for cr „, in the
fractional quantum Hall effect.

We have also investigated the possibility of transitions
between the well levels c„by, e.g. , varying the electric
field. This is likely to be realized in wide wells
(L, (1000 A) at very strong magnetic fields such that

' « iL)p. So far we are not aware of any relevant ex-
perimental work.

We further notice that the activation energies for o
Eq. (4.11), and b,o»„, Eq. (5.7), are the same and that they
depend on the thickness of the well. The prefactors, how-
ever, in a11 the expressions for o. have different depen-
dence on the well thickness than the corresponding ex-
pressions for o.

~ . This is due to the fact that o. depends
on the scattering (impurity density, etc.), whereas o»„does
not, at least in the first Born approximation.

All the results for the nonlinear case are tied to the ap-
proximation eVqq» =eE dec (b,x —I). This led to an addi-
tional oscillatory structure, for scattering by impurities or
phonons, which depends on the electric field strength.
For certain values of the electric field [cf. Eq. (3.10)] the
wave functions of neighboring Landau levels overlap and
transitions between them are possible: maxima convert
into minima and vice versa. Although the results of Ref.
3 make this clear we cannot make a more quantitative
comparison of our theory with the experiment, and thus
check the error made by eV~q„=eE hx, since the present
theory applies to much narrower wells and since we are
not aware of any pertinent experimental work.

Finally, we notice that, with regard to the results for
o. , the usual divergences of the Born approximation
have been avoided by replacing, as usual, the 6 functions
by Lorentzians (or Gaussians). The relevant level widths
have been estimated from the inverse scattering rates but
they have a simple form (cf. Appendix B) only at the reso-
nance (for off-resonance 1 z values, for electron-phonon
interaction, see Ref. 4). These results could be used in es-
timating the mobility of the samples through p=e~/m*.
Interestingly, the results for I & or 1/~ depend explicitly
only on the number of the occupied subbands n, but not
on the Landau level index N.
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APPENDIX A

The first two integrals below are found in tables. For
the explicit evaluation of the next three ones, see Refs. 4
and 11.

f e "x [L~ (x) J dx =(%+M)!/X!, M &0,

e x L~ ~ x dx=1, M)0,

f e "x +'[Lz (x)] dx =(2%+M+ 1)(%+M)!/X!,

(A 1)

(A2)

(A3)

f e "x '[Lz (x)] dx =(%+M)!IK!M, M&0, (A4)

cos 2~sx x+a x +b dx

—2ns(I ~/fuuo)g 5(M ~, /~, )=1+2 ge
M=0 s=1

Xcos(277scc)t /coo) (A6)

where 1 ~ is the width of the Lorentzian (of shift zero) by
which the 6 function is approximated. In a similar
manner one can carry out the sum g~g(M)6(g(M)).

F(q), as given by Eq. (4.7), has been evaluated in Ref.
31. The result is

F(q)=2(x +8m n )(x +4mn) (1—e ".
)

+xl(x +4~ n )

+2[1—(1 —e ")/x]/x, x =qL, . (A7)

To linear order in x, F(q)=1+5x/4~ n . From Eq.
(4.6) we obtain

F(q,z;)=4' n e '(e"—1)

X(x +4' n ) '/x, z ~z;, (A8)

=ae ' /(a +b ), s &0. (A5)

(A4) and (A5) are used for the derivation of (B3) and (B4).
The following relation is derived in Ref. 4 using

Poisson's summation formula:
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2 &~rF(q,z;)= —4n. n e '(e "—1) I rr =(Nr V03nm '/2iii L, )coth(irl iv/~o) (B6)

&&(x +4' n ) 'Ix, z &z; . (A9)

To linear order in x, F(q, z; ) =1 for both z &z; or z &z;.

so that, I"~ is given, for rrl & &&hcoo, by an expression
similar to (B2). If, however, only one term is kept in the
expansion of cothx, i.e., if cothx = 1/x, then

APPENDIX 8 I"&—[(Nr V03nm ' l2fi irL, )Acro]' (B7)

The damping factors I ~, appearing in the text, are es-
timated from the inverse scattering rates 1/~ according to
I &-A/~. The procedure is identical with that of Ref. 4
so we only give the results for n =n'.

I ~ 3f1KD'( 1 + 2ND)n coth(irl rtr /ficoo) (Bl)

For irl & « fuuo and cothx= 1/x+x/3 —x /45 we ob-
tain

I ~-(15 I 1 —3b, + [(1—3b, ) +36]'r ] /2iri)'rzficoo,

(B2)

where

and

b, =2k' L, /3irm 'D'(1+2ND)n

A. Optical phonons

For BL ——peso the I ~ are determined from the graphical
solution of

Z. Long-range interaction

The only difference with Appendix BC2 is that U(q)
is given by the approximate result (4.8). For q, l »1,
however I & is again given by (B6) or (B7) with Vo re-
placed by 2me /kq, .

APPENDIX C

Below we outline the derivation of formulas (2.3)—(2.5).
The details are to be found in Refs. 9 and 32. Moreover,
we indicate briefly how formula (2.9) is derived in Ref. 17.

In Ref. 32, the Hamiltonian (2.1} is inserted into the
von Neumann equation for the density operator p(t), and
the latter is split into a diagonal part (in the representation
of H ) pd(t), and a nondiagonal part p„d(t) Then. , by ap-
plication of projection operators to the von Neumann
equation two coupled equations are obtained, one for pd(t)
and one for p„d(t). These equations are decoupled by ap-
plication of the Van Hove limit for weakly interacting
systems.

K = —,
'

AL, I A, ~Q, r /r, ~ m, Atfini. te, (Cl)

B. Polar optical phonons

Corresponding to (Bl) we obtain

x =RA5(ir/Sicko) cothx/(5 +x ), x =rcI ~/%cop,

(B3}

where A = 3KB '( I + 2No)nl /2 and 5 =m.GL /coo. For
cothx =1/x, Eq. (B3) gives

I = I[5(5 +4A')' —5]/2ir I' fico

A'=irA/ctir coo . (B4)

C. Impurity scattering.

where z, =R/At is the time for a transition between two
eigenstates of H to take place. This limit is equivalent to
the first Born approximation. The assumptions are then
made that (i) V is a two-body interaction potential and as
such translationally invariant, and (ii) A commutes with

A, V and 3 is translationally invariant. This leads, for
linear responses of the system from its equilibrium state
(p,q), i.e., for weak electric fields, to two inhomogeneous
master equations, one for pd(t) and one for p„d(t). The
solution of the first equation leads to the conductivity for-
mula

cr&„(ice)=PA f dt e '"'T,[p,gdg~&(t)], (C2)

where the reduced current Jd (R denotes the Van Hove
limit) is given by

1. Short-range interaction Jd ——~ —Ad g(r; —r'; )g+ g V;d0 (C3)

Using Eq. (2.8), with U(q) = Vo, and Eqs. (2.16)—(2.19)
we obtain (A'Vdq» =eEM)

=(Nr V03nm'/2fi L, ) g f ~
J~,re+I(u)

~

'
'r M

Here Ad is the master superoperator in Liouville space de-
fined

Xdu 5(M eE b,x/ficoo)— (C4)

(B5)

The integral over u is 1, cf. (A 1), and the sum over M is
given by (A6) with cur ~eEbx. For eEbx =pficoo, p in-
teger, we get

where
~ y & are the eigenstates of H, W»» is given by the

golden rule, and where V; is the velocity operator. Equa-
tions (C2) to (C4) are valid at the many-body level. Their
reduction to the one-body level is made in Ref. 9 under
the assumption that the scattering system remains at
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equilibrium. Equation (C3) reduces to Eqs. (2.3) and (C2),
for p =v, co=0 reduces to Eq. (2.4) when the ponderomo-
tive current [second term of Eq. (C3)] is zero.

The solution of the equation for p,d(t) leads to a many-
body formula for the conductivity trad(i co) similar to (C2).
The dc version of its one-body analog is given by Eq.
(2.S')

As to Eq. (2.9), it has been derived from the master

equation for the Landau states in Refs. 15 and 16. Its
derivation for a general state is given in Ref. 17. The
starting point is the Liouville equation. Then a density
matrix is introduced and the equation for its elements is
solved by iteration. The lowest order in the interaction,
the current Jz is proportional to k . The assumption that
the scattering system remains at equilibrium leads directly
to Eq. (2.9) for all values of the electric field. ~~
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