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A systematic study of the electronic and optical properties of modulation-doped
GaAs-Al„Ga& As quantum wells is undertaken. We consider cases in which the Al Ga& „As bar-
riers are doped either n or p type and the GaAs wells are filled with a gas of free carriers. The elec-

tronic band structure, exciton binding energy, exciton oscillator strength, and interband absorption
are studied as functions of well width and doping concentration. A multiband effective-mass
method is used which takes coupling between heavy- and light-hole states into account. In our
model for excitons we include effects of valence-subband nonparabolicity, free-carrier screening, and

the k dependence of optical matrix elements. The interband optical absorption is obtained using
Fermi's golden rule with a correction made for the screened final-state interaction. Our theoretical
results are compared with available experimental data.

I. INTRODUCTION

Modulation-doped GaAs-Al Ga
~

As semiconductor
superlattices and quantum wells have received growing in-
terest in recent years. ' In these systems the
Al Ga& As barriers are doped either n or p type and the
GaAs wells are filled with a gas of free carriers. Most of
the experimental and theoretical work done so far has cen-
tered on the study of the transport properties of the free
carriers confined in the GaAs wells. ' This interest is
primarily due to the fact that extremely high mobilities
result from segregation of the free carriers and doping im-
purities.

Relatively little attention has been paid to optical-
absorption properties in these systems although it has
been pointed out that the light sensitivity and persistent
photoconductive effects in modulation-doped structures
have important practical consequences for the construc-
tion of modulation-doped field-effect transistors. Re-
cently, photoluminescence, photoexcitation, and absorp-
tion measurements have been made on modulation-doped
samples. In this paper we report on calculations of
electronic and optical properties in these systems. We
study electronic band structure, exciton binding energy,
exciton oscillator strength, and interband absorption and

compare our results with the available data.
The remainder of the paper is organized as fo11ows.

First, we discuss the electronic and optical properties of
the free-electron and hole carrier states. The multiband
effective-mass method is described and valence-band
structure as functions of well width are discussed. Next
electronic properties of exciton states are considered, We
describe the exciton effective-mass equation and the exci-
ton screening theory and then discuss exciton wave func-
tions and binding energies as functions of well width and

doping level. Optical properties in modulation-doped
quantum wells are then discussed. Interband absorption
including a correction for the screened final-state interac-
tion and exciton oscillator strengths as functions of dop-

ing concentration are described. Finally, a summary and
conclusions are presented.

II. ELECTRONIC PROPERTIES
OF MODULATION-DOPED QUANTUM WELLS

In our treatment of modulation-doped quantum wells,
conduction and valence bands are considered decoupled.
This is a good approximation when the fundamental band
gap of the well material is much larger than the subband
energies of the quantum well. For the conduction-band
states, a simple effective-mass theory is used. For the
valence-band states, we use a rnultiband effective-mass
theory in which the hole kinetic-energy term is described
by a 4 & 4 matrix whose elements are derived based on the
k.p method. " The k-p formalism was extended to the
study of thin films by Nedorezov, ' and recently has been
used in the study of quantum-well structures. ' ' For
simplicity, the effective masses of electrons and holes in
the barrier material (AI„Ga~ „As) are assumed to be the
same as those in GaAs. The approximation is good as
long as the leaking of quantum-well-state wave functions
into the barrier is sufficiently small.

The effective-mass Hamiltonian for the spin- —,
'

conduction-band electron is given by a scalar operator

8, =p /2m, *+V, (z) —Vd(z),

where m,
* is the effective electron mass for GaAs, V, (z)

is a finite square-well potential of depth Vo„and Vd(z) is
an additional parabolic potential of height Vo which
models the effects of modulation doping. Throughout the
paper, the z axis is taken to be along the growth direction
of the quantum well.

The square-well potentials arise as a result of the band-

gap mismatch between GaAs and Al Ga& As which we
take to be EEg ——(1.115x+0.37x2) eV. ' This band-gap
mismatch is divided between the conduction and valence
bands to form the confining potentials, and thus V, (z )
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has a height Q, b,Es and V» (z ) has a height
Q»b, Es ——(1 —Q, )b,E&. The band offset parameters Q,
and Q» are taken to be 0.6 and 0.4, respectively, ' and for
the Luttinger parameters of GaAs we adopt values of
y) ——6.85, yp

——2. 1, and y3
——2.9. '

The relation between the height of the parabolic poten-
tial ( Vo) and the two-dimensional carrier concentration is
given by'

N = (1/4vre )(8e
~

Vo }
/W)

where e is the static dielectric constant of the well materi-
al, 8' is the well width, and e is the electric charge of the
carrier. This approximation is valid as long as Vo is
reasonably weak ( &10 meV). In our formalism Vo is
positive for p-type modulation-doped quantum wells and
negative for n type. The parabolic potential approxima-
tion is equivalent to the assumption that there is a uni-
form density of carriers in the well. Examination of the
calculated ground-state wave function for the case where
only one subband is occupied shows that the assumption
of uniform carrier density is adequate for quantum wells
having widths in the range 50—200 A. If we generate an
improved potential based on our calculated wave func-
tions it is seen to be approximately parabolic and to devi-
ate from the original potential by at most 20%%uo. Using
first-order perturbation theory, it can be shown that the
deviation between the two potentials will cause a shift in
the subband energy levels of approximately 10%%uo of Vo.
The effect on calculated transition energies is smaller still
since the errors in the conduction- and valence-subband
energies have the same sign and tend to cancel when
differences are taken between energy levels.

The effective-mass Hamiltonian for the spin- —, hole in
the limit of infinite spin-orbit coupling is a 4 &4 matrix
operator given by

H =T ~ +[V»(z)+ Vd(z)]5

where V»(z) is a finite square well of height Vo», Vd(z) is
the aforementioned modulation-doping potential, and v
labels the z component of hole spin, i.e., v—=J,= ——, ,

T ~ is the Kohn-Luttinger Hamiltonian.
In the envelope-function approximation we have

~ [I IO] k (27r/ao) [100]~ ~[I IO] k(27r/ao) [100]~
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velope functions g" (kII,z) are solved variationally by ex-
panding g (kI~, z) as a sum of Gaussian-type orbitals of
the form e ~' and ze ~' . Fifteen Gaussian orbitals of
each type are used in our calculation. Substituting this
expansion for the envelope functions into the effective-
mass equation, the problem reduces to a generalized Her-
mitian eigenvalue problem to be solved for the subband
energies E (kII) and the envelope-function expansion
coefficients.

The results of our valence-subband calculation in the
absence of modulation doping are shown in Fig. 1 for
GaAs-Alo $5Gao 75As quantum wells having well widths
of 20, 50, 100, and 200 A. The valence-subband structure
is seen to be very complicated and some of the bands are
seen to have negative zone center effective masses. This
complicated structure is the result of strong interactions
between different subbands due solely to the mixing of
heavy- and light-hole states at nonzero values of k~~ by the
off-diagonal terms in H . At points away from the zone
center the increasing strength of the level repulsion in-
teraction between subband states with increasing k~

~

gives
rise to the complicated band structure. In particular, the
increasing strength of the level repulsion interaction be-
tween LH1 and HH2 gives rise to the negative zone center
LH1 effective mass. In the absence of coupling by the
off-diagonal terms in H ~ the subbands would all be par-
abolas. At the zone center the off-diagonal terms in H
vanish and the heavy- and light-hole states are uncoupled.
Thus the k~~

——0 states can be labeled LHn or HHn for the
nth light- or heavy-hole state.

1('„k„(p,z) = g e " f„(kII,z)
~

1(' ) for electrons (3)
—}20'

P~ „„(p,z = g e " g" (kII,z)
~
1(~) for holes, (4) -20

HH

where f„and g are the envelope function,
~

t/i') and

}
1t") are bulk Bloch functions at the zone center, and

k~~ kzx+kyy and p=~x+yy.
The envelope function and subband structure for

valence subbands are obtained by solving the effective-
mass equation:

-40
CD

E
-60

la

CD

80
LL}

-100

g H (kII)g (k~II, )=zE (kII) .

In our multiband effective-mass approach the
effective-mass equation for the subband energies and en-

—I 20

FIG. 1. Valence-subband structure calculated using the mul-
tiband effective-mass method for GaAs-Alo q5Gao 75As quantum
wells having thicknesses of 20, 50, 100, and 200 A.
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X X XF (kll'kjl) j kll'n ) j
k

where n and m are subband indices for electron and hole,
respectively. In the case of modulation doping, either the
first conduction subband (for n-type doping) or the first
heavy-hole subband (for p-type doping) will be partially
filled by carriers. In our calculation, we assume that the
exciton state associated with the partially filled subband is
a linear combination of single-particle excitations with k~~

restricted to regions in k~~ space outside the Fermi sphere
while keeping all the free carriers in their ground state. In
this approximation the polarization of the Fermi sea has

been neglected. ' Such a many-body effect will be treat-
ed in a separate publication. For excitons associated with
unfilled subbands, the theory described here is appropriate
and the paper will put more emphases on the carrier
screening effect on these excitons. It can be shown that
the exciton envelope function satisfies a two-dimensional
effective-mass equation. The envelope function is given
by

II+

where G„(k~), the exciton relative motion envelope func-
tion, satisfies

(8)

[E„'(k~~)—E kll)~G~~ kll }+ 2 2 V~'~'(kll~k[l)G~'~'(k1~) =EG„~(k (7)
n, m

In this expression E„'(k~~) and E" (k~~) are the energies for the nth conduction and mth valence subbands, and the
Coulomb interaction term V„" (k~~, kj~) is given by

where Vis the bare potential which is given by
2 I

J f dz, dzh g f„*'(z,)f„(z,) g g~. ( k~~, z h g}~( k~~,z h)e
eo

f k(( —kj( j

Here e(q~~) is a wave-vector-dependent dielectric function
which contains the effects of screening by free carriers
which we shall return to shortly and 6p is the static dielec-
tric constant in GaAs. Derivations of (7) and (8) are given
in Appendix B.

We adopt a two-band model keeping only one valence
and one conduction subband. We further approximate

Fourier-Bessel transform, is V(p) = Z(p/po—)e /cop with

Z(p/po) = (~/&)(p/po) [IIo(p/po) —No(p/po) ]
where Ho(x ) and No(x ) are the Struve and Neuman func-
tions, respectively. ' The fact that

q~~ V(q~~) can be ap-

q
~~

(27r/a}

gg (kj~,zh )g (k~~, zh }

in (8) by its value at the zone center. This is a fairly good
approximation, since the dominating contribution in (8)
comes from the k~ ~-k~

~

term and we find that
g, ~

g" (k~~, zh ) j
is a smooth function of k~~, even though

g" (k~~, zh) varies quickly with k~~. The error introduced
by such an approximation is estimated to be about 5%.
This two-band model allows us to ignore Fano reso-
nances of high-lying excitons with the continuum levels
of lower-lying excitons.

The bare exciton potential-energy function in our two-
band model depends only on the magnitude of the wave-
vector difference q

~ ~

=
~ k~

~

—k
~ ~

~

and the free-electron
and hole zone-center envelope functions. In Fig. 4 we
have plotted the bare exciton potential V(q~~) multiplied
by q~~ as a functio~ of q~~ for the HH1-CB1 and LH1-
CB1 excitons.

These potential functions in Fig. 3 are well approximat-
ed by the simple expression

q[] V(q)) ) = —(e /eo)( I +poq)( )

0.0
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where pp is a fitting parameter. The strict two-
dimensional limit is obtained by letting pp~O. The po-
tential in coordinate space, obtained by taking the

FICJ. 3. Exciton potential energy function q j j
V(q

j I
) in

CxaAs-Alo»Cxa075As quantum wells for several well widths for
HH1-CB1 excitons and LH1-CB1 excitons.
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FIG. 4. Exciton potential parameter (po) versus well width
( W) for GaAs-Al Ga& As quantum wells with x =0.25 and
04

proximated by a simple analytic expression (9) not only
simplifies the calculation of the exciton binding energy,
but also makes feasible the calculation of the effect of
final-state interaction on the absorption spectrum in the
continuum regime, which we shall discuss in Sec. IV.

The variation in the exciton potential parameter pp with
well width for several prominent excitons, which com-
pletely characterizes the bare Coulomb potential, is shown
in Fig. 4 for GaAs-Al Ga& „As quantum wells having
aluminum concentrations x =0.25. As seen in the figure
there is a tendency for pp to decrease with decreasing well
size as the exciton potential becomes increasingly two di-
mensional. At a critical well size the free-carrier wave
functions start to leak into the surrounding Al Ga& „As
barriers and the potential parameter starts to increase
again.

To obtain the exciton Coulomb potential in the case for
screening by free carriers, we must determine the form of
the wave-vector-dependent dielectric function e(q~~ ) men-
tioned above. Within the random-phase approximation
(RPA) the dielectric function e(q~~ ) is given by

(q~~ ) =1+(q, /q~~ )f, (q~ )

X [1—e(q
~

—2kF)[1 —(2kF/q )']' 'J, (11)

where q, =2e md /A ep and k~ is the Fermi wave vector.
md is the density-of-states effective mass for the free car-
rier. f, (q~~ ) is the screening form factor defined as

dz dz', z ' z' 'e

where f&(z) is the first conduction- (for n-type doping) or
valence- (for p-type doping) subband envelope function.
This form factor is again fitted by the simple expression
(1+Poq~~ ) '. For the n-type case, po is almost identical to
pp for the LH1-CB1 excitation, because the conduction
band and light-hole band have similar effective masses in
the z direction. For the p-type case, pp is about 10%%u&

smaller than pp for the HH1-CB1 exciton due to the
difference in conduction-band and heavy-hole-band effec-
tive masses. For n-type quantum wells the density-of-
states electron mass appearing in Stern's expression for
e(q~~ ) is just m,*=0.067mo, and for p-type quantum wells
the density-of-states hole mass is taken to be 0.14mp

characteristic of the filled HH1 subband.
The sharp discontinuity in the exciton Coulomb poten-

tial at q~~
——q, makes the numerical evaluation of the exci-

ton matrix elements difficult. We overcome this difficul-
ty by fitting the wave-vector-dependent potential by an ex-
pression of the form

2 2

V(q~ )/e(q~~ ) = [(1+poq~~ )
' —e Aq—~~e "],

~pq[[

(12)

where 3, b, and o. are adjustable parameters determined
by a least-squares fit for any given values of pp, pp, and
kF/q, .

We solve for the exciton wave function variationally by
expanding G„as a sum of Gaussians with exponents
chosen to cover a broad physical range. The exciton bind-
ing energies and envelope wave functions are then ob-
tained by solving a generalized eigenvalue problem for the
expansion coefficients. All of the matrix elements are
evaluated numerically, and, in particular, we use the com-
puted nonparabolic band structures in the evaluation of
the kinetic-energy matrix. The energy bands are nearly
isotropic in the region of interest near the band edges, and
with this approximation all the numerical integrals are
one dimensional. Details of the calculation of the matrix
elements are presented in Appendix B.

For quantum wells whose widths lie in the range from
60 to 300 A, the most pronounced exciton absorption
peaks in undoped quantum wells are the ground-
state HH1-CB1, LH1-CB1, HH3-CB1, HH2-CB2, and
LH1-CB2 excitons. ' ' Binding energies of these
excitons in undoped wells as functions of well width have
previously been reported by us. Those excitons associat-
ed with hole bands having negative-zone-center effective
masses, i.e., LH1-CB1 and LH1-CB2 are seen to have sig-
nificantly enhanced binding energies relative to other exci-
tons. This is because the effect of a large joint density of
states is to lower kinetic energy for the exciton.

The effects on exciton binding energy of p-type doping
in GaAs-Alp p5Gap 75As quantum wells having widths
of 100 and 200 A is shown in Fig. 5, where we plot exci-
ton binding energy as a function of the two-dimensional
hole concentration. Referring to the figure, two things
can be noted. First, all the exciton binding energies are
seen to approach zero asymptotically for all except the
HH1-CB1 excitons. The asymptotic behavior is con-
sistent with the fact that in two dimensions an arbitrarily
weak potential has at least one bound state. The HH1-
CB1 exciton is seen to become an unbound resonance state
at finite hole concentration, because the exciton envelope
function G»(k~ ) is restricted to regions of wave-vector
space outside the Fermi sphere due to the partial filling of
the HH1 subband. Hence, the resonance state is created
by the resulting increase in the exciton's kinetic energy.
Secondly, the binding energies of excitons associated with
the "negative-mass" hole subbands (LH1 and HH3) ap-
proach zero much more slowly than those associated with
other hole subbands.

For n-type doping those excitons involving CB1 be-
come unbound resonance states at a large doping level.
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FIG. 5. Exciton binding energy versus hole concentration
O

for (a) 100- and (b) 200-A p-type modulation-doped
CxaAs-Ala i5Oao 75As quantum wells.

FIG. 6. Exciton binding energy versus electron concentra-
0

tion for (a) 100- and (b) 200-A n-type modulation-doped
GaAs-Alo 25Gao 75As quantum wells.

The binding energies in n-doped GaAs-Ala 25Gao 7&As

quantum wells as functions of the two-dimensional elec-
tron concentration are shown in Fig. 6 for 100- and 200-
A-wide wells. Here the LH1-CB2, HH2-CB2, and
LH2-CB2 exciton binding energies approach zero asymp-
totically and all other excitons become unbound reso-
nances at some finite doping level.

IV. OPTICAL PROPERTIES
OF MODULATION-DOPED QUANTUM WELLS

In this section we calculate the optical properties of
GaAs-A1 Ga& As quantum-well structures including
the excitonic effect. In particular we are able to calculate
the absorption spectrum in absolute units and compare
our results with available data. We consider absorption
for the usual experimental situation where unpolarized
light is incident along the growth direction (i.e., x,y polar-
ization), and for linearly polarized light with the electric
field vector oriented along the growth direction z and
Poynting vector directed along x (i.e., z polarization).
The latter case is of interest because transitions involving
heavy-hole components are forbidden as shown below.

The band-to-band absorption, neglecting final-state
Coulomb interaction, is obtained by applying Fermi s gol-

a„(fico)= 4~eA 1

nocm o V2

& 2 I
e P.~(kii) I'

kII

X5(E"(kii) —E„'(kii)+fico) . (13)

Here it is understood that in the case of band filling due
to modulation doping, the summation over k~I is restricted
to regions in kii space outside the Fermi sphere. E"(kii)
and E„'(kii) are the valence and conduction subbands, mo
is the free-electron mass, no is the refractive index, e is
the polarization vector, and Ace is the energy of the in-
cident photons. Throughout this paper, we take the index
of refraction no of all GaAs-Al Ga& „As quantum wells
to be a constant (no ——3.4). It has been shown ' that the

den rule. The total band-to-band absorption coefficient
aii(fico) is given by summing over each of the individual
subband-to-subband transitions. Thus

air(fico) = g a„(fico)
n, m

where a„(fico), the band-to-band transition from valence
subband m to conduction subband n, is given by
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and

143/2) (
I
x &+i

I y &)a
2

I p, /2) = [( I
x ) +i

I y ) )p —21z )a],
6

14"-i/2) [(
I

x &
—i

I y &)a+21z &&]
6

3/2 ) = (
I

x ) i
I y ) )p—

2

The evaluation of the matrix elements is straightforward
and the nonvanishing matrix elements are given by

i & 0+3/2 I Jy I 0+1/2 & & 0+3/2 I i. I 0+ i/2 &

1
&x

I p„ I

s ),
2

i &4+1/2 I py I 1+1/2) &4+1/2 IP& I V+1/2)

&x
I p„ I

s ),1

6

and

&0"+i/2 IP. I
it'+i/2& =

6

Here we make use of the orthonormality of the spin states
a and P and the fact that under the symmetry properties

group Oi, &x lp ls&=&y lay ls&=&z lp. Is&
while all other such matrix elements vanish. The squared
matrix element (1/2mo)

I
&x Ip„ I

s)
I

for GaAs which
appears in our calculation is taken to be 25.7 eV as given
in Ref. 11.

In bulk semiconductors the optical matrix element is a
slowly varying function of k and may safely be approxi-

variation of np in the energy range of interest is at most
5%. In (13), the optical matrix element P„(k~~) is given
by P„(k~~)= & it/~

I

P
I
itt'„). Here P and i)/„are the

valence- and conduction-subband wave functions at k~~.

In the envelope-function approximation, the optical ma-
trix element is given by

(14)
V, O'

The hole spin v= ——,, ——,, —,, —, and the electron spin
cr= ——, , —, . The envelope functions g" and f„and the
bulk Bloch functions P"„and it/' were defined earlier. The
nonvanishing matrix elements & i)'j„

l
e P

I

P' ) involving
bulk Bloch states are easily derived. The electron Bloch
states are given by

I gi/2) =
I
s )a and

I

g' »2) =
I

s )/3,
where a and P denote the up and down electron spinors
and Is) is the s-like conduction-band Bloch state. For
the holes, the Bloch states are linear combinations of the
products of electron spinor and the p-like valence-band
Bloch states

I

x ),
I y ), and

I
z). They are given by

mated by its value at k=0. This approximation has also
been made by a number of authors in the study of super-
lattices and quantum wells. ' The widely known An =0
selection rule for transitions between subbands is based on
the observation that in the envelope-function approxima-
tion P„(k~~=0) vanishes unless n =m. Furthermore, the
absorption coefficient in this approximation is given by
(apart from a constant factor)

a(fico) — g I

e P„(0)
I
"o„J„(fico),

ACOPl p

where J„(fico) is the joint density of states between
valence subband m and conduction subband n. For two-
dimensional parabolic subbands J„(Ace) is a step func-
tion. It has been pointed out recently, ' however, that
for superlattices and quantum wells the approximation
P„(k~~)=P„(0) is a very poor one. We find that
P„(k~~) is rapidly varying even for small values of k~~

due to the strong mixing of heavy- and light-hole states by
the off-diagonal elements in the valence-band Hamiltoni-
an H . Thus it is necessary to retain the k~

~

dependence
of P„(k~ ) in our analysis. Fortunately, we have found
that the squared optical matrix elements

I

e.P„(k~~) and
the energy bands E" (k~~) and E„'(k~~) are nearly indepen-
dent of the direction of k~ ~, allowing us to make an isotro-
pic approximation. The integration over k~~ in the formu-
la for the absorption coefficient is one dimensional in the
isotropic approximation.

To include the effects of the final-state Coulomb in-
teraction, the individual band-to-band absorption coeffi-
cients a„(iricu) must be multiplied by a Coulomb
enhancement factor which is proportional to the probabil-
ity of finding the electron and hole at the same position.
To calculate the enhancement factor, we must solve the
exciton effective-mass equation (7) in the continuum re-
gime for each pair of conduction and valence subbands.
For simplicity, we approximate the energy dispersion for
the exciton relative motion [E„'(k~ ) E(k~~ ~)] by —an
effective-mass expression, A k

~ ~

/2p„, where p„denotes
the reduced effective mass for the exciton constructed by
the nth conduction subband and the mth valence sub-
band. p„ is chosen so that the exciton binding energy
obtained in this approximation is identical to that ob-
tained by solving (7). Transforming (7) into the real space
yields

AV
(p) G„(p)=EG, (p),

2pnm
(16)

where V„(p) is the Fourier-Bessel transform of V„(q~~ ).
Using the approximations given by (9) and (12), we find
that V„(p) takes the simple analytic form

V(p)= —Z(p/po)e /cop (for the undoped case)

and

V(p) =— 2

2 21/2
P

(p+b )

~p —p~ /4ae
2Q

(for the doped case), (17)
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where Z(p/po) is given by (10), and the fitting parameters
b, A, and a depend on pQ, pQ and kF /q, .

Since V(p) is analytic, (16) can be solved by simple in-
tegration and the Coulomb enhancement factor is given
by h(E) =

~
G~(0)/Gz(0) ~, where Gz(0) is the solution

to (16) at p=0 with energy E and Gz(0) is the corre-
sponding solution for the case V(p)=0 (i.e., free-particle
solution). The result for the Coulomb enhancement factor
for the undoped case is shown in Fig. 7. Here the exciton
reduced mass is taken to be p=0.045pQ, a typical value
for most excitons in G-aAs quantum wells. When pQ

——0,
the exciton potential reduces to e—leep (the pure two-
dimensional limit) and the result shown in Fig. 7 is in
agreement with the exact analytic solution
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FIG. 7. Coulomb enhancement factor for undoped
GaAs-Al Gal „As quantum wells for various values of exciton
potential parameters (po).

where EQ is the binding energy of the two-dimensional ex-
citon. When pQ~op, the Coulomb enhancement factor
reduces to 1 as expected. For most quantum wells of in-
terest (6'=50—300 A), po is between 20—100 A and we
find that the enhancement factor is between 1.5 and 1.3 at
E=0 (the threshold) and gradually decreases to 1 at
E~ oo.

The effect of carrier screening on the Coulomb
enhancement factor is illustrated in Fig. 8 for pQ

——34 A,
which is appropriate for the An =0 excitons for
GaAs-AlQ 75GaQ z5As quantum wells with 8 —100 A.
Here, the two-dimensional carrier density (n ) is related to
the Fermi wave vector kz by the expression, n =kF/2m.
For kF between 0.005 to 0.05 A ' (i.e., n between 4~ 10'
cm and 4 X 10' cm ), we find that the enhancement
factor is sharply peaked near the threshold, indicating a
"resonance. " For kF ~0. 1 A ' (n ~ 1.6X10' cm ), the

E I.O
O

O

0.5

0
0 l2 l6 20

Energy E (rneV)

FIG. 8. Coulomb enhancement factor for modulation-doped
GaAs-Al Ga& As quantum wells for various values of Fermi

o

wave vectors kF (in units of A ).

resonance disappears and the enhancement factor ap-
proaches 1 as kz increases further.

In Fig. 9 we have plotted the component absorption
spectra a „(fico), including the Coulomb enhancement ef-
fect, for subband-to-subband transitions involving the first
six valence subbands and the first two conduction sub-
bands for an undoped 102-A GaAs-A1Q 27GaQ 73As quan-
tum well for incident photons having (x,y) polarization.
In the figures absorption spectra for transitions to CB1
are solid curves and corresponding spectra for transitions
to CB2 are dashed curves. The individual curves are la-
beled by the valence-subband index m. The subband-to-
subband transitions are quite complicated and the rapidly
varying nature of the individual subband absorption
curves reflects valence-band mixing. The total band-to-
band absorption spectra for (x,y) and z polarizations are
shown in Figs. 10 and 11 (dashed curves). It is found that
the overall shape of the total absorption obtained by add-
ing up the individual subband-to-subband absorption
curves is close to the staircase function predicted by the
simple-model calculation (15), although each step tends to
decline faster than 1/co at higher energy due to the de-
crease of optical matrix element with increasing k~ ~.

Thus, despite the strong variations of the optical matrix
element for various component transitions, the net band-
to-band absorption is nearly featureless. This is not
surprising, since the sum of oscillator strengths for optical
transitions from two interacting valence states to a given
conductor band must remain constant despite the mixing.
The peak structure seen in Fig. 10 for the B(LH1-Cal)
transition is due to the negative zone center effective mass
of the LH1 subband. The electronlike curvature of the
LH1 subband gives the LH1-CB1 transition an exception-
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FIG. 9. Subband-to-subband absorption coefficient for transi
tions from the first six valence subbands (labeled 1—6) to the
first (solid curves) and second (dashed curves) conduction sub-
bands for a 100-A GaAs-AlQ»GaQ 73As quantum well for (x,y)
polarization.

ally large joint density of states at the band edge, hence
the sharp peak near 1580 meV. To include the effects of
absorption due to the bound states of free excitons, we
make use of the exciton envelope wave functions G„(k~~)
and binding energies and the band-to-band optical matrix
elements P„(k~) described earlier. The exciton oscillator
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citation spectra of Miller et aI. (Ref. 40).

strength per unit area is given by

f„= g G„(kii)e.P„(kii)2

%Curn p

Here, again the summation over k~
~

is restricted to the re-
gions in k~~ space outside the Fermi sphere in the case of
modulation doping.

The absorption coefficient including the excitonic effect
is given by

4 2 2f
a(fico) = g f„b,„(fico E„'" )+a„(fico)—

! npcmpV
"

(20)

where b,„(E)=(1 „ /ir)(E + I „) ' is a Lorentzian
function of half with I „which describes the effects of
line broadening for the nm transition. E„" is the
ground-state energy of the nm exciton,

a„(E) = f a„(E')h„(E')b (E E')dE', —
where h„(Rco) is the Coulomb enhancement factor for
the nm band-to-band transition, and a„(fico) is the
band-to-band absorption given by (13). For I „,we use
the empirical rule I „=Ipnn', where n and n' are the
principal quantum numbers for the electron and the
heavy- or light-hole quantum-well states. I p is an empiri-
cal parameter which can be adjusted to fit the empirical
data.

The theoretically predicted absorption spectra for an
undoped 102-A GaAs-Alp 27Gap 73As quantum well for
x,y and z polarizations are shown in Figs. 10 and 11
(solid curves). The photoexcitation spectrum measured by
Miller et al. is also shown in Fig. 10 for comparison.
Note that the absolute units for the experimental data are
unknown here. The parameter I p used in the theoretical
spectra is 1 meV. Fairly good agreement between the
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theory and experiment is obtained. There is discrepancy
in the energy positions of the theoretical X(HH3-CB1)
peak and the corresponding experimental peak structure.
This is probably due to the uncertainty in the heavy-hole
effective mass used in the theoretical model. Miller has
shown that the peak position matches well with the

35X(HH3-CB1) transition if one uses mHH ——0.34mo.
We can also compare the theoretical absorption spectra

with the experimentally measured spectra directly (both in
absolute units). This is shown in Fig. 12 for 116- and
210-A GaAs-Alo3Gao 7As quantum wells. The data was
taken by Masselink et al. ' The broadening parameter I o

in the theoretical spectra is taken to be 1 meV. The abso-
lute magnitude of the theoretical spectrum for the transi-
tions to the first conduction subband agrees well with the
data. For transitions to higher conduction subbands, the
theoretical prediction is somewhat lower. For higher-
energy transitions, the theoretical model is less justified in
that the nonparabolity of the conduction band which is
not included in our model becomes more important and
the leaking of the electron wave function into the
Al„Ga& „As region becomes more serious. It should be
noted that the experimental data was taken for a superlat-
tice with a 100-A-wide Alo 3Gao 7As barrier, instead of a
single quantum well. The interaction of electron wave
functions in adjacent wells will affect the absorption.
This effect is also larger for higher-energy transitions.
The measured absorption spectra does not have resolution

as good as the photoexcitation spectra, so the
X(LH1-CB2) and X(HH2-CB2) transitions remain un-
resolved.

We have studied the oscillator strengths of prominent
excitons systematically as functions of quantum-
well width. The theoretical results for undoped
GaAs-Alo z5Ga075As quantum wells for the (x,y) polari-
zation have been previously reported. The correspond-
ing results for the z polarization are shown in Fig. 13.
The exciton oscillator strengths are found to be complicat-
ed functions of well width. In general, there is a trend to-
ward decreasing oscillator strength with increasing well
width for moderately wide wells on account of wave-
function spreading. Note that in the absence of band hy-
bridization, the En =0 exciton oscillator strengths are
proportional to

~

G(0)
~

For wide wells, the oscillator strength per unit area falls
off approximately as 1/8' where 8' is the well width.
This dependence can be seen as follows. Since f„ is pro-
portional to

~
G(0) ~, then in a quantum well f„-a

where a is the extent of the exciton in the x,y plane. For
moderately wide wells a —8'~ and f„—1/W. ' For
very narrow wells, this trend is reversed as the exciton
wave function spills out of the well into the Al Ga& As
barrier and thus the oscillator strength typically has a
maximum at some critical width. This picture is compli-
cated by hybridization of the hole wave functions. In ad-
dition to the b,n =0 excitons there are hn&0 forbidden
excitons which share oscillator strength with the hn =0
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excitons through mixing of their valence-subband wave
functions. Thus the LH1-CB2 exciton corresponding to a
parity forbidden An =1 transition acquires a giant oscilla-
tor strength at the expense of the HH2-CB2 exciton since
the LH1 and HH2 states are nearly degenerate in energy
and strongly mixed. In this situation the LH1-CB2 and
HH2-CB2 exciton peaks form a closely spaced pair with
HH2-CB2 being the stronger of the two transitions.

The absorption spectra of p-type modulation-doped
spectra of GaAs-Al Ga& „As quantum wells are shown
in Figs. 14 and 15. In Fig. 14, W'=115 A, x=0.44, and
the hole concentration (ni, ) is 5.4X10' cm . In Fig. 15,
8'=90 A, x=0.45, and hole concentration is about 10

times higher (nl, ——5.3 X 10" cm ). To compare with the
experimental data, the excitation spectra measured by
Miller and Kleinman are included in these figures. We
find that in both cases (nz ——5.4 X 10' cm and
5.3 X 10" cm ), the HH1-CB1 exciton is unbound due to
the blocking of HH1 states with energies below the Fermi
level, and the other excitons are sufficiently screened so
that they do not appear as distinct features. The structure
seen in these figures are mostly due to the band-to-band
transitions (dashed curves). The LH1-CB1 peak is mainly
due to the sharp density of states near the threshold where
the associated hole subband structure has a "negative" ef-
fective mass as previously discussed. A similar theoreti-
cal absorption spectrum for a 100-A p-type doped
GaAs-Alo 4Gao 6As quantum well was reported in a previ-
ous paper. ' In that calculation, the carrier screening and
finite-well effect on the Coulomb enhancement factor was
neglected. As demonstrated in Fig. 8, the carrier screen-
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ing effect on the final-state interaction will give rise to a
resonance structure in the Coulomb enhancement factor.
This is most clearly seen in the sharp peaks labeled LH1-
CB2 and HH2-CB2 in Figs. 14 and 15. These structures
are in reasonable agreement with those of the excitation
spectra. The band-to-band transition calculated here was
broadened by 1 meV, and the exciton peaks were
broadened by I „„=2meV &n &n' where n and n' are
principal quantum numbers for the electron and hole
states.

In Fig. 14, a peak labeled E&~ was observed in the exci-
tation spectrum at 5 K. However, at lower temperatures
this peak is suppressed. This peak is most likely due to
the HH1-CB1 transition. Although the HH1-CB1 exciton
is unbound due to the blocking effect, a peak structure in
absorption near the threshold for band-to-band transition
is still possible if the many-body effect is appropriately in-
cluded as in Ref. 27.

In Fig. 15, the theoretical absorption spectrum indicates
a suppression of the HH1-CB1 band-to-band transition
for energies below —1.58 eV due to the Burstein-Moss
blocking effect. However, this feature is not observed in
the corresponding excitation spectrum as shown in Fig.
18. At present, we have no satisfactory explanation for
the discrepancy.

Figure 16 shows the comparison between the theoretical
absorption spectrum and the experimental excitation
spectrum for a 104-A n-type modulation-doped
GaAs-A1Q3Gao 7As quantum well with electron concen-
tration n, =1.4)& 10" cm . For n-type doping, all exci-
tons asso iated with CB1 are unbound at this concentra-
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LH2-CB2 and HH2-CB2 mentioned previously. Here the
parity forbidden LH1-CB2 exciton associated with the
negative-mass LH1 subband shares oscillator strength
with the allowed HH2-CB2 exciton associated with
positive-mass HH2 subband through strong mixing of
LH1 and HH2. As the hole concentration increases the
oscillator strength curves for LH1-CB2 and HH2-CB2 are
seen to cross and LH1-CB2 then becomes the stronger
transition of the two.

In Figs. 19 and 20 we plot the exciton oscillator
strength per unit area as a function of electron con-
centration for 100- and 200-A n-type doped
GaAs-Alo $5Gao 75As quantum wells. The effect of elec-
tron screening is to dampen the oscillator strength as seen
in the figure. As in the p-type doped case, the strength of
the LH1-CB2 exciton declines less rapidly with doping
level than the HH2-CB2 and LH2-CB2 excitons due to
the negative effective mass of LH1.

V. SUMMARY AND CONCLUSION

In summary, we have carried out a systematic study of
electronic and optical properties of modulation-doped
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for ~,y polarization. The left scale is for dashed curves only
and the right scale for solid curves.

GaAs-Al Ga& As quantum wells. We consider cases in
which the Al Ga~ As barriers are doped either n or p
type and the GaAs wells are filled with a gas of free car-
riers. We find that the electronic valence-band structure
is very complicated due to strong mixing of heavy and
light holes. The valence subbands are highly nonparabolic
and in particular some valence subbands have negative
zone center effective masses. Zone center masses are stud-
ied and found to be sensitive to variations in well width
but relatively insensitive to doping level. Exciton binding
energies and oscillator strengths are found to be sensitive
functions of both well width and doping level. Because of
valence-band mixing all exciton transitions are dipole al-
lowed. Excitons associated with negative zone center hole
masses tend to have enhanced binding energies and oscil-
lator strengths. Those excitons formed from filled sub-
band states give rise to unbound resonance states at finite
doping levels while those excitons formed from the un-
filled subband states are weakly bound and have sharply
reduced oscillator strengths due to screening by free car-
riers. The band-to-band absorption is found to be modi-
fied by screening effects. The screened final-state interac-
tion gives rise to a sharp resonance peak in the Coulomb
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enhancement factor at intermediate doping levels. At
very high doping levels the final-state interaction is com-
pletely screened, resulting in an enhancement factor of un-
ity and in the limit of no doping and infinitely narrow
wells the results of Shinada and Sugano are recovered.
Our theory is compared with available experimental data
and reasonable agreement between theory and experiment
is found.

n. The free-carrier state satisfies the quantum-well
Schrodinger equation

The free-carrier states for holes in a quantum well are
given by

I q l, m) = gg (qll, za)U'(r)e
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APPENDIX A:
EXCITON EFFECTIVE-MASS EQUATION

In this appendix we derive the exciton effective-mass
equations. The quantum-well conduction-band free-
carrier state

I

k l, n ) is given by

g f„(z,)U(r)e " X

where f„(z, ) is the envelope function, U(r) is the bulk
Bloch state at k=O, 7 is the spin-wave function
(cr =+ —, ), and p =xx+yy. The subbands are indexed by

where g (qlI, zh ) is the envelope function for spin v
(v= ——, , ——, , —, , —, ), U"(r) is the associated bulk Bloch
function, and I labels the subbands. In the quantum well
we have

H~ Iqllm&=E (qll)Iqllm&.

The noninteracting Hamiltonian Ho ——H, +Hh and in
the absence of electron-hole Coulomb interaction we have

Ho Ikll n &
I qll m & =[E'(kll) —E (q )] Ikll n &

I q
l

m & .

(A 1)

The effective-mass equation for the exciton is given by
HP„=EP„, where H =Ho+ V and V is the electron-hole
Coulomb interaction. We expand the quantum-well exci-
ton state g„ in terms of the noninteracting eigenstates:

(A2)
n& m kl lqll

Substituting (A2) into the Schrodinger equation H g„
=Ep„, ~ultiplyi~g on the left by (kll m

I (qll m
I

and
making use of (Al), we obtain

[E„'(k l) E" (qll) E]F„—(kll, qll)+ —g g (kiln, qllm I

V
I
kjln', qj m')F„(kjl, qjl) =0 .

k
I
I, ql

I

We are interested in excitons at rest and so we write

F„(kll,qll) =5(kll+qll)G„(kll) .

In this case (A3) reduces to

(A3)

(A4)

[E„'(kll)—E"(kll)]G„(kl )+ g g V„" (kll, kj )G„(kll)=EG„m(kll) .
n, m

(A5)

The bare electron-hole Coulomb interaction in coordinate space is given by

V(r) =
2—e

eo[p +.(z, —zh} ]
(A6)

Taking the Fourier-Bessel transform of (A6), we have

2 —
l ql Ii, —ig l

V(q}= e
eo

I q I

(A7)

from which we obtain the required matrix element

(A8)
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APPENDIX B: VARIATIONAL SOLUTION
OF EXCITON EFFECTIVE-MASS EQUATION

The exciton envelope function G„(kll) and binding en-
ergy E„are obtained by solving the effective-mass equa-
tion

(Bl)

The overlap integral S(P,P') is given by

~(P P') = &P I
P'& = g &O'

I kll & & kll I P & .
kll

(85)

Substituting (84) into (85) and performing the integra-
tion, one obtains

with

Hn~(kll~kll) =tE~
ll

s(p, p)=
p+ p'

The kinetic-energy matrices T( f3, /3') are given by

T(»P') = &P I En«ll) —E"(kll)
I

P'& .

(86)

(87)

+V
Here e(q) is the wave-vector-dependent dielectric constant
described in the text, E„'(kll) and E (kll) are conduction
and valence subbands, respectively, and the bare Coulomb
potential V„(qll) is given by

—2

g f f dz. dz~ If:(z.) I'

If one assumes that the energy bands are isotropic, i.e.,
that E(kll) =E(

I kll I
), then (87) reduces to a one-

dimensional integral which can be performed numerically.
The result is given by

T(p, p') = f dkll E(kll )kll exp
00 p+ p'

&pp 4pp'

x jg.'(;) I" 't~'" '"

(82)

The functions f„(z,) and g (zq ) are the exact zone center
wave functions obtained by solving the finite square-well
problem. The integral (82) is a function of qll which can
be performed numerically.

The exciton enve1ope function G„(kll) is expanded in
a set of Gaussian basis functions:

wh««(kll)=E:( Ikll I)—E" ( Ikll I) depends o»y on

The potential matrix element in the Gaussian basis is
evaluated in coordinate space. The real-space Coulomb
interaction is given by taking the Fourier-Bessel transform
of (82),

V„(p)= f dqll qll jp(qllp)V (qll)/e(qll) (89)

where Jp(x) is the zero-order Bessel function. The matrix
elements are given by

G„.(k„)=pc„'.Ip&, (83) v„(p,p')= & f3
I V„(p)

I

p'&, (810)

where

I

2~P

k

4p
(84)

2
where &p I P& =(&2P/vr)e ~~ is the Fourier-Bessel
transform of (84). Performing the integration over p one
is left with a one-dimensional integra1 over qlI which can
be performed numerically:

Here p is a set of Gaussian exponents chosen to cover a
broad physical range.

2v'Pf3'
I nm qll )=

p+p fp """l' «q„) "~ «p+p')
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